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INTRODUCTION 
Generative modeling vs discriminative modeling, pros and cons 
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MACHINE LEARNING SYSTEMS

Supervised learning 

• There is supervision data forcing model to produce the same 
supervision given input variables. 

Unsupervised learning 

• There is no supervision data, and the model force to discover existing 
patterns. 

Reinforcement learning

• Machines learn based on a set of possible actions and policies
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SUPERVISED LEARNING 

 In supervised setting, we have a dataset 𝑆 = 𝑥𝑘 , 𝑦𝑘 𝑘=1
𝑁 , and we are seeking to

find a mathematical function to map from input space spanned by 𝑥𝑘 ∈ 𝑅𝑑 to

output space spanned by 𝑦𝑘 ∈ 𝑅𝑝.

 Discriminative modeling – approximate the conditional distribution 𝑃(𝑦|𝑥) indirectly, without
requiring the distribution of data.

 Linear regression, logistic regression, decision tree, MLP, CNN, RNN, transformers, …

 Generative modeling – approximate the conditional distribution 𝑃(𝑦|𝑥) directly, relying on the
distribution of data.

 Naïve Bayes, Linear/quadratic discriminant function.

2



UNSUPERVISED LEARNING 

 In unsupervised setting, we have a dataset 𝑆 = 𝑥𝑘 𝑘=1
𝑁 , there is no target to

which we find a mapping from input, thus nothing to predict nor to discriminate.

 Pattern discovery – create a homogenous group of objects.

 Structure learning – detect structure and infer the relationship between variables.

 PDF estimation (generative modeling) – model the joint distribution over observation through

either latent variable models or without it.

3



WHY GENERATIVE MODELING

1. Improving the discriminative models

 How discriminative models create a mapping? -> they uses some sort of distance measuring to
perform the task -> similar samples belong to the similar categories -> discriminative features
say the last words!

 What about the objects from the same class with different characteristics?

2. Sampling itself – content generation

 Content generation -> the main goal of generative models in todays’ world (Artificial Intelligent
Generated Content (AIGC))

3. Inter-correlated structure detection
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GENERATIVE MODELING – DEFINITION 

Train from 𝑥~𝑃𝑑𝑎𝑡𝑎 (𝑥) Generate from 𝑥~𝑃𝑚𝑜𝑑𝑒𝑙 (𝑥)

 We want to learn a model 𝑃𝑚𝑜𝑑𝑒𝑙 (𝑥) similar to 𝑃𝑑𝑎𝑡𝑎(𝑥)
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GENERATED SAMPLES

Karras, Tero et al. (2018). \Progressive Growing of GANs for Improved Quality,Stability, and Variation". In: International Conference on Learning Representations6



HISTORICAL PERSPECTIVE
From GMM to ChatGPT, the most important tools blooming generative AI 
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HISTORICAL PERSPECTIVE

 Attempts for making generative models dating back to 1950, started from

introducing GMM and HMM for sequential data.

 Limited performance and major restriction on utilizing for high dimensional space.

 Image generation based on manipulated samples texture synthesize, and text

generation based on word distribution estimation using N-gram.

 Deep learning emergence

 Structure and technologies advancement – Energy based models, GAN, VAE, autoregressive

models, BERT, BART, GPT, DALLE-2, CLIP, Bloom, …
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PRE-TRAINING STRATEGIES 
 The model is trained to perform well on unspecific task to expect perform a good

performance in all related down-stream tasks -> transfer learning

 Data understanding
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DIRECT MAPPING 
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LATENT VARIABLE MODELS 

10



SOLVING JIGSAW PUZZLE
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CONTRASTIVE LEARNING 
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MASKED LANGUAGE MODELS
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AUTOREGRESSIVE LANGUAGE MODELS
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MASKED AUTO-ENCODER
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MULTI-MODAL PRE-TRAINING 
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MASKED CLIP
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ATTENTION IS ALL YOU NEED

 Transformers are a specific type deep neural network originally developed for

neural machine translation.

 Transformers make it possible to process a sequence of tokens in parallel in exchange for the

high number of parameters.

 Self attention is core module of transformers.

 Preliminary

 We need to know what are attention and self-attention mechanisms
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ENCODER-DECODER ARCHITECTURE
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ATTENTION MECHANISM
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INFORMATION RETRIEVAL SYSTEM
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SELF-ATTENTION MECHANISM
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VISION TRANSFORMERS (VIT)
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GENERATIVE MODELS
Types, tools, architectures, algorithms, and sampling principles  
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SAMPLING 
 Given a probability distribution 𝑝(𝑥), how one can draw samples from it?
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DISCRETE RANDOM VARIABLES 

 If it is assumed that there is a PDF in hand, from which we can draw samples by

sampling from an uniform distribution.

