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Introduction

1 Introduction
2 Combinatorial Methods

3 Binomial Coefficients
4 The Theory in Practice

1 Introduction In recent years, the growth of statistics has made itself felt in almost every phase
of human activity. Statistics no longer consists merely of the collection of data and
their presentation in charts and tables; it is now considered to encompass the science
of basing inferences on observed data and the entire problem of making decisions
in the face of uncertainty. This covers considerable ground since uncertainties are
met when we flip a coin, when a dietician experiments with food additives, when an
actuary determines life insurance premiums, when a quality control engineer accepts
or rejects manufactured products, when a teacher compares the abilities of students,
when an economist forecasts trends, when a newspaper predicts an election, and
even when a physicist describes quantum mechanics.

It would be presumptuous to say that statistics, in its present state of devel-
opment, can handle all situations involving uncertainties, but new techniques are
constantly being developed and modern statistics can, at least, provide the frame-
work for looking at these situations in a logical and systematic fashion. In other
words, statistics provides the models that are needed to study situations involving
uncertainties, in the same way as calculus provides the models that are needed to
describe, say, the concepts of Newtonian physics.

The beginnings of the mathematics of statistics may be found in mid-eighteenth-
century studies in probability motivated by interest in games of chance. The theory
thus developed for “heads or tails” or “red or black” soon found applications in sit-
uations where the outcomes were “boy or girl,” “life or death,” or “pass or fail,” and
scholars began to apply probability theory to actuarial problems and some aspects
of the social sciences. Later, probability and statistics were introduced into physics
by L. Boltzmann, J. Gibbs, and J. Maxwell, and by this century they have found
applications in all phases of human endeavor that in some way involve an element
of uncertainty or risk. The names that are connected most prominently with the
growth of mathematical statistics in the first half of the twentieth century are those
of R. A. Fisher, J. Neyman, E. S. Pearson, and A. Wald. More recently, the work of
R. Schlaifer, L. J. Savage, and others has given impetus to statistical theories based
essentially on methods that date back to the eighteenth-century English clergyman
Thomas Bayes.

Mathematical statistics is a recognized branch of mathematics, and it can be
studied for its own sake by students of mathematics. Today, the theory of statistics is
applied to engineering, physics and astronomy, quality assurance and reliability, drug
development, public health and medicine, the design of agricultural or industrial
experiments, experimental psychology, and so forth. Those wishing to participate

From Chapter 1 of John E. Freund’s Mathematical Statistics with Applications,
Eighth Edition. Irwin Miller, Marylees Miller. Copyright © 2014 by Pearson Education, Inc.
All rights reserved.
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Introduction

in such applications or to develop new applications will do well to understand the
mathematical theory of statistics. For only through such an understanding can appli-
cations proceed without the serious mistakes that sometimes occur. The applications
are illustrated by means of examples and a separate set of applied exercises, many
of them involving the use of computers. To this end, we have added at the end of the
chapter a discussion of how the theory of the chapter can be applied in practice.

We begin with a brief review of combinatorial methods and binomial
coefficients.

2 Combinatorial Methods
In many problems of statistics we must list all the alternatives that are possible in a
given situation, or at least determine how many different possibilities there are. In
connection with the latter, we often use the following theorem, sometimes called the
basic principle of counting, the counting rule for compound events, or the rule for
the multiplication of choices.

THEOREM 1. If an operation consists of two steps, of which the first can be
done in n1 ways and for each of these the second can be done in n2 ways,
then the whole operation can be done in n1· n2 ways.

Here, “operation” stands for any kind of procedure, process, or method of selection.
To justify this theorem, let us define the ordered pair (xi, yj) to be the outcome

that arises when the first step results in possibility xi and the second step results in
possibility yj. Then, the set of all possible outcomes is composed of the following
n1· n2 pairs:

(x1, y1), (x1, y2), . . . , (x1, yn2)

(x2, y1), (x2, y2), . . . , (x2, yn2)

. . .

. . .

. . .

(xn1 , y1), (xn1 , y2), . . . , (xn1 , yn2)

EXAMPLE 1

Suppose that someone wants to go by bus, train, or plane on a week’s vacation to one
of the five East North Central States. Find the number of different ways in which this
can be done.

Solution
The particular state can be chosen in n1 = 5 ways and the means of transportation
can be chosen in n2 = 3 ways. Therefore, the trip can be carried out in 5 · 3 = 15
possible ways. If an actual listing of all the possibilities is desirable, a tree diagram
like that in Figure 1 provides a systematic approach. This diagram shows that there
are n1 = 5 branches (possibilities) for the number of states, and for each of these
branches there are n2 = 3 branches (possibilities) for the different means of trans-
portation. It is apparent that the 15 possible ways of taking the vacation are repre-
sented by the 15 distinct paths along the branches of the tree.

2
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Figure 1. Tree diagram.

EXAMPLE 2

How many possible outcomes are there when we roll a pair of dice, one red and
one green?

Solution
The red die can land in any one of six ways, and for each of these six ways the green
die can also land in six ways. Therefore, the pair of dice can land in 6 · 6 = 36 ways.

Theorem 1 may be extended to cover situations where an operation consists of
two or more steps. In this case, we have the following theorem.

3
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THEOREM 2. If an operation consists of k steps, of which the first can be
done in n1 ways, for each of these the second step can be done in n2 ways,
for each of the first two the third step can be done in n3 ways, and so forth,
then the whole operation can be done in n1 · n2 · . . . · nk ways.

EXAMPLE 3

A quality control inspector wishes to select a part for inspection from each of four
different bins containing 4, 3, 5, and 4 parts, respectively. In how many different ways
can she choose the four parts?

Solution
The total number of ways is 4 · 3 · 5 · 4 = 240.

EXAMPLE 4

In how many different ways can one answer all the questions of a true–false test
consisting of 20 questions?

Solution
Altogether there are

2 · 2 · 2 · 2 · . . . · 2 · 2 = 220 = 1,048,576

different ways in which one can answer all the questions; only one of these corre-
sponds to the case where all the questions are correct and only one corresponds to
the case where all the answers are wrong.

Frequently, we are interested in situations where the outcomes are the different
ways in which a group of objects can be ordered or arranged. For instance, we might
want to know in how many different ways the 24 members of a club can elect a presi-
dent, a vice president, a treasurer, and a secretary, or we might want to know in how
many different ways six persons can be seated around a table. Different arrange-
ments like these are called permutations.

DEFINITION 1. PERMUTATIONS. A permutation is a distinct arrangement of n differ-
ent elements of a set.

EXAMPLE 5

How many permutations are there of the letters a, b, and c?

Solution
The possible arrangements are abc, acb, bac, bca, cab, and cba, so the number of
distinct permutations is six. Using Theorem 2, we could have arrived at this answer
without actually listing the different permutations. Since there are three choices to

4



Introduction

select a letter for the first position, then two for the second position, leaving only
one letter for the third position, the total number of permutations is 3 · 2 · 1 = 6.

Generalizing the argument used in the preceding example, we find that n distinct
objects can be arranged in n(n − 1)(n − 2) · . . . · 3 · 2 · 1 different ways. To simplify our
notation, we represent this product by the symbol n!, which is read “n factorial.”
Thus, 1! = 1, 2! = 2 · 1 = 2, 3! = 3 · 2 · 1 = 6, 4! = 4 · 3 · 2 · 1 = 24, 5! = 5 · 4 · 3 · 2 · 1 =
120, and so on. Also, by definition we let 0! = 1.

THEOREM 3. The number of permutations of n distinct objects is n!.

EXAMPLE 6

In how many different ways can the five starting players of a basketball team be
introduced to the public?

Solution
There are 5! = 5 · 4 · 3 · 2 · 1 = 120 ways in which they can be introduced.

EXAMPLE 7

The number of permutations of the four letters a, b, c, and d is 24, but what is the
number of permutations if we take only two of the four letters or, as it is usually put,
if we take the four letters two at a time?

Solution
We have two positions to fill, with four choices for the first and then three choices for
the second. Therefore, by Theorem 1, the number of permutations is 4 · 3 = 12.

Generalizing the argument that we used in the preceding example, we find that n
distinct objects taken r at a time, for r> 0, can be arranged in n(n − 1) · . . . ·
(n − r + 1) ways. We denote this product by nPr, and we let nP0 = 1 by definition.
Therefore, we can state the following theorem.

THEOREM 4. The number of permutations of n distinct objects taken r at a
time is

nPr = n!
(n − r)!

for r = 0, 1, 2, . . . , n.

Proof The formula nPr = n(n − 1) · . . . · (n − r + 1) cannot be used for
r = 0, but we do have

nP0 = n!
(n − 0)!

= 1

5
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For r = 1, 2, . . . , n, we have

nPr = n(n − 1)(n − 2) · . . . · (n − r − 1)

= n(n − 1)(n − 2) · . . . · (n − r − 1)(n − r)!
(n − r)!

= n!
(n − r)!

In problems concerning permutations, it is usually easier to proceed by using
Theorem 2 as in Example 7, but the factorial formula of Theorem 4 is somewhat
easier to remember. Many statistical software packages provide values of nPr and
other combinatorial quantities upon simple commands. Indeed, these quantities are
also preprogrammed in many hand-held statistical (or scientific) calculators.

EXAMPLE 8

Four names are drawn from among the 24 members of a club for the offices of pres-
ident, vice president, treasurer, and secretary. In how many different ways can this
be done?

Solution
The number of permutations of 24 distinct objects taken four at a time is

24P4 = 24!
20!

= 24 · 23 · 22 · 21 = 255,024

EXAMPLE 9

In how many ways can a local chapter of the American Chemical Society schedule
three speakers for three different meetings if they are all available on any of five
possible dates?

Solution
Since we must choose three of the five dates and the order in which they are chosen
(assigned to the three speakers) matters, we get

5P3 = 5!
2!

= 120
2

= 60

We might also argue that the first speaker can be scheduled in five ways, the sec-
ond speaker in four ways, and the third speaker in three ways, so that the answer is
5 · 4 · 3 = 60.

Permutations that occur when objects are arranged in a circle are called
circular permutations. Two circular permutations are not considered different (and
are counted only once) if corresponding objects in the two arrangements have the
same objects to their left and to their right. For example, if four persons are playing
bridge, we do not get a different permutation if everyone moves to the chair at his
or her right.

6
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EXAMPLE 10

How many circular permutations are there of four persons playing bridge?

Solution
If we arbitrarily consider the position of one of the four players as fixed, we can seat
(arrange) the other three players in 3! = 6 different ways. In other words, there are
six different circular permutations.

Generalizing the argument used in the preceding example, we obtain the follow-
ing theorem.

THEOREM 5. The number of permutations of n distinct objects arranged in
a circle is (n − 1)!.

We have been assuming until now that the n objects from which we select r
objects and form permutations are all distinct. Thus, the various formulas cannot be
used, for example, to determine the number of ways in which we can arrange the
letters in the word “book,” or the number of ways in which three copies of one novel
and one copy each of four other novels can be arranged on a shelf.

EXAMPLE 11

How many different permutations are there of the letters in the word “book”?

Solution
If we distinguish for the moment between the two o’s by labeling them o1 and o2,
there are 4! = 24 different permutations of the symbols b, o1, o2, and k. However, if
we drop the subscripts, then bo1ko2 and bo2ko1, for instance, both yield boko, and
since each pair of permutations with subscripts yields but one arrangement without
subscripts, the total number of arrangements of the letters in the word “book” is
24
2 = 12.

EXAMPLE 12

In how many different ways can three copies of one novel and one copy each of four
other novels be arranged on a shelf?

Solution
If we denote the three copies of the first novel by a1, a2, and a3 and the other four
novels by b, c, d, and e, we find that with subscripts there are 7! different permuta-
tions of a1, a2, a3, b, c, d, and e. However, since there are 3! permutations of a1, a2,
and a3 that lead to the same permutation of a, a, a, b, c, d, and e, we find that there
are only 7!

3! = 7 · 6 · 5 · 4 = 840 ways in which the seven books can be arranged on a
shelf.

Generalizing the argument that we used in the two preceding examples, we
obtain the following theorem.

7
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THEOREM 6. The number of permutations of n objects of which n1 are of
one kind, n2 are of a second kind, . . . , nk are of a kth kind, and
n1 + n2 + · · · + nk = n is

n!
n1! · n2! · . . . · nk!

