GENERATIVE AI

ON THE CONCEPT AND HISTORICAL PERSPECTIVE OF GENERATIVE AI

PRESENTED BY VAHID MOHAMMADZADEH EIVAGHI

CO-FOUNDER AT VIRA AI GROUP - SPECIALIZED IN THE APPLICATION OF CV IN INDUSTRY

Part 1:

INTRODUCTION

Generative modeling vs discriminative modeling, pros and cons

PRESENTED BY VAHID MOHAMMADZADEH EIVAGHI

CO-FOUNDER AT VIRA AI GROUP - SPECIALIZED IN THE APPLICATION OF CV IN INDUSTRY

MACHINE LEARNING SYSTEMS

Supervised learning

• There is supervision data forcing model to produce the same supervision given input variables.

Unsupervised learning

• There is no supervision data, and the model force to discover existing patterns.

Reinforcement learning

• Machines learn based on a set of possible actions and policies

SUPERVISED LEARNING

- In supervised setting, we have a dataset $S = \{x_k, y_k\}_{k=1}^N$, and we are seeking to find a mathematical function to map from input space spanned by $x_k \in R^d$ to output space spanned by $y_k \in R^p$.
	- **Discriminative modeling** approximate the conditional distribution $P(y|x)$ indirectly, without requiring the distribution of data.
		- Linear regression, logistic regression, decision tree, MLP, CNN, RNN, transformers, ...
	- **Generative modeling** approximate the conditional distribution $P(y|x)$ directly, relying on the distribution of data.
		- Naïve Bayes, Linear/quadratic discriminant function.

UNSUPERVISED LEARNING

- In unsupervised setting, we have a dataset $S = \{x_k\}_{k=1}^N$, there is no target to which we find a mapping from input, thus nothing to predict nor to discriminate.
	- Pattern discovery create a homogenous group of objects.
	- **Structure learning** detect structure and infer the relationship between variables.
	- **PDF estimation (generative modeling)** model the joint distribution over observation through either latent variable models or without it.

WHY GENERATIVE MODELING

1. Improving the discriminative models

- **How discriminative models create a mapping? -> they uses some sort of distance measuring to** perform the task -> similar samples belong to the similar categories -> discriminative features say the last words!
- **What about the objects from the same class with different characteristics?**
- 2. Sampling itself content generation
	- Content generation -> the main goal of generative models in todays' world (Artificial Intelligent Generated Content (AIGC))
- 3. Inter-correlated structure detection

GENERATIVE MODELING – DEFINITION

Train from $x \sim P_{data}(x)$ Generate from $x \sim P_{model}(x)$

We want to learn a model $P_{model}(x)$ similar to $P_{data}(x)$

GENERATED SAMPLES

Part 2:

HISTORICAL PERSPECTIVE

From GMM to ChatGPT, the most important tools blooming generative AI

PRESENTED BY VAHID MOHAMMADZADEH EIVAGHI

CO-FOUNDER AT VIRA AI GROUP - SPECIALIZED IN THE APPLICATION OF CV IN INDUSTRY

HISTORICAL PERSPECTIVE

- Attempts for making generative models dating back to 1950, started from introducing GMM and HMM for sequential data.
	- **Limited performance and major restriction on utilizing for high dimensional space.**
- Image generation based on manipulated samples texture synthesize, and text generation based on word distribution estimation using N-gram.
- Deep learning emergence
	- Structure and technologies advancement Energy based models, GAN, VAE, autoregressive models, BERT, BART, GPT, DALLE-2, CLIP, Bloom, …

PRE-TRAINING STRATEGIES

- The model is trained to perform well on unspecific task to expect perform a good performance in all related down-stream tasks -> transfer learning
	- **Data understanding**

DIRECT MAPPING

LATENT VARIABLE MODELS

SOLVING JIGSAW PUZZLE

CONTRASTIVE LEARNING

MASKED LANGUAGE MODELS

AUTOREGRESSIVE LANGUAGE MODELS

MASKED AUTO-ENCODER

15

MULTI-MODAL PRE-TRAINING

ATTENTION IS ALL YOU NEED

- **Transformers are a specific type deep neural network originally developed for** neural machine translation.
	- **Transformers make it possible to process a sequence of tokens in parallel in exchange for the** high number of parameters.
	- Self attention is core module of transformers.
- **Preliminary**
	- We need to know what are attention and self-attention mechanisms

ENCODER-DECODER ARCHITECTURE

ATTENTION MECHANISM

INFORMATION RETRIEVAL SYSTEM

SELF-ATTENTION MECHANISM

VISION TRANSFORMERS (VIT)

Part 3:

GENERATIVE MODELS

Types, tools, architectures, algorithms, and sampling principles

SAMPLING

Given a probability distribution $p(x)$, how one can draw samples from it?