1 3 7
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INVERSE CDF TRANSFORM
 What about continues distributions?
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MONTE CARLO MARKOV CHAIN

 Define a Markov chain with stationary distribution of the one from which we are

going to sample.

𝑥𝑡+1 = 𝑃𝑥𝑡 =
0 0.1 0
0.3 0.9 0.4
0.7 0 0.6

𝑥𝑡

Regular Markov chain: From any arbitrary initialization

we will reach the same distribution

𝜋 = 𝑃𝜋
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GIBBS SAMPLING 

 Define a Markov chain with stationary distribution of the one from which we are

going to sample.
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TYPE OF GENERATIVE MODELS 

 Generative models are grouped based on either the way they are trained or the

final model they will provide.

 Generative models are either trained based on maximum likelihood criterion or adversarial

training

 Generative models give us either a probability density function or just sampling

mechanism.
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PARAMETRIC DENSITY ESTIMATION 

 A specific form of distribution is assumed, whose parameters are estimated using

data

 Given an iid set of samples 𝑥1, … 𝑥𝑁 , 𝑥𝑖 ∈ 𝑅𝑑, a distribution with known form 𝑃𝜃(𝑥) is defined

as the following:

 The parameters 𝜃 is estimated through maximizing the log-likelihood. Why log-likelihood?

𝑃𝜃 𝑥 =ෑ

𝑘=1

𝑁

𝑃𝜃(𝑥𝑘)
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MLE SOLUTION 

 Take the derivative with respect to the parameters:

𝐿𝐿 𝜃 = ෍

𝑘=1

𝑁

ln 𝑃𝜃 𝑥𝑘 → 𝜃∗ = argmax
𝜃

𝐿𝐿(𝜃)
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NON-PARAMETRIC MODELS

 Which form we should select to be matched to given data?

 Often, one about which we think is far from the reality.

 The parametric models are often unimodal while the real world is multimodal.

 High-dimensional parameter space

 Non-parametric models

 Parzen

 K-nearest neighbors
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HISTOGRAM
 How histograms are formed? For one dimensional data

 Sort data in descending order and divide it into some intervals

• Intervals are arranged with an assumption

where the density is defined as the

proportion of samples falling into each

intervals.

• The volume should be small enough to be

ensured over which the density is constant

න𝑝 𝑥 𝑑𝑥 =
𝐾

𝑁
→ 𝑝 𝑥 𝑉 =

𝐾

𝑁
→ 𝑝 𝑥 =

𝐾

𝑁𝑉
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PARZEN WINDOW

 An extension over histogram methods for high dimensional space

 The basic utilities of kernel function

𝑝 𝑥 =
1

𝑁
෍

𝑛

1

ℎ𝐷
𝑘

𝑥 − 𝑥𝑛
ℎ
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KNN
 It performs like Parzen window with an exception where the volume is changed.

• Sort training samples based on their distances to a

selected test sample.

• KNN will not give us the likelihood distribution since its

integration over the space will be diverged. How?

• Euclidean kernel is usually used, while using complex

kernels is also possible. What we mean of complex

kernels?
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GAUSSIAN MIXTURE MODELS (GMM)

 GMM is a simple class of latent variable models, where the latent space is formed

by K-dimensional discrete variable.

 Similar to parametric models, the structure of the model is fixed and only

remained step is parameter estimation

𝑝 𝑥 =෍

𝑧

)𝑝 𝑧 𝑝(𝑥|𝑧 , 𝑝 𝑧 =ෑ

𝑘=1

𝐾

𝜋𝑘
𝑧𝑘 , 𝑝 𝑥 𝑧𝑘 = 1 ~𝑁 𝑥 𝜇𝑘, Σ𝑘

𝑝 𝑥 =෍

𝑘

)𝑝 𝑧𝑘 = 1 𝑝(𝑥|𝑧𝑘 = 1 =෍

𝑘

𝜋𝑘𝑁 𝑥 𝜇𝑘 , Σ𝑘
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EM ALGORITHM
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GMM FOR SEQUENTIAL DATA

 Sequential data

 A simple vector with an additional dimension that has physical meaning (time or order)

 How GMM can be extended to deal with sequential data?