EXAMPLE 13

In how many ways can two paintings by Monet, three paintings by Renoir, and two
paintings by Degas be hung side by side on a museum wall if we do not distinguish
between the paintings by the same artists?

Solution
Substituting n = 7, n1 = 2, n2 = 3, and n3 = 2 into the formula of Theorem 6, we get

7!
2! · 3! · 2!

= 210

There are many problems in which we are interested in determining the number
of ways in which r objects can be selected from among n distinct objects without
regard to the order in which they are selected.

DEFINITION 2. COMBINATIONS. A combination is a selection of r objects taken from
n distinct objects without regard to the order of selection.

EXAMPLE 14

In how many different ways can a person gathering data for a market research orga-
nization select three of the 20 households living in a certain apartment complex?

Solution
If we care about the order in which the households are selected, the answer is

20P3 = 20 · 19 · 18 = 6,840

but each set of three households would then be counted 3! = 6 times. If we do not
care about the order in which the households are selected, there are only
6,840

6
= 1,140 ways in which the person gathering the data can do his or her job.

Actually, “combination” means the same as “subset,” and when we ask for the
number of combinations of r objects selected from a set of n distinct objects, we are
simply asking for the total number of subsets of r objects that can be selected from
a set of n distinct objects. In general, there are r! permutations of the objects in a
subset of r objects, so that the nPr permutations of r objects selected from a set of
n distinct objects contain each subset r! times. Dividing nPr by r! and denoting the

result by the symbol
(

n
r

)
, we thus have the following theorem.

8
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THEOREM 7. The number of combinations of n distinct objects taken r at a
time is (

n
r

)
= n!

r!(n − r)!

for r = 0, 1, 2, . . . , n.

EXAMPLE 15

In how many different ways can six tosses of a coin yield two heads and four tails?

Solution
This question is the same as asking for the number of ways in which we can select
the two tosses on which heads is to occur. Therefore, applying Theorem 7, we find
that the answer is (

6
2

)
= 6!

2! · 4!
= 15

This result could also have been obtained by the rather tedious process of enumer-
ating the various possibilities, HHTTTT, TTHTHT, HTHTTT, . . . , where H stands
for head and T for tail.

EXAMPLE 16

How many different committees of two chemists and one physicist can be formed
from the four chemists and three physicists on the faculty of a small college?

Solution
Since two of four chemists can be selected in

(
4
2

)
= 4!

2! · 2!
= 6 ways and one of

three physicists can be selected in
(

3
1

)
= 3!

1! · 2!
= 3 ways, Theorem 1 shows that the

number of committees is 6 · 3 = 18.

A combination of r objects selected from a set of n distinct objects may be con-
sidered a partition of the n objects into two subsets containing, respectively, the r
objects that are selected and the n − r objects that are left. Often, we are concerned
with the more general problem of partitioning a set of n distinct objects into k sub-
sets, which requires that each of the n objects must belong to one and only one of
the subsets.† The order of the objects within a subset is of no importance.

EXAMPLE 17

In how many ways can a set of four objects be partitioned into three subsets contain-
ing, respectively, two, one, and one of the objects?

†Symbolically, the subsets A1, A2, . . . , Ak constitute a partition of set A if A1 ∪ A2 ∪ · · · ∪ Ak = A and Ai ∩ Aj =
Ø for all i Z j.

9
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Solution
Denoting the four objects by a, b, c, and d, we find by enumeration that there are
the following 12 possibilities:

ab|c|d ab|d|c ac|b|d ac|d|b
ad|b|c ad|c|b bc|a|d bc|d|a
bd|a|c bd|c|a cd|a|b cd|b|a

The number of partitions for this example is denoted by the symbol(
4

2, 1, 1

)
= 12

where the number at the top represents the total number of objects and the numbers
at the bottom represent the number of objects going into each subset.

Had we not wanted to enumerate all the possibilities in the preceding example,
we could have argued that the two objects going into the first subset can be chosen in(

4
2

)
= 6 ways, the object going into the second subset can then be chosen in

(
2
1

)
= 2

ways, and the object going into the third subset can then be chosen in
(

1
1

)
= 1 way.

Thus, by Theorem 2 there are 6 · 2 · 1 = 12 partitions. Generalizing this argument, we
have the following theorem.

THEOREM 8. The number of ways in which a set of n distinct objects can be
partitioned into k subsets with n1 objects in the first subset, n2 objects in
the second subset, . . . , and nk objects in the kth subset is

(
n

n1, n2, . . . , nk

)
= n!

n1! · n2! · . . . · nk!

Proof Since the n1 objects going into the first subset can be chosen in(
n
n1

)
ways, the n2 objects going into the second subset can then be chosen

in
(

n − n1
n2

)
ways, the n3 objects going into the third subset can then be

chosen in
(

n − n1 − n2
n3

)
ways, and so forth, it follows by Theorem 2 that

the total number of partitions is

(
n

n1, n2, . . . , nk

)
=
(

n
n1

)
·
(

n − n1
n2

)
· . . . ·

(
n − n1 − n2 − · · · − nk−1

nk

)

= n!
n1! · (n − n1)!

· (n − n1)!
n2! · (n − n1 − n2)!

· . . . · (n − n1 − n2 − · · · − nk−1)!
nk! · 0!

= n!
n1! · n2! · . . . · nk!

10
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EXAMPLE 18

In how many ways can seven businessmen attending a convention be assigned to one
triple and two double hotel rooms?

Solution
Substituting n = 7, n1 = 3, n2 = 2, and n3 = 2 into the formula of Theorem 8, we get

(
7

3, 2, 2

)
= 7!

3! · 2! · 2!
= 210

3 Binomial Coefficients
If n is a positive integer and we multiply out (x + y)n term by term, each term will be
the product of x’s and y’s, with an x or a y coming from each of the n factors x + y.
For instance, the expansion

(x + y)3 = (x + y)(x + y)(x + y)

= x · x · x + x · x · y + x · y · x + x · y · y

+ y · x · x + y · x · y + y · y · x + y · y · y

= x3 + 3x2y + 3xy2 + y3

yields terms of the form x3, x2y, xy2, and y3. Their coefficients are 1, 3, 3, and 1, and

the coefficient of xy2, for example, is
(

3
2

)
= 3, the number of ways in which we can

choose the two factors providing the y’s. Similarly, the coefficient of x2y is
(

3
1

)
= 3,

the number of ways in which we can choose the one factor providing the y, and the

coefficients of x3 and y3 are
(

3
0

)
= 1 and

(
3
3

)
= 1.

More generally, if n is a positive integer and we multiply out (x + y)n term by

term, the coefficient of xn−ryr is
(

n
r

)
, the number of ways in which we can choose

the r factors providing the y’s. Accordingly, we refer to
(

n
r

)
as a binomial coefficient.

Values of the binomial coefficients for n = 0, 1, . . . , 20 and r = 0, 1, . . . , 10 are given
in table Factorials and Binomial Coefficients of “Statistical Tables.” We can now
state the following theorem.

THEOREM 9.

(x + y)n =
n∑

r=0

(
n
r

)
xn−ryr for any positive integer n

11
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DEFINITION 3. BINOMIAL COEFFICIENTS. The coefficient of xn−ryr in the binomial
expansion of (x + y)n is called the binomial coefficient

(n
r

)
.

The calculation of binomial coefficients can often be simplified by making use
of the three theorems that follow.

THEOREM 10. For any positive integers n and r = 0, 1, 2, . . . , n,

(
n
r

)
=
(

n
n − r

)

Proof We might argue that when we select a subset of r objects from a set
of n distinct objects, we leave a subset of n − r objects; hence, there are as
many ways of selecting r objects as there are ways of leaving (or selecting)
n − r objects. To prove the theorem algebraically, we write(

n
n − r

)
= n!
(n − r)![n − (n − r)]!

= n!
(n − r)!r!

= n!
r!(n − r)!

=
(

n
r

)

Theorem 10 implies that if we calculate the binomial coefficients for
r = 0, 1, . . . , n

2 when n is even and for r = 0, 1, . . . , n−1
2 when n is odd, the remaining

binomial coefficients can be obtained by making use of the theorem.

EXAMPLE 19

Given

(
4
0

)
= 1,

(
4
1

)
= 4, and

(
4
2

)
= 6, find

(
4
3

)
and

(
4
4

)
.

Solution (
4
3

)
=
(

4
4 − 3

)
=
(

4
1

)
= 4 and

(
4
4

)
=
(

4
4 − 4

)
=
(

4
0

)
= 1

EXAMPLE 20

Given

(
5
0

)
= 1,

(
5
1

)
= 5, and

(
5
2

)
= 10, find

(
5
3

)
,

(
5
4

)
, and

(
5
5

)
.

Solution (
5
3

)
=
(

5
5 − 3

)
=
(

5
2

)
= 10,

(
5
4

)
=
(

5
5 − 4

)
=
(

5
1

)
= 5, and

(
5
5

)
=
(

5
5 − 5

)
=
(

5
0

)
= 1

It is precisely in this fashion that Theorem 10 may have to be used in connection
with table Factorials and Binomial Coefficients of “Statistical Tables.”

12
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EXAMPLE 21

Find
(

20
12

)
and

(
17
10

)
.

Solution

Since
(

20
12

)
is not given in the table, we make use of the fact that

(
20
12

)
=
(

20
8

)
, look

up
(

20
8

)
, and get

(
20
12

)
= 125,970. Similarly, to find

(
17
10

)
, we make use of the fact

that
(

17
10

)
=
(

17
7

)
, look up

(
17
7

)
, and get

(
17
10

)
= 19,448.

THEOREM 11. For any positive integer n and r = 1, 2, . . . , n − 1,(
n
r

)
=
(

n − 1
r

)
+
(

n − 1
r − 1

)

Proof Substituting x = 1 into (x + y)n, let us write (1 + y)n = (1 + y)
(1 + y)n−1 = (1 + y)n−1 + y(1 + y)n−1 and equate the coefficient of yr in
(1 + y)n with that in (1 + y)n−1 + y(1 + y)n−1. Since the coefficient of yr in

(1 + y)n is
(

n
r

)
and the coefficient of yr in (1 + y)n−1 + y(1 + y)n−1 is the

sum of the coefficient of yr in (1 + y)n−1, that is,
(

n − 1
r

)
, and the coeffi-

cient of yr−1 in (1 + y)n−1, that is,
(

n − 1
r − 1

)
, we obtain

(
n
r

)
=
(

n − 1
r

)
+
(

n − 1
r − 1

)

which completes the proof.

Alternatively, take any one of the n objects. If it is not to be included among the

r objects, there are
(

n − 1
r

)
ways of selecting the r objects; if it is to be included, there

are
(

n − 1
r − 1

)
ways of selecting the other r − 1 objects. Therefore, there are

(
n − 1

r

)
+(

n − 1
r − 1

)
ways of selecting the r objects, that is,

(
n
r

)
=
(

n − 1
r

)
+
(

n − 1
r − 1

)

Theorem 11 can also be proved by expressing the binomial coefficients on both
sides of the equation in terms of factorials and then proceeding algebraically, but we
shall leave this to the reader in Exercise 12.

An important application of Theorem 11 is a construct known as Pascal’s
triangle. When no table is available, it is sometimes convenient to determine bino-
mial coefficients by means of a simple construction. Applying Theorem 11, we can
generate Pascal’s triangle as follows:

13
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1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this triangle, the first and last entries of each row are the numeral “1” each other
entry in any given row is obtained by adding the two entries in the preceding row
immediately to its left and to its right.

To state the third theorem about binomial coefficients, let us make the following

definition:
(

n
r

)
= 0 whenever n is a positive integer and r is a positive integer greater

than n. (Clearly, there is no way in which we can select a subset that contains more
elements than the whole set itself.)