DISCRETE RANDOM VARIABLES

If it is assumed that there is a PDF in hand, from which we can draw samples by sampling from an uniform distribution.

INVERSE CDF TRANSFORM

■ What about continues distributions?

MONTE CARLO MARKOV CHAIN

■ Define a Markov chain with stationary distribution of the one from which we are going to sample.

$$
x_{t+1} = Px_t = \begin{pmatrix} 0 & 0.1 & 0 \\ 0.3 & 0.9 & 0.4 \\ 0.7 & 0 & 0.6 \end{pmatrix} x_t
$$

Regular Markov chain: From any arbitrary initialization we will reach the same distribution

 $\pi = P\pi$

GIBBS SAMPLING

 Define a Markov chain with stationary distribution of the one from which we are going to sample.

```
Gibbs sampling uses the following procedure
Repeat until convergence for t = 1, 2, \ldots,
       \triangleright Set x \leftarrow x^{t-1}.
       ► For each variable x_i in the order we fixed:
           1) Sample x'_i \sim p(x_i | x_{-i}).
           2) Update \mathbf{x} \leftarrow (x_1, \ldots, x_i', \ldots, x_d).
       \triangleright Set x^t \leftarrow x.
```
We use x_{-i} to denote all variables in x except x_i .

TYPE OF GENERATIVE MODELS

- **E** Generative models are grouped based on either the way they are trained or the final model they will provide.
	- Generative models are either trained based on maximum likelihood criterion or adversarial training
	- **Generative models give us either a probability density function or just sampling** mechanism.

PARAMETRIC DENSITY ESTIMATION

- A specific form of distribution is assumed, whose parameters are estimated using data
	- Given an iid set of samples $\{x_1, ..., x_N\}$, $x_i \in R^d$, a distribution with known form $P_\theta(x)$ is defined as the following:

$$
P_{\theta}(x) = \prod_{k=1}^{N} P_{\theta}(x_k)
$$

The parameters θ is estimated through maximizing the log-likelihood. Why log-likelihood?

MLE SOLUTION

■ Take the derivative with respect to the parameters:

$$
LL(\theta) = \sum_{k=1}^{N} \ln P_{\theta}(x_k) \to \theta^* = \arg \max_{\theta} LL(\theta)
$$

NON-PARAMETRIC MODELS

■ Which form we should select to be matched to given data?

- **Often, one about which we think is far from the reality.**
- **The parametric models are often unimodal while the real world is multimodal.**
- **High-dimensional parameter space**
- Non-parametric models
	- **Parzen**
	- K-nearest neighbors
HISTOGRAM

- How histograms are formed? For one dimensional data
	- Sort data in descending order and divide it into some intervals

- Intervals are arranged with an assumption where the density is defined as the proportion of samples falling into each intervals.
- The volume should be small enough to be ensured over which the density is constant

$$
\int p(x)dx = \frac{K}{N} \to p(x)V = \frac{K}{N} \to p(x) = \frac{K}{NV}
$$

PARZEN WINDOW

- An extension over histogram methods for high dimensional space
	- **The basic utilities of kernel function**

KNN

■ It performs like Parzen window with an exception where the volume is changed.

- Sort training samples based on their distances to a selected test sample.
- KNN will not give us the likelihood distribution since its integration over the space will be diverged. How?
- Euclidean kernel is usually used, while using complex kernels is also possible. What we mean of complex kernels?

GAUSSIAN MIXTURE MODELS (GMM)

 GMM is a simple class of latent variable models, where the latent space is formed by K-dimensional discrete variable.

$$
p(x) = \sum_{z} p(z)p(x|z), \qquad p(z) = \prod_{k=1}^{K} \pi_k^{z_k}, \qquad p(x|z_k = 1) \sim N(x|\mu_k, \Sigma_k)
$$

$$
p(x) = \sum_{k} p(z_k = 1)p(x|z_k = 1) = \sum_{k} \pi_k N(x|\mu_k, \Sigma_k)
$$

Similar to parametric models, the structure of the model is fixed and only remained step is parameter estimation

EM ALGORITHM

36

GMM FOR SEQUENTIAL DATA

- Sequential data $\mathcal{L}_{\mathcal{A}}$
	- A simple vector with an additional dimension that has physical meaning (time or order)
- How GMM can be extended to deal with sequential data?

