GENERATIVE Al

ON THE CONCEPT AND HISTORICAL PERSPECTIVE OF GENERATIVE Al

‘C«. PRESENTED BY VAHID MOHAMMADZADEH EIVAGHI
‘v CO-FOUNDER AT VIRA Al GROUP - SPECIALIZED IN THE APPLICATION OF CV IN INDUSTRY




Part 1:
INTRODUCTION

Generative modeling vs discriminative modeling, pros and cons
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MACHINE LEARNING SYSTEMS

Supervised learning

e There is supervision data forcing model to produce the same
supervision given input variables.

Unsupervised learning

e There is no supervision data, and the model force to discover existing
patterns.

Reinforcement learning

 Machines learn based on a set of possible actions and policies




SUPERVISED LEARNING

= |n supervised setting, we have a dataset S = {xk,yk}’,l’zl, and we are seeking to
find a mathematical function to map from input space spanned by x; € R% to
output space spanned by y, € RP.

= Discriminative modeling - approximate the conditional distribution P(y|x) indirectly, without
requiring the distribution of data.

= Linear regression, logistic regression, decision tree, MLP, CNN, RNN, transformers, ...

= Generative modeling - approximate the conditional distribution P(y|x) directly, relying on the
distribution of data.

= Naive Bayes, Linear/quadratic discriminant function.




UNSUPERVISED LEARNING

" |n unsupervised setting, we have a dataset S = {xk}’,l’zl, there is no target to
which we find a mapping from input, thus nothing to predict nor to discriminate.

= Pattern discovery - create a homogenous group of objects.

= Structure learning - detect structure and infer the relationship between variables.

= PDF estimation (generative modeling) - model the joint distribution over observation through
either latent variable models or without it.




WHY GENERATIVE MODELING

1. Improving the discriminative models

= How discriminative models create a mapping? -> they uses some sort of distance measuring to
perform the task -> similar samples belong to the similar categories -> discriminative features

say the last words!
=  What about the objects from the same class with different characteristics?

2. Sampling itself - content generation

= Content generation -> the main goal of generative models in todays’ world (Artificial Intelligent
Generated Content (AIGC))

3. Inter-correlated structure detection




GENERATIVE MODELING - DEFINITION

Train from x~Pgyu¢q (x) Generate from x~P,,,4e1 (X)

= We want to learn a model P,,,,4.; () similar to Py, eq(x)




GENERATED SAMPLES

Karras, Tero et al. (2018). \Progressive Growing of GANs for Improved Quality,Stability, and Variation". In: International Conference on Learning Representations




Part 2:
HISTORICAL PERSPECTIVE

From GMM to ChatGPT, the most important tools blooming generative Al
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HISTORICAL PERSPECTIVE

= Attempts for making generative models dating back to 1950, started from
introducing GMM and HMM for sequential data.

= Limited performance and major restriction on utilizing for high dimensional space.

= |[mage generation based on manipulated samples texture synthesize, and text
generation based on word distribution estimation using N-gram.

= Deep learning emergence

= Structure and technologies advancement - Energy based models, GAN, VAE, autoregressive
models, BERT, BART, GPT, DALLE-2, CLIP, Bloom, ...




PRE-TRAINING STRATEGIES

" The model is trained to perform well on unspecific task to expect perform a good
performance in all related down-stream tasks -> transfer learning

= Data understanding
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DIRECT MAPPING
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LATENT VARIABLE MODELS
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SOLVING JIGSAW PUZZLE

Pre-training stage Fine-tuning stage
}CIA.
- A. j\'@ . FG-SBIR dataset
Q@ —— Q
: .
s Al R _y—
S|l | R [—D
® S=t o
5 8 , S
== < /]w <
e B—| % | — | "
A -




CONTRASTIVE LEARNING
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MASKED LANGUAGE MODELS

%rched, sat, seated, hopped, ...

Output  [CLS]  the cat perched on the mat [SEP]  the cat on the mat [SEP]

Pt ¢ ottt r r r r
BERT for Masked Language Model
(N I R S R R R R R R R R R

Input [CLS]  the cat perched on the mat [SEP] the cat [MASK] on the mat [SEP]

Sentence S Sentence S with masked word ‘perched’

The top probability words corresponding
to the masked word ‘perched’




AUTOREGRESSIVE LANGUAGE MODELS
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MASKED AUTO-ENCODER




MULTI-MODAL PRE-TRAINING
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MASKED CLIP

contrastive
[ loss ]
image encoder text encoder
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ATTENTION IS ALL YOU NEED

= Transformers are a specific type deep neural network originally developed for
neural machine translation.