THEOREM 12.
k∑

r=0

(
m
r

)(
n

k − r

)
=
(

m + n
k

)

Proof Using the same technique as in the proof of Theorem 11, let us
prove this theorem by equating the coefficients of yk in the expressions
on both sides of the equation

(1 + y)m+n = (1 + y)m(1 + y)n

The coefficient of yk in (1+y)m+n is
(m+n

k

)
, and the coefficient of yk in

(1 + y)m(1 + y)n =
⎡
⎣(m

0

)
+
(

m
1

)
y + · · · +

(
m
m

)
ym

⎤
⎦

*

⎡
⎣
(

n
0

)
+
(

n
1

)
y + · · · +

(
n
n

)
yn

⎤
⎦

is the sum of the products that we obtain by multiplying the constant
term of the first factor by the coefficient of yk in the second factor, the
coefficient of y in the first factor by the coefficient of yk−1 in the second
factor, . . . , and the coefficient of yk in the first factor by the constant term
of the second factor. Thus, the coefficient of yk in (1 + y)m(1 + y)n is

(
m
0

)(
n
k

)
+
(

m
1

)(
n

k − 1

)
+
(

m
2

)(
n

k − 2

)
+ · · · +

(
m
k

)(
n
0

)

=
k∑

r=0

(
m
r

)(
n

k − r

)

and this completes the proof.

14
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EXAMPLE 22

Verify Theorem 12 numerically for m = 2, n = 3, and k = 4.

Solution
Substituting these values, we get(

2
0

)(
3
4

)
+
(

2
1

)(
3
3

)
+
(

2
2

)(
3
2

)
+
(

2
3

)(
3
1

)
+
(

2
4

)(
3
0

)
=
(

5
4

)

and since
(

3
4

)
,
(

2
3

)
, and

(
2
4

)
equal 0 according to the definition on the previous page,

the equation reduces to (
2
1

)(
3
3

)
+
(

2
2

)(
3
2

)
=
(

5
4

)

which checks, since 2 · 1 + 1 · 3 = 5.

Using Theorem 8, we can extend our discussion to multinomial coefficients, that
is, to the coefficients that arise in the expansion of (x1 + x2 + · · · + xk)

n. The multi-
nomial coefficient of the term xr1

1 · xr2
2 · . . . · xrk

k in the expansion of (x1 + x2 + · · · +
xk)

n is (
n

r1, r2, . . . , rk

)
= n!

r1! · r2! · . . . · rk!

EXAMPLE 23

What is the coefficient of x3
1x2x2

3 in the expansion of (x1 + x2 + x3)
6?

Solution
Substituting n = 6, r1 = 3, r2 = 1, and r3 = 2 into the preceding formula, we get

6!
3! · 1! · 2!

= 60

Exercises
1. An operation consists of two steps, of which the first
can be made in n1 ways. If the first step is made in the ith
way, the second step can be made in n2i ways.†

(a) Use a tree diagram to find a formula for the total num-
ber of ways in which the total operation can be made.
(b) A student can study 0, 1, 2, or 3 hours for a history
test on any given day. Use the formula obtained in part
(a) to verify that there are 13 ways in which the student
can study at most 4 hours for the test on two consecutive
days.

2. With reference to Exercise 1, verify that if n2i equals
the constant n2, the formula obtained in part (a) reduces
to that of Theorem 1.

3. With reference to Exercise 1, suppose that there is a
third step, and if the first step is made in the ith way and
the second step in the jth way, the third step can be made
in n3ij ways.
(a) Use a tree diagram to verify that the whole operation
can be made in

†The first subscript denotes the row to which a particular element belongs, and the second subscript denotes the column.
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n1∑
i=1

n2i∑
j=1

n3ij

different ways.
(b) With reference to part (b) of Exercise 1, use the for-
mula of part (a) to verify that there are 32 ways in which
the student can study at most 4 hours for the test on three
consecutive days.

4. Show that if n2i equals the constant n2 and n3ij equals
the constant n3, the formula of part (a) of Exercise 3
reduces to that of Theorem 2.

5. In a two-team basketball play-off, the winner is the first
team to win m games.
(a) Counting separately the number of play-offs requiring
m, m + 1, . . . , and 2m − 1 games, show that the total num-
ber of different outcomes (sequences of wins and losses
by one of the teams) is

2

[(
m − 1
m − 1

)
+
(

m
m − 1

)
+ · · · +

(
2m − 2
m − 1

)]

(b) How many different outcomes are there in a “2 out
of 3” play-off, a “3 out of 5” play-off, and a “4 out of 7”
play-off?

6. When n is large, n! can be approximated by means of
the expression

√
2πn

(
n
e

)n

called Stirling’s formula, where e is the base of natural
logarithms. (A derivation of this formula may be found in
the book by W. Feller cited among the references at the
end of this chapter.)
(a) Use Stirling’s formula to obtain approximations for
10! and 12!, and find the percentage errors of these
approximations by comparing them with the exact val-
ues given in table Factorials and Binomial Coefficients of
“Statistical Tables.”
(b) Use Stirling’s formula to obtain an approximation for
the number of 13-card bridge hands that can be dealt with
an ordinary deck of 52 playing cards.

7. Using Stirling’s formula (see Exercise 6) to approxi-
mate 2n! and n!, show that(

2n
n

)√
πn

22n
L 1

8. In some problems of occupancy theory we are con-
cerned with the number of ways in which certain distin-
guishable objects can be distributed among individuals,
urns, boxes, or cells. Find an expression for the number of
ways in which r distinguishable objects can be distributed
among n cells, and use it to find the number of ways in

which three different books can be distributed among the
12 students in an English literature class.

9. In some problems of occupancy theory we are con-
cerned with the number of ways in which certain indistin-
guishable objects can be distributed among individuals,
urns, boxes, or cells. Find an expression for the number
of ways in which r indistinguishable objects can be dis-
tributed among n cells, and use it to find the number of
ways in which a baker can sell five (indistinguishable)
loaves of bread to three customers. (Hint: We might argue
that L|LLL|L represents the case where the three cus-
tomers buy one loaf, three loaves, and one loaf, respec-
tively, and that LLLL||L represents the case where the
three customers buy four loaves, none of the loaves, and
one loaf. Thus, we must look for the number of ways
in which we can arrange the five L’s and the two verti-
cal bars.)

10. In some problems of occupancy theory we are con-
cerned with the number of ways in which certain indistin-
guishable objects can be distributed among individuals,
urns, boxes, or cells with at least one in each cell. Find
an expression for the number of ways in which r indistin-
guishable objects can be distributed among n cells with
at least one in each cell, and rework the numerical part
of Exercise 9 with each of the three customers getting at
least one loaf of bread.

11. Construct the seventh and eighth rows of Pascal’s tri-
angle and write the binomial expansions of (x + y)6 and
(x + y)7.

12. Prove Theorem 11 by expressing all the binomial
coefficients in terms of factorials and then simplifying
algebraically.

13. Expressing the binomial coefficients in terms of fac-
torials and simplifying algebraically, show that

(a)
(

n
r

)
= n − r + 1

r
·
(

n
r − 1

)
;

(b)
(

n
r

)
= n

n − r
·
(

n − 1
r

)
;

(c) n
(

n − 1
r

)
= (r + 1)

(
n

r + 1

)
.

14. Substituting appropriate values for x and y into the
formula of Theorem 9, show that

(a)
n∑

r=0

(
n
r

)
= 2n;

(b)
n∑

r=0

(−1)r
(

n
r

)
= 0;

(c)
n∑

r=0

(
n
r

)
(a − 1)r = an.
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15. Repeatedly applying Theorem 11, show that

(
n
r

)
=

r+1∑
i=1

(
n − i

r − i + 1

)

16. Use Theorem 12 to show that

n∑
r=0

(
n
r

)2

=
(

2n
n

)

17. Show that
n∑

r=0
r
(

n
r

)
= n2n−1 by setting x = 1 in The-

orem 9, then differentiating the expressions on both sides
with respect to y, and finally substituting y = 1.

18. Rework Exercise 17 by making use of part (a) of
Exercise 14 and part (c) of Exercise 13.

19. If n is not a positive integer or zero, the binomial
expansion of (1 + y)n yields, for −1< y< 1, the infi-
nite series

1 +
(

n
1

)
y +

(
n
2

)
y2 +

(
n
3

)
y3 + · · · +

(
n
r

)
yr + · · ·

where
(

n
r

)
= n(n − 1) · . . . · (n − r + 1)

r!
for r = 1, 2, 3, . . . .

Use this generalized definition of binomial coefficients
to evaluate

(a)

(
1
2
4

)
and

(−3
3

)
;

(b)
√

5 writing
√

5 = 2(1 + 1
4 )

1/2 and using the first four
terms of the binomial expansion of (1 + 1

4 )
1/2.

20. With reference to the generalized definition of bino-
mial coefficients in Exercise 19, show that

(a)
(−1

r

)
= (−1)r;

(b)
(−n

r

)
= (−1)r

(
n + r − 1

r

)
for n> 0.

21. Find the coefficient of x2y3z3 in the expansion of
(x + y + z)8.

22. Find the coefficient of x3y2z3w in the expansion of
(2x + 3y − 4z + w)9.

23. Show that(
n

n1, n2, . . . , nk

)
=
(

n − 1
n1 − 1, n2, . . . , nk

)

+
(

n − 1
n1, n2 − 1, . . . , nk

)
+ · · ·

+
(

n − 1
n1, n2, . . . , nk − 1

)

by expressing all these multinomial coefficients in terms
of factorials and simplifying algebraically.

4 The Theory in Practice
Applications of the preceding theory of combinatorial methods and binomial coeffi-
cients are quite straightforward, and a variety of them have been given in Sections 2
and 3. The following examples illustrate further applications of this theory.

EXAMPLE 24

An assembler of electronic equipment has 20 integrated-circuit chips on her table,
and she must solder three of them as part of a larger component. In how many ways
can she choose the three chips for assembly?

Solution
Using Theorem 6, we obtain the result

20P3 = 20!/17! = 20 · 19 · 18 = 6,840

EXAMPLE 25

A lot of manufactured goods, presented for sampling inspection, contains 16 units.
In how many ways can 4 of the 16 units be selected for inspection?
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Solution
According to Theorem 7,(

16
4

)
= 16!/4!12! = 16 · 15 · 14 · 13/4 · 3 · 2 · 1 = 1,092 ways

Applied Exercises SECS. 1–4

24. A thermostat will call for heat 0, 1, or 2 times a night.
Construct a tree diagram to show that there are 10 differ-
ent ways that it can turn on the furnace for a total of 6
times over 4 nights.

25. On August 31 there are five wild-card terms in the
American League that can make it to the play-offs, and
only two will win spots. Draw a tree diagram which shows
the various possible play-off wild-card teams.

26. There are four routes, A, B, C, and D, between a per-
son’s home and the place where he works, but route B
is one-way, so he cannot take it on the way to work, and
route C is one-way, so he cannot take it on the way home.
(a) Draw a tree diagram showing the various ways the
person can go to and from work.
(b) Draw a tree diagram showing the various ways he
can go to and from work without taking the same route
both ways.

27. A person with $2 in her pocket bets $1, even money,
on the flip of a coin, and she continues to bet $1 as long
as she has any money. Draw a tree diagram to show the
various things that can happen during the first four flips
of the coin. After the fourth flip of the coin, in how many
of the cases will she be
(a) exactly even;
(b) exactly $2 ahead?

28. The pro at a golf course stocks two identical sets of
women’s clubs, reordering at the end of each day (for
delivery early the next morning) if and only if he has sold
them both. Construct a tree diagram to show that if he
starts on a Monday with two sets of the clubs, there are
altogether eight different ways in which he can make sales
on the first two days of that week.

29. Suppose that in a baseball World Series (in which the
winner is the first team to win four games) the National
League champion leads the American League champion
three games to two. Construct a tree diagram to show the
number of ways in which these teams may win or lose the
remaining game or games.

30. If the NCAA has applications from six universities
for hosting its intercollegiate tennis championships in two

consecutive years, in how many ways can they select the
hosts for these championships
(a) if they are not both to be held at the same university;
(b) if they may both be held at the same university?

31. Counting the number of outcomes in games of chance
has been a popular pastime for many centuries. This was
of interest not only because of the gambling that was
involved, but also because the outcomes of games of
chance were often interpreted as divine intent. Thus, it
was just about a thousand years ago that a bishop in what
is now Belgium determined that there are 56 different
ways in which three dice can fall provided one is inter-
ested only in the overall result and not in which die does
what. He assigned a virtue to each of these possibilities
and each sinner had to concentrate for some time on the
virtue that corresponded to his cast of the dice.
(a) Find the number of ways in which three dice can all
come up with the same number of points.
(b) Find the number of ways in which two of the three
dice can come up with the same number of points, while
the third comes up with a different number of points.
(c) Find the number of ways in which all three of the dice
can come up with a different number of points.
(d) Use the results of parts (a), (b), and (c) to verify
the bishop’s calculations that there are altogether 56
possibilities.