$$
z = \{z_0, z_1, z_2, ..., z_T\} \qquad \longrightarrow \qquad X = \begin{pmatrix} z_0 & z_1 & \cdots & z_{d-1} \\ \vdots & & \ddots & \vdots \\ z_{n-d} & z_{n-d+1} & \cdots & z_{n-1} \end{pmatrix}
$$

HIDDEN MARKOV MODELS (HMM)

- Hidden (latent) markov model is a mathematical system whose states are limited to be countable -> an instance of state space models
	- The observations $y_{1:T}$ are generated by a set of unobservable variables $z_{1:T}$

$$
P(y_{1:T}, z_{1:T}) = P(z_1) \prod_{t=1}^{T} P(z_t | z_{t-1}) P(y_t | z_t)
$$

GRAPHICAL MODELS

BOLTZMANN MACHINES (BM)

■ BMs are fully connected Markov Random Field (MRF) -> what are MRFs?

- MRFs are a specific type of probabilistic graphical models factorizing the joint distribution over some variables as the product of some positive terms, socalled potential functions.
- In BMs, potential functions are defined using energy concept, introduced from statistical mechanics.

FULLY VISIBLE BM

In a fully visible network, the energy function is defined as the following:

$$
E(x) = -x^T W x - b^T x \rightarrow P(x) = \frac{1}{Z} \exp(-E(x)), \qquad Z = \sum_x \exp(-E(x))
$$

 $\mathcal{Z} = 172.420$

BOLTZMANN MACHINE WITH HIDDEN UNITS

■ The power of BM will be shined if we have some hidden variables.

$$
E(x, h) = -xT Wx - -hTVh - xTFh - aTh - bTx
$$

$$
P(x, h) = \frac{1}{Z} \exp(-E(x, h)),
$$

$$
Z = \sum_{x, h} \exp(-E(x, h))
$$

LEARNING IN MRF

■ The learning is based on maximizing likelihood function using GD

All Boltzmann machines have intractable partition function

$$
p(x; \theta) = \frac{1}{Z_{\theta}} \tilde{p}(x; \theta)
$$

$$
\nabla_{\theta} (\log p(x; \theta)) = -\nabla_{\theta} \log Z_{\theta} + \nabla_{\theta} (\log \tilde{p}(x; \theta)) = \nabla_{\theta} (\log \tilde{p}(x; \theta)) - \sum_{x} \frac{\tilde{p}(x; \theta) \nabla_{\theta} (\log \tilde{p}(x; \theta))}{Z_{\theta}}
$$

 $\nabla_{\theta} (\log p(x; \theta)) = \nabla_{\theta} (\log \tilde{p}(x; \theta)) - \mathbb{E}_{x \sim \tilde{p}(x; \theta)} [\nabla_{\theta} (\log \tilde{p}(x; \theta))]$

RESTRICTED BOLTZMANN MACHINE (RBM)

- **The tractability of joint distribution defined by BMs limits their application in** practice.
- RBM is an instance of Boltzmann machine formed using a bipartite graph.

• Make benefits from conditional independency

$$
p(h|v) = \prod_{i=1}^{M} p(h_i|v), p(v|h) = \prod_{i=1}^{N} p(v_i|h)
$$

LEARNING IN RBM

Energy function of RBM

$$
E(v, h) = -v^T W h - a^T h - b^T v
$$

$$
p(v; \theta) = \frac{1}{Z_{\theta}} \exp(-E(v, h))
$$

Only visible-hidden connections

DEEP BOLTZMANN MACHINE (DBM)

A multi-layered configuration of RBMs

LEARNING IN DBM

DEEP BELIEF NETWORK (DBN)

Hybrid probabilistic graphical models

CONTINUES LATENT VARIABLE MODEL

There would be a latent mechanism that is responsible for variations behind the data

$$
p_{\theta}(x, z) = p_{\theta}(z)p_{\theta}(x|z) \rightarrow p_{\theta}(x) = \int p_{\theta}(z)p_{\theta}(x|z)dz
$$

What forms the prior distribution and conditional distribution can take?

GAUSSIAN PRIOR

Filexible mapping applied to standard Gaussian can model any complex distribution.