= Transformers make it possible to process a sequence of tokens in parallel in exchange for the
high number of parameters.

= Self attention is core module of transformers.

= Preliminary

= We need to know what are attention and self-attention mechanisms




ENCODER- DECODER ARCHITECTURE




ATTENTION MECHANISM
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INFORMATION RETRIEVAL SYSTEM




SELF-ATTENTION MECHANISM
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Multi-Head
Attention

Masked
Multi-Head
Attention

Multi-Head

Attention

Positional
Encoding

Positional
Encoding

Outputs
(shifted right)




VISION TRANSFORMERS (VIT)
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Part 3:
GENERATIVE MODELS

Types, tools, architectures, algorithms, and sampling principles
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SAMPLING

= Given a probability distribution p(x), how one can draw samples from it?




DISCRETE RANDOM VARIABLES

= If it is assumed that there is a PDF in hand, from which we can draw samples by
sampling from an uniform distribution.
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INVERSE CDF TRANSFORM

= What about continues distributions?
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MONTE CARLO MARKOV CHAIN

= Define a Markov chain with stationary distribution of the one from which we are
going to sample.

0O 01 O
Xty1 = th =103 09 04 Xt

0.7 0 0.6

Regular Markov chain: From any arbitrary initialization
we will reach the same distribution

.6 T = Pn




GIBBS SAMPLING

= Define a Markov chain with stationary distribution of the one from which we are
going to sample.

' Gibbs sampling uses the following procedure

» Repeat until convergence for t =1.2,....

» Set x «— x' L.

» For each variable x; in the order we fixed:
1) Sample x{ ~ p(x; | x—;).
2) Update x <= (x1,...,X;,...,Xd).

» Set x' + Xx.

We use x_; to denote all variables in x except x;.




TYPE OF GENERATIVE MODELS

= Generative models are grouped based on either the way they are trained or the
final model they will provide.

= Generative models are either trained based on maximum likelihood criterion or adversarial
training

" Generative models give us either a probability density function or just sampling
mechanism.




PARAMETRIC DENSITY ESTIMATION

= A specific form of distribution is assumed, whose parameters are estimated using
data

= Given an iid set of samples {xq,...xy5}, x; € R%, a distribution with known form Pgy(x) is defined
as the following;:

N
Py(x) = 1_[ Pg(xi)
k=1

= The parameters 6 is estimated through maximizing the log-likelihood. Why log-likelihood?




VILE SOLUTION

= Take the derivative with respect to the parameters:

N
LL(B) = z InPgy(x,) —» 0" = arg max LL(6)
k=1




NON-PARAMETRIC MODELS

= Which form we should select to be matched to given data?

= (Often, one about which we think is far from the reality.
"= The parametric models are often unimodal while the real world is multimodal.

= High-dimensional parameter space
= Non-parametric models

= Parzen

= K-nearest neighbors




HISTOGRAM

= How histograms are formed? For one dimensional data

= Sort data in descending order and divide it into some intervals

0.025

* Intervals are arranged with an assumption
where the density is defined as the
proportion of samples falling into each
intervals.

 The volume should be small enough to be
ensured over which the density is constant
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PARZEN WINDOW

= An extension over histogram methods for high dimensional space

= The basic utilities of kernel function

) =5 23 (5




KNN

= |t performs like Parzen window with an exception where the volume is changed.

-
-------

Sort training samples based on their distances to a
selected test sample.

KNN will not give us the likelihood distribution since its
integration over the space will be diverged. How?
Euclidean kernel is usually used, while using complex

kernels is also possible. What we mean of complex
kernels?



GAUSSIAN MIXTURE MODELS (GMM)

= GMM is a simple class of latent variable models, where the latent space is formed
by K-dimensional discrete variable.

K

Z P = Y @@l p@ = [rfE pelze = DN G50

k=1
x p(x)—zp(zk—npmzk—l = ) N el 30
k

= Similar to parametric models, the structure of the model is fixed and only
remained step is parameter estimation
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GMM FOR SEQUENTIAL DATA

= Sequential data
= A simple vector with an additional dimension that has physical meaning (time or order)

= How GMM can be extended to deal with sequential data?