32. In a primary election, there are four candidates for
mayor, five candidates for city treasurer, and two candi-
dates for county attorney.
(a) In how many ways can a voter mark his ballot for all
three of these offices?
(b) In how many ways can a person vote if he exercises
his option of not voting for a candidate for any or all of
these offices?

33. The five finalists in the Miss Universe contest are Miss
Argentina, Miss Belgium, Miss U.S.A., Miss Japan, and
Miss Norway. In how many ways can the judges choose
(a) the winner and the first runner-up;
(b) the winner, the first runner-up, and the second
runner-up?
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34. A multiple-choice test consists of 15 questions, each
permitting a choice of three alternatives. In how many dif-
ferent ways can a student check off her answers to these
questions?

35. Determine the number of ways in which a distributor
can choose 2 of 15 warehouses to ship a large order.

36. The price of a European tour includes four stopovers
to be selected from among 10 cities. In how many differ-
ent ways can one plan such a tour
(a) if the order of the stopovers matters;
(b) if the order of the stopovers does not matter?

37. A carton of 15 light bulbs contains one that is defec-
tive. In how many ways can an inspector choose 3 of the
bulbs and
(a) get the one that is defective;
(b) not get the one that is defective?

38. In how many ways can a television director sched-
ule a sponsor’s six different commercials during the six
time slots allocated to commercials during a two-hour
program?

39. In how many ways can the television director of Exer-
cise 38 fill the six time slots for commercials if there are
three different sponsors and the commercial for each is to
be shown twice?

40. In how many ways can five persons line up to get on
a bus? In how many ways can they line up if two of the
persons refuse to follow each other?

41. In how many ways can eight persons form a circle for
a folk dance?

42. How many permutations are there of the letters in the
word
(a) “great”;
(b) “greet”?

43. How many distinct permutations are there of the let-
ters in the word “statistics”? How many of these begin
and end with the letter s?

44. A college team plays 10 football games during a sea-
son. In how many ways can it end the season with five
wins, four losses, and one tie?

45. If eight persons are having dinner together, in how
many different ways can three order chicken, four order
steak, and one order lobster?

46. In Example 4 we showed that a true–false test consist-
ing of 20 questions can be marked in 1,048,576 different
ways. In how many ways can each question be marked
true or false so that

(a) 7 are right and 13 are wrong;
(b) 10 are right and 10 are wrong;
(c) at least 17 are right?

47. Among the seven nominees for two vacancies on a
city council are three men and four women. In how many
ways can these vacancies be filled
(a) with any two of the seven nominees;
(b) with any two of the four women;
(c) with one of the men and one of the women?

48. A shipment of 10 television sets includes three that
are defective. In how many ways can a hotel purchase
four of these sets and receive at least two of the defective
sets?

49. Ms. Jones has four skirts, seven blouses, and three
sweaters. In how many ways can she choose two of the
skirts, three of the blouses, and one of the sweaters to take
along on a trip?

50. How many different bridge hands are possible con-
taining five spades, three diamonds, three clubs, and two
hearts?

51. Find the number of ways in which one A, three B’s,
two C’s, and one F can be distributed among seven stu-
dents taking a course in statistics.

52. An art collector, who owns 10 paintings by famous
artists, is preparing her will. In how many different ways
can she leave these paintings to her three heirs?

53. A baseball fan has a pair of tickets for six different
home games of the Chicago Cubs. If he has five friends
who like baseball, in how many different ways can he take
one of them along to each of the six games?

54. At the end of the day, a bakery gives everything that
is unsold to food banks for the needy. If it has 12 apple
pies left at the end of a given day, in how many different
ways can it distribute these pies among six food banks for
the needy?

55. With reference to Exercise 54, in how many differ-
ent ways can the bakery distribute the 12 apple pies
if each of the six food banks is to receive at least
one pie?

56. On a Friday morning, the pro shop of a tennis club
has 14 identical cans of tennis balls. If they are all sold
by Sunday night and we are interested only in how many
were sold on each day, in how many different ways could
the tennis balls have been sold on Friday, Saturday, and
Sunday?

57. Rework Exercise 56 given that at least two of the cans
of tennis balls were sold on each of the three days.
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Answers to Odd-Numbered Exercises

1 (a)
n∑

i=1

n2ni .

5 (b) 6, 20, and 70.

9

(
r + n − 1

r

)
and 21.

11 Seventh row: 1, 6, 15, 20, 15, 6, 1; Eighth row: 1, 7, 21, 35,
35, 27, 7, 1.
19 (a) −15

384 and −10; (b) 2.230.
21 560.
27 (a) 5; (b) 4.
31 (a) 6; (b) 30; (c) 20; (d) 56.
33 (a) 20; (b) 60.

35 (a) 105.
37 (a) 91; (b) 364.
39 90.
41 5040.
43 50,400 and 3360.
45 280.
47 (a) 21; (b) 6; (c) 12.
49 630.
51 420.
53 15,625.
55 462.
57 45.
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1 Introduction Historically, the oldest way of defining probabilities, the classical probability con-
cept, applies when all possible outcomes are equally likely, as is presumably the case
in most games of chance. We can then say that if there are N equally likely possibili-
ties, of which one must occur and n are regarded as favorable, or as a “success,” then
the probability of a “success” is given by the ratio n

N .

EXAMPLE 1

What is the probability of drawing an ace from an ordinary deck of 52 playing cards?

Solution
Since there are n = 4 aces among the N = 52 cards, the probability of drawing
an ace is 4

52 = 1
13 . (It is assumed, of course, that each card has the same chance of

being drawn.)

Although equally likely possibilities are found mostly in games of chance, the
classical probability concept applies also in a great variety of situations where gam-
bling devices are used to make random selections—when office space is assigned to
teaching assistants by lot, when some of the families in a township are chosen in such
a way that each one has the same chance of being included in a sample study, when
machine parts are chosen for inspection so that each part produced has the same
chance of being selected, and so forth.

A major shortcoming of the classical probability concept is its limited applica-
bility, for there are many situations in which the possibilities that arise cannot all
be regarded as equally likely. This would be the case, for instance, if we are con-
cerned with the question whether it will rain on a given day, if we are concerned
with the outcome of an election, or if we are concerned with a person’s recovery
from a disease.

Among the various probability concepts, most widely held is the frequency inter-
pretation, according to which the probability of an event (outcome or happening) is
the proportion of the time that events of the same kind will occur in the long run.
If we say that the probability is 0.84 that a jet from Los Angeles to San Francisco
will arrive on time, we mean (in accordance with the frequency interpretation) that
such flights arrive on time 84 percent of the time. Similarly, if the weather bureau

From Chapter 2 of John E. Freund’s Mathematical Statistics with Applications,
Eighth Edition. Irwin Miller, Marylees Miller. Copyright © 2014 by Pearson Education, Inc.
All rights reserved.
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predicts that there is a 30 percent chance for rain (that is, a probability of 0.30), this
means that under the same weather conditions it will rain 30 percent of the time.
More generally, we say that an event has a probability of, say, 0.90, in the same sense
in which we might say that our car will start in cold weather 90 percent of the time.
We cannot guarantee what will happen on any particular occasion—the car may start
and then it may not—but if we kept records over a long period of time, we should
find that the proportion of “successes” is very close to 0.90.

The approach to probability that we shall use in this chapter is the axiomatic
approach, in which probabilities are defined as “mathematical objects” that behave
according to certain well-defined rules. Then, any one of the preceding probability
concepts, or interpretations, can be used in applications as long as it is consistent
with these rules.

2 Sample Spaces
Since all probabilities pertain to the occurrence or nonoccurrence of events, let us
explain first what we mean here by event and by the related terms experiment, out-
come, and sample space.

It is customary in statistics to refer to any process of observation or measure-
ment as an experiment. In this sense, an experiment may consist of the simple pro-
cess of checking whether a switch is turned on or off; it may consist of counting the
imperfections in a piece of cloth; or it may consist of the very complicated process
of determining the mass of an electron. The results one obtains from an experi-
ment, whether they are instrument readings, counts, “yes” or “no” answers, or values
obtained through extensive calculations, are called the outcomes of the experiment.

DEFINITION 1. SAMPLE SPACE. The set of all possible outcomes of an experiment is
called the sample space and it is usually denoted by the letter S. Each outcome
in a sample space is called an element of the sample space, or simply a sample
point.

If a sample space has a finite number of elements, we may list the elements in
the usual set notation; for instance, the sample space for the possible outcomes of
one flip of a coin may be written

S = {H, T}

where H and T stand for head and tail. Sample spaces with a large or infinite number
of elements are best described by a statement or rule; for example, if the possible
outcomes of an experiment are the set of automobiles equipped with satellite radios,
the sample space may be written

S = {x|x is an automobile with a satellite radio}

This is read “S is the set of all x such that x is an automobile with a satellite radio.”
Similarly, if S is the set of odd positive integers, we write

S = {2k + 1|k = 0, 1, 2, . . .}

How we formulate the sample space for a given situation will depend on the
problem at hand. If an experiment consists of one roll of a die and we are interested
in which face is turned up, we would use the sample space
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S1 = {1, 2, 3, 4, 5, 6}

However, if we are interested only in whether the face turned up is even or odd, we
would use the sample space

S2 = {even, odd}

This demonstrates that different sample spaces may well be used to describe an
experiment. In general, it is desirable to use sample spaces whose elements cannot
be divided (partitioned or separated) into more primitive or more elementary kinds
of outcomes. In other words, it is preferable that an element of a sample space not
represent two or more outcomes that are distinguishable in some way. Thus, in the
preceding illustration S1 would be preferable to S2.

EXAMPLE 2

Describe a sample space that might be appropriate for an experiment in which we
roll a pair of dice, one red and one green. (The different colors are used to emphasize
that the dice are distinct from one another.)

Solution
The sample space that provides the most information consists of the 36 points given by

S1 = {(x, y)|x = 1, 2, . . . , 6; y = 1, 2, . . . , 6}

where x represents the number turned up by the red die and y represents the number
turned up by the green die. A second sample space, adequate for most purposes
(though less desirable in general as it provides less information), is given by

S2 = {2, 3, 4, . . . , 12}

where the elements are the totals of the numbers turned up by the two dice.

Sample spaces are usually classified according to the number of elements that
they contain. In the preceding example the sample spaces S1 and S2 contained a
finite number of elements; but if a coin is flipped until a head appears for the first
time, this could happen on the first flip, the second flip, the third flip, the fourth flip,
. . ., and there are infinitely many possibilities. For this experiment we obtain the
sample space

S = {H, TH, TTH, TTTH, TTTTH, . . .}
with an unending sequence of elements. But even here the number of elements can
be matched one-to-one with the whole numbers, and in this sense the sample space
is said to be countable. If a sample space contains a finite number of elements or an
infinite though countable number of elements, it is said to be discrete.

The outcomes of some experiments are neither finite nor countably infinite. Such
is the case, for example, when one conducts an investigation to determine the dis-
tance that a certain make of car will travel over a prescribed test course on 5 liters
of gasoline. If we assume that distance is a variable that can be measured to any
desired degree of accuracy, there is an infinity of possibilities (distances) that can-
not be matched one-to-one with the whole numbers. Also, if we want to measure
the amount of time it takes for two chemicals to react, the amounts making up the
sample space are infinite in number and not countable. Thus, sample spaces need
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not be discrete. If a sample space consists of a continuum, such as all the points of
a line segment or all the points in a plane, it is said to be continuous. Continuous
sample spaces arise in practice whenever the outcomes of experiments are measure-
ments of physical properties, such as temperature, speed, pressure, length, . . ., that
are measured on continuous scales.

3 Events In many problems we are interested in results that are not given directly by a specific
element of a sample space.

EXAMPLE 3

With reference to the first sample space S1 on the previous page, describe the event
A that the number of points rolled with the die is divisible by 3.

Solution
Among 1, 2, 3, 4, 5, and 6, only 3 and 6 are divisible by 3. Therefore, A is represented
by the subset {3, 6} of the sample space S1.

EXAMPLE 4

With reference to the sample space S1 of Example 2, describe the event B that the
total number of points rolled with the pair of dice is 7.