PROBABILISTIC PCA

- **Linear Gaussian latent variable models**
	- It has been shown that PCA is the MLE solution to probabilistic PCA

AUTO-ENCODER

■ A simple neural networks with two layers, encoder and decoder

VARIATIONAL AUTO-ENCODERS

- The marginal distribution over a latent variable models can be approximated using Monte-Carlo simulation
	- **However, it is not practical, since the samples generated from a standard Gaussian has** been shown posses a low probability under conditional distribution $p(x|z)$, meaning we should generate infinite number of samples for generating one sample of x .

$$
p_{\theta}(x) = \frac{1}{N} \sum_{z_k \sim p_{\theta}(z)} p_{\theta}(x|z_k)
$$

RECOGNITION NETWORK

VARIATIONAL EM

 $p_{\theta}(x, z) = p_{\theta}(z) p_{\theta}(x|z)$

$$
\log p_{\theta}(x) = \log \int p_{\theta}(x, z) dz \to \log \int \frac{p_{\theta}(x, z)}{q_{\phi}(z|x)} q_{\phi}(z|x) dz \ge \int q_{\phi}(z|x) \log \frac{p_{\theta}(x, z)}{q_{\phi}(z|x)} dz = F(\theta, \phi)
$$

$$
\theta^*, \phi^* = \arg \max_{\theta, \phi} F(\theta, \phi) \rightarrow \begin{cases} \phi_{k+1} = \arg \max_{\phi} F(\theta_k, \phi), & E - \text{Step} \\ \theta_{k+1} = \arg \max_{\theta} F(\theta, \phi_{k+1}), & M - \text{Step} \end{cases}
$$

VAE STRUCTURE

ADVERSARIAL MACHINE LEARNING

- Do really deep learning models perform tasks as performant as human?
	- Search for examples which cannot be misclassified by humans but can be misclassified by model -> adversarial examples

MACHINE LEARNING SECURITY

GENERATIVE ADVERSARIAL NETS (GAN)

 Generative adversarial net is the first model which is trained in an opposite direction of the dominant paradigm.

 $\theta^* = \min$ G max $\max\limits_{D} V(D,G) = E_{x \sim p_D}[\log D(x)] + E_{z \sim p_Z} [1 - \log D\big(G(z))\big]$

GAN - IMPLEMENTATION

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used $k = 1$, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{data}(\boldsymbol{x}).$
- Update the discriminator by ascending its stochastic gradient:

$$
\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(x^{(i)}\right) + \log \left(1 - D\left(G\left(z^{(i)}\right)\right)\right) \right].
$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by descending its stochastic gradient:

$$
\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D \left(G \left(\boldsymbol{z}^{(i)} \right) \right) \right)
$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

MODE COLLAPSE

It is likely that generator produce samples belonging to specific mode rather than the entire distribution.

ADVERSARIAL AE

CONDITIONAL GAN

■ One way for mitigating the mode collapse problem is to use class information

IMAGE-TO-IMAGE TRANSLATION

HIERARCHICAL VAE

DIFFUSION MODELS

AUTOREGRESSIVE MODELS

■ What we means of sequential data modeling?

Given a sequence of data $y_{1:T}$, we are wiling to model $P(y_{1:T})$.

RECURRENT NEURAL NETWORKS

The transition model is a deterministic mapping while the output model follows a Gaussian distribution -> incapable of capturing the variation behind data

DYNAMICAL VAE

 (\mathbf{x}_{t+1})

 (\mathbf{z}_{t+1})

 $\left\langle \mathrm{d}_{t+1} \right\rangle$

 $\left(\mathrm{u}_{t+1} \right)$

VAE

RNN

 $\left\langle \mathrm{d}_{t-1} \right\rangle$ л $|\mathbf{u}_{t-1}|$ \mathbf{u}_t

 (x_{t-1})

 $\left(\mathbf{z}_{t-1}\right)$

 (x_{t-1}) $(\mathrm{x}_{t+1}$ \mathbf{x}_t (\mathbf{z}_{t-1}) $(\mathrm{z}_{t+1}% ,\mathrm{z}_{t+1},t_{t+1},t_{t+1},t_{t+1},t_{t+1},t_{t+1})$ \mathbf{z}_t $\left\langle \mathrm{d}_{t+1} \right\rangle$ $\left\langle \mathrm{d}_{t-1} \right\rangle$ \mathbf{d}_t $(\mathrm{u}_{t+1}]$ $(\mathrm{u}_{t-1}$ \mathbf{u}_t

Kalman VAE VAE-RNN VRNN

 \mathbf{X}_t

 \mathbf{z}_t

 \mathbf{d}_t

DEEP AUTOREGRESSIVE MODELS

ENCODER-ONLY ARCHITECTURE

DECODER-ONLY ARCHITECTURE

ENCODER-DECODER ARCHITECTURE

NORMALIZING FLOW NETWORK