Zo 244 e Zg_q
z =1{2y,21,2Z5, .., Z7} — X = : :
Zn-d “Zn-d+1 * Zp—q




HIDDEN MARKOV MODELS (HMM)

= Hidden (latent) markov model is a mathematical system whose states are limited
to be countable -> an instance of state space models

= The observations y,.r are generated by a set of unobservable variables z;.r

T
P(yy.1,21.7) = P(21) HP(Zt|Zt—1)P()’t|Zt)
t=1




GRAPHICAL MODELS

Bayesian network Markov random field




BOLTZMANN MACHINES (BM)

= BMs are fully connected Markov Random Field (MRF) -> what are MRFs?

1
&\ « MRFs are a specific type of probabilistic graphical
v

6, models factorizing the joint distribution over some
variables as the product of some positive terms, so-
called potential functions.

In BMs, potential functions are defined using energy
concept, introduced from statistical mechanics.
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FULLY VISIBLE BM

= |n a fully visible network, the energy function is defined as the following:

E(x) = —x"Wx —-b"x - P(x) = %exp(—E(x)) , 7 = Z exp(—E(x))

X1 X X3 | wiaxixe wisxixs  wasxoxs  boxo | H(x) | exp(H(x)) | p(x)

-1 -1 -1 -1 -1 2 -1 -1 0.368 0.0021
-1 -1 1 -1 1 -2 -1 -3 0.050 0.0003
-1 1 -1 1 -1 -2 1 -3 0.368 0.0021
-101 1 1 1 2 1 5 148.413 | 0.8608
1 -1 -1 1 1 2 -1 3 20.086 0.1165
1 -1 1 1 -1 -2 -1 -3 0.050 0.0003
1 1 -1 -1 1 -2 1 -1 0.368 0.0021
1 1 1 -1 -1 2 1 1 2.718 0.0158

Z =172.420




BOLTZMANN MACHINE WITH HIDDEN UNITS

= The power of BM will be shined if we have some hidden variables.

Boltzmann Machine
4 hidden nodes
4 visible nodes

E(x,h) = —x"Wx — —-hTVh —xTFh—a"h — bTx
1
P(x,h) =Eexp(—E(x’h)), _— | - . —

Visible Layer
Z = Z exp(—E(x, h))
x,h

4 nodes

Visible-visible and hidden-hidden connections

Visible-hidden connections




LEARNING IN MRF

= The learning is based on maximizing likelihood function using GD

= All Boltzmann machines have intractable partition function

1
p(x;0) = ——5(x; 6)
6

(xx; 6)Vp(log p(x; 0))
Zg

_ _ p
Vo(logp(x;0)) = —VglogZg + Vg(logp(x; 8)) = Vg(logp(x; 8)) — E
X




RESTRICTED BOLTZMANN MACHINE (RBM)

" The tractability of joint distribution defined by BMs limits their application in
practice.

= RBM is an instance of Boltzmann machine formed using a bipartite graph.

Restricted Boltzmann Machine
4 hidden nodes
4 visible nodes

* Make benefits from conditional independency

M N
p(hl) = | [ptulv) p@in) = | [p@iln)
i=1 i=1

Only visible-hidden connections




LEARNING IN RBM

Restricted Boltzmann Machine
4 hidden nodes

= Energy function of RBM #visible nodes

E(w,h) = —vIWh—-a"h—-bTv

Hidden Layer
4 nodes

Visible Layer
4 nodes

1
p(v;0) = Z_e exp(—E(v, h))

Only visible-hidden connections




DEEP BOLTZMANN MACHINE (DBM)

= A multi-layered configuration of RBMs




LEARNING IN DBM




DEEP BELIEF NETWORK (DBN)

= Hybrid probabilistic graphical models
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CONTINUES LATENT VARIABLE MODEL

= There would be a latent mechanism that is responsible for variations behind the
data

@ po(x,z) = pe(2)pe(x|2) = pg(x) = jPe(Z)Pe(ﬂZ)dz

M

O

What forms the prior distribution and conditional distribution can take?




GAUSSIAN PRIOR

= Flexible mapping applied to standard Gaussian can model any complex
distribution.