Solution
Among the 36 possibilities, only (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), and (6, 1) yield
a total of 7. So, we write

B = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}

Note that in Figure 1 the event of rolling a total of 7 with the two dice is represented
by the set of points inside the region bounded by the dotted line.

1

2

3

4

5

6

1 2 3 4 5
Red die

Green
die

6

Figure 1. Rolling a total of 7 with a pair of dice.
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In the same way, any event (outcome or result) can be identified with a collection
of points, which constitute a subset of an appropriate sample space. Such a subset
consists of all the elements of the sample space for which the event occurs, and in
probability and statistics we identify the subset with the event.

DEFINITION 2. EVENT. An event is a subset of a sample space.

EXAMPLE 5

If someone takes three shots at a target and we care only whether each shot is a hit
or a miss, describe a suitable sample space, the elements of the sample space that
constitute event M that the person will miss the target three times in a row, and the
elements of event N that the person will hit the target once and miss it twice.

Solution
If we let 0 and 1 represent a miss and a hit, respectively, the eight possibilities (0, 0, 0),
(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), and (1, 1, 1) may be displayed
as in Figure 2. Thus, it can be seen that

M = {(0, 0, 0)}
and

N = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

(0, 1, 1)

(0, 1, 0)

(0, 0, 0)

(0, 0, 1)
(1, 0, 1)

(1, 1, 1)

(1, 0, 0)

(1, 1, 0)

Third
shot

First
shot

Second
shot

Figure 2. Sample space for Example 5.

EXAMPLE 6

Construct a sample space for the length of the useful life of a certain electronic
component and indicate the subset that represents the event F that the component
fails before the end of the sixth year.
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Solution
If t is the length of the component’s useful life in years, the sample space may be
written S = {t|t G 0}, and the subset F = {t|0 F t < 6} is the event that the component
fails before the end of the sixth year.

According to our definition, any event is a subset of an appropriate sample
space, but it should be observed that the converse is not necessarily true. For dis-
crete sample spaces, all subsets are events, but in the continuous case some rather
abstruse point sets must be excluded for mathematical reasons. This is discussed fur-
ther in some of the more advanced texts listed among the references at the end of
this chapter.

In many problems of probability we are interested in events that are actually
combinations of two or more events, formed by taking unions, intersections, and
complements. Although the reader must surely be familiar with these terms, let us
review briefly that, if A and B are any two subsets of a sample space S, their union
A ∪ B is the subset of S that contains all the elements that are either in A, in B,
or in both; their intersection A ∩ B is the subset of S that contains all the elements
that are in both A and B; and the complement A′ of A is the subset of S that con-
tains all the elements of S that are not in A. Some of the rules that control the
formation of unions, intersections, and complements may be found in Exercises 1
through 4.

Sample spaces and events, particularly relationships among events, are often
depicted by means of Venn diagrams, in which the sample space is represented by
a rectangle, while events are represented by regions within the rectangle, usually by
circles or parts of circles. For instance, the shaded regions of the four Venn diagrams
of Figure 3 represent, respectively, event A, the complement of event A, the union
of events A and B, and the intersection of events A and B. When we are dealing
with three events, we usually draw the circles as in Figure 4. Here, the regions are
numbered 1 through 8 for easy reference.

Figure 3. Venn diagrams.
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Figure 4. Venn diagram.

Figure 5. Diagrams showing special relationships among events.

To indicate special relationships among events, we sometimes draw diagrams
like those of Figure 5. Here, the one on the left serves to indicate that events A and
B are mutually exclusive.

DEFINITION 3. MUTUALLY EXCLUSIVE EVENTS. Two events having no elements in com-
mon are said to be mutually exclusive.

When A and B are mutually exclusive, we write A ∩ B = ∅, where ∅ denotes
the empty set, which has no elements at all. The diagram on the right serves to
indicate that A is contained in B, and symbolically we express this by writing
A ( B.

Exercises
1. Use Venn diagrams to verify that
(a) (A ∪ B)∪ C is the same event as A ∪ (B ∪ C);
(b) A ∩ (B ∪ C) is the same event as (A ∩ B)∪ (A ∩ C);
(c) A ∪ (B ∩ C) is the same event as (A ∪ B)∩ (A ∪ C).

2. Use Venn diagrams to verify the two De Morgan laws:
(a) (A ∩ B)′ = A′ ∪ B′; (b) (A ∪ B)′ = A′ ∩ B′.

3. Use Venn diagrams to verify that
(a) (A ∩ B)∪ (A ∩ B′) = A;
(b) (A ∩ B)∪ (A ∩ B′)∪ (A′ ∩ B) = A ∪ B;
(c) A ∪ (A′ ∩ B) = A ∪ B.

4. Use Venn diagrams to verify that if A is contained in
B, then A ∩ B = A and A ∩ B′ = ∅.
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4 The Probability of an Event
To formulate the postulates of probability, we shall follow the practice of denoting
events by means of capital letters, and we shall write the probability of event A as
P(A), the probability of event B as P(B), and so forth. The following postulates of
probability apply only to discrete sample spaces, S.

POSTULATE 1 The probability of an event is a nonnegative real number;
that is, P(A) G 0 for any subset A of S.

POSTULATE 2 P(S) = 1.
POSTULATE 3 If A1, A2, A3, . . ., is a finite or infinite sequence of mutually

exclusive events of S, then

P(A1 ∪ A2 ∪ A3 ∪ · · · ) = P(A1)+ P(A2)+ P(A3)+ · · ·

Postulates per se require no proof, but if the resulting theory is to be applied,
we must show that the postulates are satisfied when we give probabilities a “real”
meaning. Let us illustrate this in connection with the frequency interpretation; the
relationship between the postulates and the classical probability concept will be
discussed below, while the relationship between the postulates and subjective prob-
abilities is left for the reader to examine in Exercises 16 and 82.

Since proportions are always positive or zero, the first postulate is in complete
agreement with the frequency interpretation. The second postulate states indirectly
that certainty is identified with a probability of 1; after all, it is always assumed that
one of the possibilities in S must occur, and it is to this certain event that we assign
a probability of 1. As far as the frequency interpretation is concerned, a probability
of 1 implies that the event in question will occur 100 percent of the time or, in other
words, that it is certain to occur.

Taking the third postulate in the simplest case, that is, for two mutually exclusive
events A1 and A2, it can easily be seen that it is satisfied by the frequency interpreta-
tion. If one event occurs, say, 28 percent of the time, another event occurs 39 percent
of the time, and the two events cannot both occur at the same time (that is, they are
mutually exclusive), then one or the other will occur 28 + 39 = 67 percent of the
time. Thus, the third postulate is satisfied, and the same kind of argument applies
when there are more than two mutually exclusive events.

Before we study some of the immediate consequences of the postulates of prob-
ability, let us emphasize the point that the three postulates do not tell us how to
assign probabilities to events; they merely restrict the ways in which it can be done.

EXAMPLE 7

An experiment has four possible outcomes, A, B, C, and D, that are mutually exclu-
sive. Explain why the following assignments of probabilities are not permissible:

(a) P(A) = 0.12, P(B) = 0.63, P(C) = 0.45, P(D) = −0.20;

(b) P(A) = 9
120 , P(B) = 45

120 , P(C) = 27
120 , P(D) = 46

120 .

Solution

(a) P(D) = −0.20 violates Postulate 1;

(b) P(S) = P(A ∪ B ∪ C ∪ D) = 9
120 + 45

120 + 27
120 + 46

120 = 127
120 Z 1, and this violates

Postulate 2.
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Of course, in actual practice probabilities are assigned on the basis of past expe-
rience, on the basis of a careful analysis of all underlying conditions, on the basis
of subjective judgments, or on the basis of assumptions—sometimes the assumption
that all possible outcomes are equiprobable.

To assign a probability measure to a sample space, it is not necessary to specify
the probability of each possible subset. This is fortunate, for a sample space with as
few as 20 possible outcomes has already 220 = 1,048,576 subsets, and the number
of subsets grows very rapidly when there are 50 possible outcomes, 100 possible
outcomes, or more. Instead of listing the probabilities of all possible subsets, we
often list the probabilities of the individual outcomes, or sample points of S, and
then make use of the following theorem.

THEOREM 1. If A is an event in a discrete sample space S, then P(A) equals
the sum of the probabilities of the individual outcomes comprising A.

Proof Let O1, O2, O3, . . ., be the finite or infinite sequence of outcomes
that comprise the event A. Thus,

A = O1 ∪ O2 ∪ O3 · · ·

and since the individual outcomes, the O’s, are mutually exclusive, the
third postulate of probability yields

P(A) = P(O1)+ P(O2)+ P(O3)+ · · ·

This completes the proof.

To use this theorem, we must be able to assign probabilities to the individual
outcomes of experiments. How this is done in some special situations is illustrated
by the following examples.

EXAMPLE 8

If we twice flip a balanced coin, what is the probability of getting at least one head?

Solution
The sample space is S = {HH, HT, TH, TT}, where H and T denote head and tail.
Since we assume that the coin is balanced, these outcomes are equally likely and we
assign to each sample point the probability 1

4 . Letting A denote the event that we
will get at least one head, we get A = {HH, HT, TH} and

P(A) = P(HH)+ P(HT)+ P(TH)

= 1
4

+ 1
4

+ 1
4

= 3
4
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EXAMPLE 9

A die is loaded in such a way that each odd number is twice as likely to occur as each
even number. Find P(G), where G is the event that a number greater than 3 occurs
on a single roll of the die.

Solution
The sample space is S = {1, 2, 3, 4, 5, 6}. Hence, if we assign probability w to each
even number and probability 2w to each odd number, we find that 2w + w + 2w +
w + 2w + w = 9w = 1 in accordance with Postulate 2. It follows that w = 1

9 and

P(G) = 1
9

+ 2
9

+ 1
9

= 4
9

If a sample space is countably infinite, probabilities will have to be assigned to
the individual outcomes by means of a mathematical rule, preferably by means of a
formula or equation.

EXAMPLE 10

If, for a given experiment, O1, O2, O3, . . ., is an infinite sequence of outcomes, ver-
ify that

P(Oi) =
(

1
2

)i

for i = 1, 2, 3, . . .

is, indeed, a probability measure.

Solution
Since the probabilities are all positive, it remains to be shown that P(S) = 1. Getting

P(S) = 1
2

+ 1
4

+ 1
8

+ 1
16

+ · · ·

and making use of the formula for the sum of the terms of an infinite geometric
progression, we find that

P(S) =
1
2

1 − 1
2

= 1

In connection with the preceding example, the word “sum” in Theorem 1 will
have to be interpreted so that it includes the value of an infinite series.

The probability measure of Example 10 would be appropriate, for example, if
Oi is the event that a person flipping a balanced coin will get a tail for the first time
on the ith flip of the coin. Thus, the probability that the first tail will come on the
third, fourth, or fifth flip of the coin is

(
1
2

)3

+
(

1
2

)4

+
(

1
2

)5

= 7
32

and the probability that the first tail will come on an odd-numbered flip of the coin is

(
1
2

)1

+
(

1
2

)3

+
(

1
2

)5

+ · · · =
1
2

1 − 1
4

= 2
3
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Here again we made use of the formula for the sum of the terms of an infinite geo-
metric progression.

If an experiment is such that we can assume equal probabilities for all the sample
points, as was the case in Example 8, we can take advantage of the following special
case of Theorem 1.

THEOREM 2. If an experiment can result in any one of N different equally
likely outcomes, and if n of these outcomes together constitute event A,
then the probability of event A is

P(A) = n
N

Proof Let O1, O2, . . . , ON represent the individual outcomes in S, each

with probability
1
N

. If A is the union of n of these mutually exclusive

outcomes, and it does not matter which ones, then

P(A) = P(O1 ∪ O2 ∪ · · · ∪ On)

= P(O1)+ P(O2)+ · · · + P(On)

= 1
N

+ 1
N

+ · · · + 1
N︸ ︷︷ ︸

n terms

= n
N

Observe that the formula P(A) = n
N

of Theorem 2 is identical with the one for

the classical probability concept (see below). Indeed, what we have shown here is
that the classical probability concept is consistent with the postulates of
probability—it follows from the postulates in the special case where the individual
outcomes are all equiprobable.

EXAMPLE 11

A five-card poker hand dealt from a deck of 52 playing cards is said to be a full house
if it consists of three of a kind and a pair. If all the five-card hands are equally likely,
what is the probability of being dealt a full house?

