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RNN

(Recurrent Neural Network)
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What 1s RNN?

Advantages of Recurrent Neural Network
1.RNN can model sequence of data so that each sample can be assumed to be dependent on previous ones
2.Recurrent neural network are even used with convolutional layers to extend the effective pixel neighborhood.

Disadvantages of Recurrent Neural Network

1.Gradient vanishing and exploding problems.

2. Training an RNN is a very difficult task.

3.1t cannot process very long sequences if using tanh or relu as an activation function.

1. Unlike feedforward neural networks, RNNs
can use their internal state (memory) to
process sequences of inputs.

2. DNN is not for Sequential Data.




What 1s RNN?

What time is it?
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What 1s RNN?

GRU



Tanh or Sigmoid?

Sigmoid




— VVNat Is SImple RNN?

Simple RNN (Unrolled)
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(NN Advantages ?
_____________________________________________________

@ RNN Advantages:
= Can process any length input
* Model size doesn’t increase for longer input

* Computation for step t can (in theory) use information
from many steps back

" Weights are shared across timesteps —
representations are shared

e RNN Disadvantages:

® Recurrent computation is slow

" |n practice, difficult to access information from many
steps back




Simple RNN Disadvantages?

» Vanishing Gradient Problem
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 HOW t0 Deal with Vanishing/Exploding Gradient?

DNN (Deep Neural Network)
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Different kind of recurrent networks?

!mage Captioning Machine Translation
image -> sequence of words
seq of words -> seq of words

one to one one to many many to one many to many many to many

\ Vanilla Neural Networks \ \

Sentiment Classification Vldfeo C|a-°i5lflclatl0n
sequence of words -> sentiment on frame leve



forget gate cell state

LSTM

(Long Short
Term Memory)

iInput gate output gate
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What is LSTM?

Three Gates of LSTM Cell:

- Input Gate Is Cell Updated?
i® = O'(Wi[h(t—l),x(t)] i bi)

Ecg%t Three Gates of LSTM Cell:

r - Input Gate IsCell Updated?
Tt

i® = G(Wi[h(t‘l),x(t)] S bi)

Is memory set

f(t) — O'(Wf[h(t_l),x(t)] e bf)
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What is LSTM?

Three Gates of LSTM Cell:

- Input Gate IsCell Updated?
i®) = O.(Wi[h(t—l)’x(t)] + bi)

Is memory set
- Forget Gate

FO = a(wf[h(t—l),x(t)] + b')

Is current info
- Output Gate .. -

o®) = O'(Wo[h(t—l),x(t)] + bo)




What is LSTM?
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— VVhat Is LSTM? (1)
_____________________________________________________

o previous cell state

o forget gate output

Forget gate operations




What is LSTM? (2)

Input gate operations

e previous cell state
o forget gate output

° input gate output

o candidate




What is LSTM? (3)

o previous cell state

° forget gate output

o input gate output

o candidate
o new cell state

0-00-0-0

Calculating cell state




e VVhat Is LSTM? (4)

e previous cell state
o forget gate output

° input gate output

o candidate
o new cell state

° output gate output

o hidden state

output gate operations




GRU
(Gated Recurrent Unit)




What is LSTM?

TWO Gates of GRU Cell:
- Update Gate

7(t) = O.(Wz[h(t),x(t)] + bz)

- Reset Gate

r® = g(WT[h®,x®] + p7)




Time Series Analysis with LSTM

Wme SerlesData’-’




- VVhat is Autoregression?
_____________________________________________________

A time series Is a sequence of measurements of the same variable(s) made over time.

An autoregressive model is when a value from a time series is regressed on previous values from that same
time series. for example, y; on y;_1:

yr = Bo + B1Yi—1 + €.

test time series prediction - tensorflow
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e Dl1fferent kind of Time-Series dataset (Multivariate Time Series)

The number of observations recorded for a given time in a time series dataset matters. Traditionally,
different names are used:

» Univariate Time Series: These are datasets where only a single variable is observed at each time, such
as temperature each hour.

Multivariate Time Series: These are datasets where two or more variables are observed at each time.

Most time series analysis methods, and even books on the topic, focus on univariate data. This is because it
IS the simplest to understand and work with.

Multivariate data is often more difficult to work with. It is harder to model and often many of the classical
methods do not perform well.




— Different kind of Time-Series dataset (Multi-Step Forecasting)

The number of time steps ahead to be forecasted is important.

Again, it is traditional to use different names for the problem depending on the number of time-steps to
forecast:

* One-Step Forecast: This is where the next time step (t+1) is predicted.
« Multi-Step Forecast: This is where two or more future time steps are to be predicted.

Time Series Forecasting as

Supervised Learning




— O0lUtIONS 0 Time-Series
- OO0

List of Time Series Method &) Datanest

Autoregression (AR)

Moving Average (MA)

Autoregressive Moving Average (ARMA)

Autoregressive Integrated Moving Average (ARIMA)

Seasonal Autoregressive Integrated Moving-Average (SARIMA)
Seasonal Autoregressive Integrated Moving-Average with Exogenous
Regressors (SARIMAX)

Vector Autoregression (VAR)

Vector Autoregression Moving-Average (VARMA)

Vector Autoregression Moving-Average with Exogenous Regressors (VARMAX)
Simple Exponential Smoothing (SES)

Holt Winter’s Exponential Smoothing (HWES)

Prophet

Naive method

LSTM (Long Short Term Memory)

STAR (Space Time Autoregressive)

GSTAR (Generalized Space Time Autoregressive)

LSTAR (Logistic Smooth Transition Autoregressive)

Transfer Function

Intervention Method

Recurrent Neural Network

Fuzzy Neural Network




What is Autoregression solutions?

ARIMA, short for ‘Auto Regressive Integrated Moving Average’
is actually a class of models that ‘explains’ a given time series
based on its own past values, that is, its own lags and the lagged

FORECASTI NG forecast errors, so that equation can be used to forecast future

values.

29 statsmodels _
‘.-{ statsmodels v0.11.1 e B Versions

User Guide  Time Series analysis tsa

statsmodels V0111 *  statsmodels.tsa.arima_model. ARIMA Show Source

Installing statsmodels

Getting started

User Guide class statsmodels.tsa.arima_model.ARIMA(endog, order, exog=None, dates=None, freg=None,
Background missing=’none‘)[50urce]

Regression and Linear . .
Models Autoregressive Integrated Moving Average ARIMA(p,d.q) Model

Time Series Analysis
¥ Parameters

Time Series analysis tsa




- VVhat Is Autoregression solutions?

Sliding window vs. forward chaining cross validation
Sliding Window
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— -5 TM Model Architecture for Rare Event Time Series Forecasting
____________________________________________________________

A training dataset was created by splitting the historical data into sliding windows of input and output variables.

The specific size of the look-back and forecast horizon used in the experiments were not specified in the paper.
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Scaled Multivariate Input for Model Taken from “Time-series
Extreme Event Forecasting with Neural Networks at Uber”.
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