ሽ𝑧 = {𝑧0, 𝑧1, 𝑧2, … , 𝑧𝑇 𝑋 =

𝑧0 𝑧1 ⋯ 𝑧𝑑−1
⋮ ⋱ ⋮

𝑧𝑛−𝑑 𝑧𝑛−𝑑+1 ⋯ 𝑧𝑛−1
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HIDDEN MARKOV MODELS (HMM)

 Hidden (latent) markov model is a mathematical system whose states are limited

to be countable -> an instance of state space models

 The observations 𝑦1:𝑇 are generated by a set of unobservable variables 𝑧1:𝑇

𝑃 𝑦1:𝑇 , 𝑧1:𝑇 = 𝑃(𝑧1)ෑ

𝑡=1

𝑇

𝑃 𝑧𝑡 𝑧𝑡−1 𝑃 𝑦𝑡 𝑧𝑡
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GRAPHICAL MODELS 

Bayesian network Markov random field 
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BOLTZMANN MACHINES (BM) 

 BMs are fully connected Markov Random Field (MRF) -> what are MRFs? 

• MRFs are a specific type of probabilistic graphical
models factorizing the joint distribution over some
variables as the product of some positive terms, so-
called potential functions.

• In BMs, potential functions are defined using energy
concept, introduced from statistical mechanics.
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FULLY VISIBLE BM

 In a fully visible network, the energy function is defined as the following: 

𝐸 𝑥 = −𝑥𝑇𝑊𝑥 − 𝑏𝑇𝑥 → 𝑃 𝑥 =
1

𝑍
exp −𝐸 𝑥 , 𝑍 =෍

𝑥

exp −𝐸 𝑥
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BOLTZMANN MACHINE WITH HIDDEN UNITS

 The power of BM will be shined if we have some hidden variables. 

𝐸 𝑥, ℎ = −𝑥𝑇𝑊𝑥 −−ℎ𝑇𝑉ℎ − 𝑥𝑇𝐹ℎ − 𝑎𝑇ℎ − 𝑏𝑇𝑥

𝑃 𝑥, ℎ =
1

𝑍
exp −𝐸 𝑥, ℎ ,

𝑍 =෍

𝑥,ℎ

exp −𝐸 𝑥, ℎ
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LEARNING IN MRF

 The learning is based on maximizing likelihood function using GD
 All Boltzmann machines have intractable partition function 

𝑝 𝑥; 𝜃 =
1

𝑍𝜃
෤𝑝 𝑥; 𝜃

𝛻𝜃 log 𝑝(𝑥; 𝜃) = −𝛻𝜃 log 𝑍𝜃 + 𝛻𝜃 log ෤𝑝 𝑥; 𝜃 = 𝛻𝜃 log ෤𝑝 𝑥; 𝜃 −෍

𝑥

෤𝑝 𝑥; 𝜃 𝛻𝜃 log ෤𝑝 𝑥; 𝜃

𝑍𝜃

𝛻𝜃 log 𝑝(𝑥; 𝜃) = 𝛻𝜃 log ෤𝑝 𝑥; 𝜃 − E𝑥~ ෤𝑝 𝑥;𝜃 [𝛻𝜃 log ෤𝑝 𝑥; 𝜃 ]
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RESTRICTED BOLTZMANN MACHINE (RBM) 

 The tractability of joint distribution defined by BMs limits their application in 

practice. 

 RBM is an instance of Boltzmann machine formed using a bipartite graph. 

• Make benefits from conditional independency 

𝑝 ℎ 𝑣 =ෑ

𝑖=1

𝑀

𝑝(ℎ𝑖|𝑣) , 𝑝 𝑣 ℎ =ෑ

𝑖=1

𝑁

𝑝(𝑣𝑖|ℎ)
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LEARNING IN RBM

 Energy function of RBM

𝐸 𝑣, ℎ = −𝑣𝑇𝑊ℎ − 𝑎𝑇ℎ − 𝑏𝑇𝑣

𝑝 𝑣; 𝜃 =
1

𝑍𝜃
exp −𝐸 𝑣, ℎ
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DEEP BOLTZMANN MACHINE (DBM) 

 A multi-layered configuration of RBMs
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LEARNING IN DBM
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DEEP BELIEF NETWORK (DBN) 

 Hybrid probabilistic graphical models 
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CONTINUES LATENT VARIABLE MODEL

 There would be a latent mechanism that is responsible for variations behind the 

data 

𝑝𝜃 𝑥, 𝑧 = 𝑝𝜃 𝑧 𝑝𝜃 𝑥 𝑧 → 𝑝𝜃 𝑥 = න𝑝𝜃 𝑧 𝑝𝜃 𝑥 𝑧 𝑑𝑧

What forms the prior distribution and conditional distribution can take? 
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GAUSSIAN PRIOR

 Flexible mapping applied to standard Gaussian can model any complex

distribution.
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PROBABILISTIC PCA  

 Linear Gaussian latent variable models 

 It has been shown that PCA is the MLE solution to probabilistic PCA
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AUTO-ENCODER 

 A simple neural networks with two layers, encoder and decoder 
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VARIATIONAL AUTO-ENCODERS

 The marginal distribution over a latent variable models can be approximated using 

Monte-Carlo simulation 

 However, it is not practical, since the samples generated from a standard Gaussian has 

been shown posses a low probability under conditional distribution 𝑝(𝑥|𝑧), meaning we 

should generate infinite number of samples for generating one sample of 𝑥.