Solution
The number of ways in which we can be dealt a particular full house, say three kings

and two aces, is
(

4
3

) (
4
2

)
. Since there are 13 ways of selecting the face value for the

three of a kind and for each of these there are 12 ways of selecting the face value for
the pair, there are altogether

n = 13 · 12 ·
(

4
3

)(
4
2

)

different full houses. Also, the total number of equally likely five-card poker
hands is
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N =
(

52
5

)

and it follows by Theorem 2 that the probability of getting a full house is

P(A) = n
N

=
13 · 12

(
4
3

)(
4
2

)
(

52
5

) = 0.0014

5 Some Rules of Probability
Based on the three postulates of probability, we can derive many other rules that
have important applications. Among them, the next four theorems are immediate
consequences of the postulates.

THEOREM 3. If A and A′ are complementary events in a sample space S, then

P(A′) = 1 − P(A)

Proof In the second and third steps of the proof that follows, we make
use of the definition of a complement, according to which A and A′ are
mutually exclusive and A ∪ A′ = S. Thus, we write

1 = P(S) (by Postulate 2)

= P(A ∪ A′)

= P(A)+ P(A′) (by Postulate 3)

and it follows that P(A′) = 1 − P(A).

In connection with the frequency interpretation, this result implies that if an
event occurs, say, 37 percent of the time, then it does not occur 63 percent of
the time.

THEOREM 4. P(∅) = 0 for any sample space S.

Proof Since S and ∅ are mutually exclusive and S ∪∅ = S in accordance
with the definition of the empty set ∅, it follows that

P(S) = P(S ∪∅)

= P(S)+ P(∅) (by Postulate 3)

and, hence, that P(∅) = 0.

It is important to note that it does not necessarily follow from P(A) = 0 that
A = ∅. In practice, we often assign 0 probability to events that, in colloquial terms,
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would not happen in a million years. For instance, there is the classical example that
we assign a probability of 0 to the event that a monkey set loose on a typewriter will
type Plato’s Republic word for word without a mistake. The fact that P(A) = 0 does
not imply that A = ∅ is of relevance, especially, in the continuous case.

THEOREM 5. If A and B are events in a sample space S and A ( B, then
P(A) F P(B).

Proof Since A ( B, we can write

B = A ∪ (A′ ∩ B)

as can easily be verified by means of a Venn diagram. Then, since A and
A′ ∩ B are mutually exclusive, we get

P(B) = P(A)+ P(A′ ∩ B) (by Postulate 3)

G P(A) (by Postulate 1)

In words, this theorem states that if A is a subset of B, then P(A) cannot be
greater than P(B). For instance, the probability of drawing a heart from an ordinary
deck of 52 playing cards cannot be greater than the probability of drawing a red card.
Indeed, the probability of drawing a heart is 1

4 , compared with 1
2 , the probability of

drawing a red card.

THEOREM 6. 0 F P(A) F 1 for any event A.

Proof Using Theorem 5 and the fact that ∅( A ( S for any event A in S,
we have

P(∅) F P(A) F P(S)

Then, P(∅) = 0 and P(S) = 1 leads to the result that

0 F P(A) F 1

The third postulate of probability is sometimes referred to as the special addi-
tion rule; it is special in the sense that events A1, A2, A3, . . ., must all be mutually
exclusive. For any two events A and B, there exists the general addition rule, or the
inclusion–exclusion principle:

THEOREM 7. If A and B are any two events in a sample space S, then

P(A ∪ B) = P(A)+ P(B)− P(A ∩ B)

Proof Assigning the probabilities a, b, and c to the mutually exclusive
events A ∩ B, A ∩ B′, and A′ ∩ B as in the Venn diagram of Figure 6, we
find that

P(A ∪ B) = a + b + c

= (a + b)+ (c + a)− a

= P(A)+ P(B)− P(A ∩ B)
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A B

b a c

Figure 6. Venn diagram for proof of Theorem 7.

EXAMPLE 12

In a large metropolitan area, the probabilities are 0.86, 0.35, and 0.29, respectively,
that a family (randomly chosen for a sample survey) owns a color television set, a
HDTV set, or both kinds of sets. What is the probability that a family owns either or
both kinds of sets?

Solution
If A is the event that a family in this metropolitan area owns a color television set
and B is the event that it owns a HDTV set, we have P(A) = 0.86, P(B) = 0.35, and
P(A ∩ B) = 0.29; substitution into the formula of Theorem 7 yields

P(A ∪ B) = 0.86 + 0.35 − 0.29

= 0.92

EXAMPLE 13

Near a certain exit of I-17, the probabilities are 0.23 and 0.24, respectively, that
a truck stopped at a roadblock will have faulty brakes or badly worn tires. Also,
the probability is 0.38 that a truck stopped at the roadblock will have faulty brakes
and/or badly worn tires. What is the probability that a truck stopped at this roadblock
will have faulty brakes as well as badly worn tires?

Solution
If B is the event that a truck stopped at the roadblock will have faulty brakes and T
is the event that it will have badly worn tires, we have P(B) = 0.23, P(T) = 0.24, and
P(B ∪ T) = 0.38; substitution into the formula of Theorem 7 yields

0.38 = 0.23 + 0.24 − P(B ∩ T)

Solving for P(B ∩ T), we thus get

P(B ∩ T) = 0.23 + 0.24 − 0.38 = 0.09

Repeatedly using the formula of Theorem 7, we can generalize this addition rule
so that it will apply to any number of events. For instance, for three events we obtain
the following theorem.
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THEOREM 8. If A, B, and C are any three events in a sample space S, then

P(A ∪ B ∪ C) = P(A)+ P(B)+ P(C)− P(A ∩ B)− P(A ∩ C)

− P(B ∩ C)+ P(A ∩ B ∩ C)

Proof Writing A ∪ B ∪ C as A ∪ (B ∪ C) and using the formula of Theo-
rem 7 twice, once for P[A ∪ (B ∪ C)] and once for P(B ∪ C), we get

P(A ∪ B ∪ C) = P[A ∪ (B ∪ C)]

= P(A)+ P(B ∪ C)− P[A ∩ (B ∪ C)]

= P(A)+ P(B)+ P(C)− P(B ∩ C)

− P[A ∩ (B ∪ C)]

Then, using the distributive law that the reader was asked to verify in part
(b) of Exercise 1, we find that

P[A ∩ (B ∪ C)] = P[(A ∩ B)∪ (A ∩ C)]

= P(A ∩ B)+ P(A ∩ C)− P[(A ∩ B)∩ (A ∩ C)]

= P(A ∩ B)+ P(A ∩ C)− P(A ∩ B ∩ C)

and hence that

P(A ∪ B ∪ C) = P(A)+ P(B)+ P(C)− P(A ∩ B)− P(A ∩ C)

− P(B ∩ C)+ P(A ∩ B ∩ C)

(In Exercise 12 the reader will be asked to give an alternative proof of this the-
orem, based on the method used in the text to prove Theorem 7.)

EXAMPLE 14

If a person visits his dentist, suppose that the probability that he will have his teeth
cleaned is 0.44, the probability that he will have a cavity filled is 0.24, the probability
that he will have a tooth extracted is 0.21, the probability that he will have his teeth
cleaned and a cavity filled is 0.08, the probability that he will have his teeth cleaned
and a tooth extracted is 0.11, the probability that he will have a cavity filled and
a tooth extracted is 0.07, and the probability that he will have his teeth cleaned,
a cavity filled, and a tooth extracted is 0.03. What is the probability that a person
visiting his dentist will have at least one of these things done to him?

Solution
If C is the event that the person will have his teeth cleaned, F is the event that he
will have a cavity filled, and E is the event that he will have a tooth extracted, we
are given P(C) = 0.44, P(F) = 0.24, P(E) = 0.21, P(C ∩ F) = 0.08, P(C ∩ E) = 0.11,
P(F ∩ E) = 0.07, and P(C ∩ F ∩ E) = 0.03, and substitution into the formula of
Theorem 8 yields

P(C ∪ F ∪ E) = 0.44 + 0.24 + 0.21 − 0.08 − 0.11 − 0.07 + 0.03

= 0.66
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Exercises
5. Use parts (a) and (b) of Exercise 3 to show that
(a) P(A) G P(A ∩ B);
(b) P(A) F P(A ∪ B).

6. Referring to Figure 6, verify that

P(A ∩ B′) = P(A)− P(A ∩ B)

7. Referring to Figure 6 and letting P(A′ ∩ B′) = d, ver-
ify that

P(A′ ∩ B′) = 1 − P(A)− P(B)+ P(A ∩ B)

8. The event that “A or B but not both” will occur can be
written as

(A ∩ B′)∪ (A′ ∩ B)

Express the probability of this event in terms of P(A),
P(B), and P(A ∩ B).

9. Use the formula of Theorem 7 to show that
(a) P(A ∩ B) F P(A)+ P(B);
(b) P(A ∩ B) G P(A)+ P(B)− 1.

10. Use the Venn diagram of Figure 7 with the prob-
abilities a, b, c, d, e, f , and g assigned to A ∩ B ∩ C,
A ∩ B ∩ C′, . . ., and A ∩ B′ ∩ C′ to show that if P(A) =
P(B) = P(C) = 1, then P(A ∩ B ∩ C) = 1. [Hint: Start
with the argument that since P(A) = 1, it follows that
e = c = f = 0.]

11. Give an alternative proof of Theorem 7 by making
use of the relationships A ∪ B = A ∪ (A′ ∩ B) and B =
(A ∩ B)∪ (A′ ∩ B).

12. Use the Venn diagram of Figure 7 and the method by
which we proved Theorem 7 to prove Theorem 8.

A B

C

g e

d c

b

a

f

Figure 7. Venn diagram for Exercises 10, 12, and 13.

13. Duplicate the method of proof used in Exercise 12 to
show that

P(A ∪ B ∪ C ∪ D) = P(A)+ P(B)+ P(C)+ P(D)

− P(A ∩ B)− P(A ∩ C)− P(A ∩ D)

− P(B ∩ C)− P(B ∩ D)− P(C ∩ D)

+ P(A ∩ B ∩ C)+ P(A ∩ B ∩ D)

+ P(A ∩ C ∩ D)+ P(B ∩ C ∩ D)

− P(A ∩ B ∩ C ∩ D)

(Hint: With reference to the Venn diagram of Figure 7,
divide each of the eight regions into two parts, designat-
ing one to be inside D and the other outside D and letting
a, b, c, d, e, f , g, h, i, j, k, l, m, n, o, and p be the probabili-
ties associated with the resulting 16 regions.)

14. Prove by induction that

P(E1 ∪ E2 ∪ · · · ∪ En) F
n∑

i=1

P(Ei)

for any finite sequence of events E1, E2, . . ., and En.

15. The odds that an event will occur are given by the
ratio of the probability that the event will occur to the
probability that it will not occur, provided neither proba-
bility is zero. Odds are usually quoted in terms of positive
integers having no common factor. Show that if the odds
are A to B that an event will occur, its probability is

p = A
A + B

16. Subjective probabilities may be determined by expos-
ing persons to risk-taking situations and finding the odds
at which they would consider it fair to bet on the outcome.
The odds are then converted into probabilities by means
of the formula of Exercise 15. For instance, if a person
feels that 3 to 2 are fair odds that a business venture will
succeed (or that it would be fair to bet $30 against $20

that it will succeed), the probability is
3

3 + 2
= 0.6 that

the business venture will succeed. Show that if subjective
probabilities are determined in this way, they satisfy
(a) Postulate 1;
(b) Postulate 2.

See also Exercise 82.
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6 Conditional Probability
Difficulties can easily arise when probabilities are quoted without specification of
the sample space. For instance, if we ask for the probability that a lawyer makes
more than $75,000 per year, we may well get several different answers, and they may
all be correct. One of them might apply to all those who are engaged in the private
practice of law, another might apply to lawyers employed by corporations, and so
forth. Since the choice of the sample space (that is, the set of all possibilities under
consideration) is by no means always self-evident, it often helps to use the symbol
P(A|S) to denote the conditional probability of event A relative to the sample space
S or, as we also call it, “the probability of A given S.” The symbol P(A|S) makes it
explicit that we are referring to a particular sample space S, and it is preferable to
the abbreviated notation P(A) unless the tacit choice of S is clearly understood. It is
also preferable when we want to refer to several sample spaces in the same example.
If A is the event that a person makes more than $75,000 per year, G is the event that
a person is a law school graduate, L is the event that a person is licensed to practice
law, and E is the event that a person is actively engaged in the practice of law, then
P(A|G) is the probability that a law school graduate makes more than $75,000 per
year, P(A|L) is the probability that a person licensed to practice law makes more
than $75,000 per year, and P(A|E) is the probability that a person actively engaged
in the practice of law makes more than $75,000 per year.