PROBABILISTIC PCA

= |[inear Gaussian latent variable models

= |t has been shown that PCA is the MLE solution to probabilistic PCA

T2




AUTO-ENCODER

= A simple neural networks with two layers, encoder and decoder

Decoder

Encoder

Input Code Output




VARIATIONAL AUTO-ENCODERS

= The marginal distribution over a latent variable models can be approximated using
Monte-Carlo simulation

= However, it is not practical, since the samples generated from a standard Gaussian has
been shown posses a low probability under conditional distribution p(x|z), meaning we

should generate infinite number of samples for generating one sample of x.




training
process

generation
process

- e

encoder

RECOGNITION NETWORK

encoded vector
(in latent space)

sampler

sampled vector
(from latent space)

decoder -

decoded content

(reconstructed input /
generated content)
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VARIATIONAL EM

po(x,z) = pg(2)pg(x|z)

Pe (x, Z)
q¢(z|x)

Po (x, Z)
q¢(z|x)

log pg(x) = logj pe(x,z) dz — logj qp(z|x)dz = fq(p(zlx) log dz = F(6, ¢)

¢rs1 = arg mqgle Ok, @), E — Step

0%, " = F(6,
6" = argnExF©.9) {ek+1=argmgxpw,¢m>, M= Step




VAE STRUCTURE
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ADVERSARIAL MACHINE LEARNING

= Do really deep learning models perform tasks as performant as human?

m  Search for examples which cannot be misclassified by humans but can be misclassified by
model -> adversarial examples

Panda Gibbon




MACHINE LEARNING SECURITY




GENERATIVE ADVERSARIAL NETS (GAN)

® Generative adversarial net is the first model which is trained in an opposite direction of
the dominant paradigm.

Training set Discriminator

Real

E— {Fa ke

Random

Generator Fake image

9* = mGjn max V(D,G) = Ex.p,, [logD(x)] + Ez~pz[1 - 108D(G(Z))]




GAN - IMPLEMENTATION

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k. is a hyperparameter. We used & = 1. the least expensive option, in our
experiments.
for number of training iterations do
for & steps do

e Sample minibatch of m noise samples {z(l), e ,z(m)} from noise prior py(2).
e Sample minibatch of m examples {m(l)j - ,m(m)} from data generating distribution
pdata(m)-

e Update the discriminator by ascending its stochastic gradient:

Vo, L3 [log D () 1o (1~ D (6 (=)

1=

end for
e Sample minibatch of m noise samples {z(l) ..... z(m)} from noise prior p,(z).

e Update the generator by descending its stochastic gradient:

Vo, ilg (1-D(c(=9))).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum 1n our experiments.




MODE COLLAPSE

= |tis likely that generator produce samples belonging to specific mode rather than the

entire distribution.

Score [0-1]

100 z

Generator




ADVERSARIAL A
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CONDITIONAL GAN

= One way for mitigating the mode collapse problem is to use class information

Training
Z Real
Sample
T —P
Generator G Discriminator D
@ ’ Real/Fake?
Generated
Sample T




IMAGE-TO-IMAGE TRANSLATION

Zebras T Horses Summer Z_ Winter

photo —»Monet horse — zebra winter —» summer




CYCLE GAN

Decision
[1,0]

.. Discriminator
Decision

[1.0]

Dy

Decision
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Discriminator
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Decision
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HIERARCHICAL VAE
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DIFFUSION MODELS
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AUTOREGRESSIVE MODELS

= What we means of sequential data modeling?

= Given a sequence of data y4.7, we are wiling to model P(y4.7).
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RECURRENT NEURAL NETWORKS

" The transition model is a deterministic mapping while the output model follows a
Gaussian distribution -> incapable of capturing the variation behind data
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DEEP AUTOREGRESSIVE MODELS
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ENCODER-ONLY ARCHITECTURE

Output  [CLS]  the cat

1 1

The top probability words corresponding
to the masked word ‘perched’

%rched, sat, seated, hopped, ...

perched on the mat [SEP]  the cat on the mat [SEP]

ro ottt r 1t 1t 1

BERT for Masked Language Model

(I

Input [CLS]  the cat

r 1+ttt 1+t 1t f*t °t ° f

perched on the mat [SEP]  the cat [MASK] on the mat [SEP]

Sentence S Sentence S with masked word ‘perched’



DECODER-ONLY ARCHITECTURE

across the road <EOS>
Decoder-Only Architecture T T T T
/[ Decoder Block ]\
[ Decoder Block ]
[ .................... Feed ForwardNeu,.a| Network .................... ]
K[ Masked Self-Attention ]/

[ Token and Positional Embedding ]

the chicken walked




ENCODER-DECODER ARCHITECTURE
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NORMALIZING FLOW NETWORK

Base density
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