𝑝𝜃 𝑥 =
1

𝑁
෍

𝑧𝑘~𝑝𝜃(𝑧)

𝑝𝜃 𝑥 𝑧𝑘
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RECOGNITION NETWORK

𝑞𝜙 𝑧 𝑥 ~𝑁 𝜇𝑒𝑛, 𝜎𝑒𝑛
2 → ൝

൯𝜇𝑒𝑛 = 𝑁𝑁𝑒𝑛
𝜇
(𝑥

)log 𝜎𝑒𝑛
2 = 𝑁𝑁𝑒𝑛

𝜎 (𝑥

𝑝𝜃 𝑥 𝑧 ~𝑁 𝜇𝑑𝑒 , 𝜎𝑑𝑒
2 → ቐ

൯𝜇𝑑𝑒 = 𝑁𝑁𝑑𝑒
𝜇
(𝑧

൯log 𝜎𝑑𝑒
2 = 𝑁𝑁𝑑𝑒

𝜎 (𝑧
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VARIATIONAL EM

𝑝𝜃 𝑥, 𝑧 = 𝑝𝜃 𝑧 𝑝𝜃(𝑥|𝑧)

log 𝑝𝜃 𝑥 = logන𝑝𝜃(𝑥, 𝑧) 𝑑𝑧 → logන
𝑝𝜃 𝑥, 𝑧

𝑞𝜙 𝑧 𝑥
𝑞𝜙(𝑧|𝑥)𝑑𝑧 ≥ න𝑞𝜙 𝑧 𝑥 log

𝑝𝜃 𝑥, 𝑧

𝑞𝜙 𝑧 𝑥
𝑑𝑧 = 𝐹(𝜃, 𝜙)

𝜃∗, 𝜙∗ = argmax
𝜃,𝜙

𝐹 𝜃, 𝜙 → ቐ
𝜙𝑘+1 = argmax

𝜙
𝐹 𝜃𝑘 , 𝜙 , E − Step

𝜃𝑘+1 = argmax
𝜃

𝐹 𝜃, 𝜙𝑘+1 , M − Step
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VAE STRUCTURE
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ADVERSARIAL MACHINE LEARNING 
 Do really deep learning models perform tasks as performant as human? 

 Search for examples which cannot be misclassified by humans but can be misclassified by 

model -> adversarial examples 

Panda Gibbon  
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MACHINE LEARNING SECURITY 
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GENERATIVE ADVERSARIAL NETS (GAN)
 Generative adversarial net is the first model which is trained in an opposite direction of 

the dominant paradigm. 

𝜃∗ = min
𝐺

max
𝐷

𝑉 𝐷, 𝐺 = 𝐸𝑥~𝑝𝐷 log𝐷 𝑥 + 𝐸𝑧~𝑝𝑧 1 − log𝐷 𝐺 𝑧
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GAN – IMPLEMENTATION 
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MODE COLLAPSE 

 It is likely that generator produce samples belonging to specific mode rather than the 

entire distribution. 

61



ADVERSARIAL AE
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CONDITIONAL GAN
 One way for mitigating the mode collapse problem is to use class information 

63



IMAGE-TO-IMAGE TRANSLATION 
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CYCLE GAN
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HIERARCHICAL VAE 
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DIFFUSION MODELS 
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AUTOREGRESSIVE MODELS

 What we means of sequential data modeling? 

 Given a sequence of data 𝑦1:𝑇, we are wiling to model 𝑃(𝑦1:𝑇).  
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RECURRENT NEURAL NETWORKS

 The transition model is a deterministic mapping while the output model follows a

Gaussian distribution -> incapable of capturing the variation behind data
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DYNAMICAL VAE

Kalman VAE VAE-RNN VRNN 
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DEEP AUTOREGRESSIVE MODELS  

× 𝑛
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ENCODER-ONLY ARCHITECTURE 
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DECODER-ONLY ARCHITECTURE 
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ENCODER-DECODER ARCHITECTURE 
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NORMALIZING FLOW NETWORK
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