Some ideas connected with conditional probabilities are illustrated in the fol-
lowing example.

EXAMPLE 15

A consumer research organization has studied the services under warranty provided
by the 50 new-car dealers in a certain city, and its findings are summarized in the
following table.

Good service
under warranty

Poor service
under warranty

In business 10 years or more 16 4

In business less than 10 years 10 20

If a person randomly selects one of these new-car dealers, what is the probability that
he gets one who provides good service under warranty? Also, if a person randomly
selects one of the dealers who has been in business for 10 years or more, what is the
probability that he gets one who provides good service under warranty?

Solution
By “randomly” we mean that, in each case, all possible selections are equally likely,
and we can therefore use the formula of Theorem 2. If we let G denote the selection
of a dealer who provides good service under warranty, and if we let n(G) denote
the number of elements in G and n(S) the number of elements in the whole sample
space, we get

P(G) = n(G)

n(S)
= 16 + 10

50
= 0.52

This answers the first question.
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For the second question, we limit ourselves to the reduced sample space, which
consists of the first line of the table, that is, the 16 + 4 = 20 dealers who have been
in business 10 years or more. Of these, 16 provide good service under warranty, and
we get

P(G|T) = 16
20

= 0.80

where T denotes the selection of a dealer who has been in business 10 years or
more. This answers the second question and, as should have been expected, P(G|T)

is considerably higher than P(G).

Since the numerator of P(G|T) is n(T ∩ G) = 16 in the preceding example, the
number of dealers who have been in business for 10 years or more and provide good
service under warranty, and the denominator is n(T), the number of dealers who
have been in business 10 years or more, we can write symbolically

P(G|T) = n(T ∩ G)

n(T)

Then, if we divide the numerator and the denominator by n(S), the total number of
new-car dealers in the given city, we get

P(G|T) =
n(T∩G)

n(S)

n(T)
n(S)

= P(T ∩ G)

P(T)

and we have, thus, expressed the conditional probability P(G|T) in terms of two
probabilities defined for the whole sample space S.

Generalizing from the preceding, let us now make the following definition of
conditional probability.

DEFINITION 4. CONDITIONAL PROBABILITY. If A and B are any two events in a sample
space S and P(A)Z 0, the conditional probability of B given A is

P(B|A) = P(A ∩ B)

P(A)

EXAMPLE 16

With reference to Example 15, what is the probability that one of the dealers who
has been in business less than 10 years will provide good service under warranty?

Solution
Since P(T ′ ∩ G) = 10

50
= 0.20 and P(T ′) = 10 + 20

50
= 0.60, substitution into the

formula yields

P(G|T ′) = P(T ′ ∩ G)

P(T ′)
= 0.20

0.60
= 1

3
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Although we introduced the formula for P(B|A) by means of an example in
which the possibilities were all equally likely, this is not a requirement for its use.

EXAMPLE 17

With reference to the loaded die of Example 9, what is the probability that the num-
ber of points rolled is a perfect square? Also, what is the probability that it is a
perfect square given that it is greater than 3?

Solution
If A is the event that the number of points rolled is greater than 3 and B is the event
that it is a perfect square, we have A = {4, 5, 6}, B = {1, 4}, and A ∩ B = {4}. Since
the probabilities of rolling a 1, 2, 3, 4, 5, or 6 with the die are 2

9 , 1
9 , 2

9 , 1
9 , 2

9 , and 1
9 , we

find that the answer to the first question is

P(B) = 2
9

+ 1
9

= 1
3

To determine P(B|A), we first calculate

P(A ∩ B) = 1
9

and P(A) = 1
9

+ 2
9

+ 1
9

= 4
9

Then, substituting into the formula of Definition 4, we get

P(B|A) = P(A ∩ B)

P(A)
=

1
9
4
9

= 1
4

To verify that the formula of Definition 4 has yielded the “right” answer in the
preceding example, we have only to assign probability v to the two even numbers
in the reduced sample space A and probability 2v to the odd number, such that the
sum of the three probabilities is equal to 1. We thus have v + 2v + v = 1, v = 1

4 , and,
hence, P(B|A) = 1

4 as before.

EXAMPLE 18

A manufacturer of airplane parts knows from past experience that the probability
is 0.80 that an order will be ready for shipment on time, and it is 0.72 that an order
will be ready for shipment on time and will also be delivered on time. What is the
probability that such an order will be delivered on time given that it was ready for
shipment on time?

Solution
If we let R stand for the event that an order is ready for shipment on time and D be
the event that it is delivered on time, we have P(R) = 0.80 and P(R ∩ D) = 0.72, and
it follows that

P(D|R) = P(R ∩ D)

P(R)
= 0.72

0.80
= 0.90
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Thus, 90 percent of the shipments will be delivered on time provided they are shipped
on time. Note that P(R|D), the probability that a shipment that is delivered on time
was also ready for shipment on time, cannot be determined without further informa-
tion; for this purpose we would also have to know P(D).

If we multiply the expressions on both sides of the formula of Definition 4 by
P(A), we obtain the following multiplication rule.

THEOREM 9. If A and B are any two events in a sample space S and P(A)Z 0,
then

P(A ∩ B) = P(A) · P(B|A)

In words, the probability that A and B will both occur is the product of the probabil-
ity of A and the conditional probability of B given A. Alternatively, if P(B)Z 0, the
probability that A and B will both occur is the product of the probability of B and
the conditional probability of A given B; symbolically,

P(A ∩ B) = P(B) · P(A|B)

To derive this alternative multiplication rule, we interchange A and B in the formula
of Theorem 9 and make use of the fact that A ∩ B = B ∩ A.

EXAMPLE 19

If we randomly pick two television sets in succession from a shipment of 240 tele-
vision sets of which 15 are defective, what is the probability that they will both
be defective?

Solution
If we assume equal probabilities for each selection (which is what we mean by “ran-
domly” picking the sets), the probability that the first set will be defective is 15

240 , and
the probability that the second set will be defective given that the first set is defec-
tive is 14

239 . Thus, the probability that both sets will be defective is 15
240 · 14

239 = 7
1,912 .

This assumes that we are sampling without replacement; that is, the first set is not
replaced before the second set is selected.

EXAMPLE 20

Find the probabilities of randomly drawing two aces in succession from an ordinary
deck of 52 playing cards if we sample

(a) without replacement;

(b) with replacement.

Solution

(a) If the first card is not replaced before the second card is drawn, the probability
of getting two aces in succession is

4
52

· 3
51

= 1
221
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(b) If the first card is replaced before the second card is drawn, the corresponding
probability is

4
52

· 4
52

= 1
169

In the situations described in the two preceding examples there is a definite
temporal order between the two events A and B. In general, this need not be the
case when we write P(A|B) or P(B|A). For instance, we could ask for the probabil-
ity that the first card drawn was an ace given that the second card drawn (without
replacement) is an ace—the answer would also be 3

51 .
Theorem 9 can easily be generalized so that it applies to more than two events;

for instance, for three events we have the following theorem.

THEOREM 10. If A, B, and C are any three events in a sample space S such
that P(A ∩ B)Z 0, then

P(A ∩ B ∩ C) = P(A) · P(B|A) · P(C|A ∩ B)

Proof Writing A ∩ B ∩ C as (A ∩ B)∩ C and using the formula of Theo-
rem 9 twice, we get

P(A ∩ B ∩ C) = P[(A ∩ B)∩ C]

= P(A ∩ B) · P(C|A ∩ B)

= P(A) · P(B|A) · P(C|A ∩ B)

EXAMPLE 21

A box of fuses contains 20 fuses, of which 5 are defective. If 3 of the fuses are selected
at random and removed from the box in succession without replacement, what is the
probability that all 3 fuses are defective?

Solution
If A is the event that the first fuse is defective, B is the event that the second fuse
is defective, and C is the event that the third fuse is defective, then P(A) = 5

20 ,
P(B|A) = 4

19 , P(C|A ∩ B) = 3
18 , and substitution into the formula yields

P(A ∩ B ∩ C) = 5
20

· 4
19

· 3
18

= 1
114

Further generalization of Theorems 9 and 10 to k events is straightforward, and
the resulting formula can be proved by mathematical induction.
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7 Independent Events
Informally speaking, two events A and B are independent if the occurrence or nonoc-
currence of either one does not affect the probability of the occurrence of the other.
For instance, in the preceding example the selections would all have been indepen-
dent had each fuse been replaced before the next one was selected; the probability
of getting a defective fuse would have remained 5

20 .
Symbolically, two events A and B are independent if P(B|A) = P(B) and

P(A|B) = P(A), and it can be shown that either of these equalities implies the other
when both of the conditional probabilities exist, that is, when neither P(A) nor P(B)
equals zero (see Exercise 21).

Now, if we substitute P(B) for P(B|A) into the formula of Theorem 9, we get

P(A ∩ B) = P(A) · P(B|A)

= P(A) · P(B)

and we shall use this as our formal definition of independence.

DEFINITION 5. INDEPENDENCE. Two events A and B are independent if and only if

P(A ∩ B) = P(A) · P(B)

Reversing the steps, we can also show that Definition 5 implies the definition of inde-
pendence that we gave earlier.

If two events are not independent, they are said to be dependent. In the deriva-
tion of the formula of Definition 5, we assume that P(B|A) exists and, hence, that
P(A)Z 0. For mathematical convenience, we shall let the definition apply also when
P(A) = 0 and/or P(B) = 0.

EXAMPLE 22

A coin is tossed three times and the eight possible outcomes, HHH, HHT, HTH,
THH, HTT, THT, TTH, and TTT, are assumed to be equally likely. If A is the event
that a head occurs on each of the first two tosses, B is the event that a tail occurs
on the third toss, and C is the event that exactly two tails occur in the three tosses,
show that

(a) events A and B are independent;

(b) events B and C are dependent.

Solution
Since

A = {HHH, HHT}
B = {HHT, HTT, THT, TTT}
C = {HTT, THT, TTH}

A ∩ B = {HHT}
B ∩ C = {HTT, THT}
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the assumption that the eight possible outcomes are all equiprobable yields
P(A) = 1

4 , P(B) = 1
2 , P(C) = 3

8 , P(A ∩ B) = 1
8 , and P(B ∩ C) = 1

4 .

(a) Since P(A) · P(B) = 1
4 · 1

2 = 1
8 = P(A ∩ B), events A and B are independent.

(b) Since P(B) · P(C) = 1
2 · 3

8 = 3
16 Z P(B ∩ C), events B and C are not inde-

pendent.

In connection with Definition 5, it can be shown that if A and B are independent,
then so are A and B′, A′ and B, and A′ and B′. For instance, consider the following
theorem.

THEOREM 11. If A and B are independent, then A and B′ are also indepen-
dent.

Proof Since A = (A ∩ B)∪ (A ∩ B′), as the reader was asked to show in
part (a) of Exercise 3, A ∩ B and A ∩ B′ are mutually exclusive, and A and
B are independent by assumption, we have

P(A) = P[(A ∩ B)∪ (A ∩ B′)]

= P(A ∩ B)+ P(A ∩ B′)

= P(A) · P(B)+ P(A ∩ B′)

It follows that

P(A ∩ B′) = P(A)− P(A) · P(B)

= P(A) · [1 − P(B)]

= P(A) · P(B′)

and hence that A and B′ are independent.

In Exercises 22 and 23 the reader will be asked to show that if A and B are
independent, then A′ and B are independent and so are A′ and B′, and if A and B
are dependent, then A and B′ are dependent.

To extend the concept of independence to more than two events, let us make the
following definition.

DEFINITION 6. INDEPENDENCE OF MORE THAN TWO EVENTS. Events A1, A2, . . . , and
Ak are independent if and only if the probability of the intersections of any 2, 3,
. . . , or k of these events equals the product of their respective probabilities.

For three events A, B, and C, for example, independence requires that

P(A ∩ B) = P(A) · P(B)

P(A ∩ C) = P(A) · P(C)

P(B ∩ C) = P(B) · P(C)
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and
P(A ∩ B ∩ C) = P(A) · P(B) · P(C)

It is of interest to note that three or more events can be pairwise independent
without being independent.

EXAMPLE 23

Figure 8 shows a Venn diagram with probabilities assigned to its various regions.
Verify that A and B are independent, A and C are independent, and B and C are
independent, but A, B, and C are not independent.

Solution
As can be seen from the diagram, P(A) = P(B) = P(C) = 1

2 , P(A ∩ B) =
P(A ∩ C) = P(B ∩ C) = 1

4 , and P(A ∩ B ∩ C) = 1
4 . Thus,

P(A) · P(B) = 1
4

= P(A ∩ B)

P(A) · P(C) = 1
4

= P(A ∩ C)

P(B) · P(C) = 1
4

= P(B ∩ C)

but
P(A) · P(B) · P(C) = 1

8
Z P(A ∩ B ∩ C)

A B

C

1
4

1
4

1
4

1
4

Figure 8. Venn diagram for Example 23.

Incidentally, the preceding example can be given a “real” interpretation by con-
sidering a large room that has three separate switches controlling the ceiling lights.
These lights will be on when all three switches are “up” and hence also when one
of the switches is “up” and the other two are “down.” If A is the event that the first
switch is “up,” B is the event that the second switch is “up,” and C is the event that
the third switch is “up,” the Venn diagram of Figure 8 shows a possible set of prob-
abilities associated with the switches being “up” or “down” when the ceiling lights
are on.
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It can also happen that P(A ∩ B ∩ C) = P(A) · P(B) · P(C) without A, B, and C
being pairwise independent—this the reader will be asked to verify in Exercise 24.

Of course, if we are given that certain events are independent, the probability
that they will all occur is simply the product of their respective probabilities.

EXAMPLE 24

Find the probabilities of getting

(a) three heads in three random tosses of a balanced coin;

(b) four sixes and then another number in five random rolls of a balanced die.

Solution

(a) The probability of a head on each toss is
1
2

and the three outcomes are inde-

pendent. Thus we can multiply, obtaining

1
2

· 1
2

· 1
2

= 1
8

(b) The probability of a six on each toss is
1
6

; thus the probability of tossing a

number other than 6 is
5
6

. Inasmuch as the tosses are independent, we can

multiply the respective probabilities to obtain

1
6

· 1
6

· 1
6

· 1
6

· 5
6

= 5
7, 776

8 Bayes’ Theorem
In many situations the outcome of an experiment depends on what happens in var-
ious intermediate stages. The following is a simple example in which there is one
intermediate stage consisting of two alternatives:

EXAMPLE 25

The completion of a construction job may be delayed because of a strike. The prob-
abilities are 0.60 that there will be a strike, 0.85 that the construction job will be
completed on time if there is no strike, and 0.35 that the construction job will be
completed on time if there is a strike. What is the probability that the construction
job will be completed on time?

Solution
If A is the event that the construction job will be completed on time and B is the
event that there will be a strike, we are given P(B) = 0.60, P(A|B′) = 0.85, and
P(A|B) = 0.35. Making use of the formula of part (a) of Exercise 3, the fact that A ∩
B and A ∩ B′ are mutually exclusive, and the alternative form of the multiplication
rule, we can write

P(A) = P[(A ∩ B)∪ (A ∩ B′)]

= P(A ∩ B)+ P(A ∩ B′)

= P(B) · P(A|B)+ P(B′) · P(A|B′)

45



Probability

Then, substituting the given numerical values, we get

P(A) = (0.60)(0.35)+ (1 − 0.60)(0.85)

= 0.55

An immediate generalization of this kind of situation is the case where the
intermediate stage permits k different alternatives (whose occurrence is denoted by
B1, B2, . . . , Bk). It requires the following theorem, sometimes called the rule of total
probability or the rule of elimination.

THEOREM 12. If the events B1, B2, . . . , and Bk constitute a partition of the
sample space S and P(Bi)Z 0 for i = 1, 2, . . . , k, then for any event A in S

P(A) =
k∑

i=1

P(Bi) · P(A|Bi)

The B’s constitute a partition of the sample space if they are pairwise mutually exclu-
sive and if their union equals S. A formal proof of Theorem 12 consists, essentially,
of the same steps we used in Example 25, and it is left to the reader in Exercise 32.

EXAMPLE 26

The members of a consulting firm rent cars from three rental agencies: 60 percent
from agency 1, 30 percent from agency 2, and 10 percent from agency 3. If 9 percent
of the cars from agency 1 need an oil change, 20 percent of the cars from agency 2
need an oil change, and 6 percent of the cars from agency 3 need an oil change, what
is the probability that a rental car delivered to the firm will need an oil change?

Solution
If A is the event that the car needs an oil change, and B1, B2, and B3 are the events
that the car comes from rental agencies 1, 2, or 3, we have P(B1) = 0.60, P(B2) =
0.30, P(B3) = 0.10, P(A|B1) = 0.09, P(A|B2) = 0.20, and P(A|B3) = 0.06. Substi-
tuting these values into the formula of Theorem 12, we get

P(A) = (0.60)(0.09)+ (0.30)(0.20)+ (0.10)(0.06)

= 0.12

Thus, 12 percent of all the rental cars delivered to this firm will need an oil change.

With reference to the preceding example, suppose that we are interested in
the following question: If a rental car delivered to the consulting firm needs an oil
change, what is the probability that it came from rental agency 2? To answer ques-
tions of this kind, we need the following theorem, called Bayes’ theorem:
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THEOREM 13. If B1, B2, . . . , Bk constitute a partition of the sample space
S and P(Bi)Z 0 for i = 1, 2, . . . , k, then for any event A in S such that
P(A)Z 0

P(Br|A) = P(Br) · P(A|Br)

k∑
i=1

P(Bi) · P(A|Bi)

for r = 1, 2, . . . , k.

In words, the probability that event A was reached via the rth branch
of the tree diagram of Figure 9, given that it was reached via one of
its k branches, is the ratio of the probability associated with the rth
branch to the sum of the probabilities associated with all k branches of
the tree.

Proof Writing P(Br|A) = P(A ∩ Br)

P(A)
in accordance with the definition

of conditional probability, we have only to substitute P(Br) · P(A|Br) for
P(A ∩ Br) and the formula of Theorem 12 for P(A).

P(B 1)

P(B2)

P(B
k)

B1

B2

etc. etc.

A

A

A

P(B1) � P(A�B1)
P(A�B1)

P(A�B2)

P(A�Bk)

P(B2) � P(A�B2)

P(Bk) � P(A�Bk)
Bk

Figure 9. Tree diagram for Bayes’ theorem.

EXAMPLE 27

With reference to Example 26, if a rental car delivered to the consulting firm needs
an oil change, what is the probability that it came from rental agency 2?

Solution
Substituting the probabilities on the previous page into the formula of Theorem 13,
we get

P(B2|A) = (0.30)(0.20)

(0.60)(0.09)+ (0.30)(0.20)+ (0.10)(0.06)

= 0.060
0.120

= 0.5

Observe that although only 30 percent of the cars delivered to the firm come from
agency 2, 50 percent of those requiring an oil change come from that agency.
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EXAMPLE 28

A rare but serious disease, D, has been found in 0.01 percent of a certain population.
A test has been developed that will be positive, p, for 98 percent of those who have
the disease and be positive for only 3 percent of those who do not have the disease.
Find the probability that a person tested as positive does not have the disease.

Solution
Let D and p represent the events that a person randomly selected from the given
population, respectively, does not have the disease and is found negative for the dis-
ease by the test. Substituting the given probabilities into the formula of Theorem 13,
we get

P(D|p) = P(D)P(p|D)

P(D)P(p|D)+ P(D)P(p|D)
= 0.9999 · 0.03

0.0001 · 0.98 + 0.9999 · 0.03
= 0.997

This example demonstrates the near impossibility of finding a test for a rare disease
that does not have an unacceptably high probability of false positives.

Although Bayes’ theorem follows from the postulates of probability and the
definition of conditional probability, it has been the subject of extensive controversy.
There can be no question about the validity of Bayes’ theorem, but considerable
arguments have been raised about the assignment of the prior probabilities P(Bi).
Also, a good deal of mysticism surrounds Bayes’ theorem because it entails a “back-
ward,” or “inverse,” sort of reasoning, that is, reasoning “from effect to cause.” For
instance, in Example 27, needing an oil change is the effect and coming from agency
2 of is a possible cause.

Exercises
17. Show that the postulates of probability are satisfied
by conditional probabilities. In other words, show that if
P(B)Z 0, then
(a) P(A|B) G 0;
(b) P(B|B) = 1;
(c) P(A1 ∪ A2 ∪ . . . |B) = P(A1|B)+ P(A2|B)+ · · · for
any sequence of mutually exclusive events A1, A2, . . ..

18. Show by means of numerical examples that P(B|A)+
P(B|A′)
(a) may be equal to 1;
(b) need not be equal to 1.

19. Duplicating the method of proof of Theorem 10,
show that P(A∩B∩C∩D) = P(A) ·P(B|A) ·P(C|A∩B) ·
P(D|A ∩ B ∩ C) provided that P(A ∩ B ∩ C)Z 0.

20. Given three events A, B, and C such that
P(A ∩ B ∩ C)Z 0 and P(C|A ∩ B) = P(C|B), show that
P(A|B ∩ C) = P(A|B).

21. Show that if P(B|A) = P(B) and P(B)Z 0, then
P(A|B) = P(A).

22. Show that if events A and B are independent, then
(a) events A′ and B are independent;
(b) events A′ and B′ are independent.

23. Show that if events A and B are dependent, then
events A and B′ are dependent.

24. Refer to Figure 10 to show that P(A ∩ B ∩ C) =
P(A) · P(B) · P(C) does not necessarily imply that A, B,
and C are all pairwise independent.

25. Refer to Figure 10 to show that if A is independent
of B and A is independent of C, then B is not necessarily
independent of C.

26. Refer to Figure 10 to show that if A is independent of
B and A is independent of C, then A is not necessarily
independent of B ∪ C.

27. If events A, B, and C are independent, show that
(a) A and B ∩ C are independent;
(b) A and B ∪ C are independent.

28. If P(A|B)< P(A), prove that P(B|A)< P(B).
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0.06 0.14

0.24
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Figure 10. Diagram for Exercises 24, 25, and 26.

29. If A1, A2, . . . , An are independent events, prove that

P(A1 ∪ A2 ∪ · · · ∪ An) = 1 −{1 − P(A1)} ·
{1 − P(A2)} . . . {1 − P(An)}

30. Show that 2k − k − 1 conditions must be satisfied for
k events to be independent.

31. For any event A, show that A and ∅ are
independent.

32. Prove Theorem 12 by making use of the following
generalization of the distributive law given in part (b) of
Exercise 1:

A∩ (B1∪B2∪· · ·∪Bk)=(A∩B1)∪(A∩B2)∪· · ·∪(A∩Bk)

33. Suppose that a die has n sides numbered i = 1,
2, . . . , n. Assume that the probability of it coming up on
the side numbered i is the same for each value of i. The die
is rolled n times (assume independence) and a “match” is
defined to be the occurrence of side i on the ith roll. Prove
that the probability of at least one match is given by

1 −
(

n − 1
n

)n

= 1 −
(

1 − 1
n

)n

34. Show that P(A ∪ B)Ú 1 − P(A′)− P(B′) for any two
events A and B defined in the sample space S. (Hint: Use
Venn diagrams.)

9 The Theory in Practice
The word “probability” is a part of everyday language, but it is difficult to define this
word without using the word “probable” or its synonym “likely” in the definition.∗
To illustrate, Webster’s Third New International Dictionary defines “probability” as
“the quality or state of being probable.” If the concept of probability is to be used
in mathematics and scientific applications, we require a more exact, less circular,
definition.

The postulates of probability given in Section 4 satisfy this criterion. Together
with the rules given in Section 5, this definition lends itself to calculations of proba-
bilities that “make sense” and that can be verified experimentally. The entire theory
of statistics is based on the notion of probability. It seems remarkable that the entire
structure of probability and, therefore of statistics, can be built on the relatively
straightforward foundation given in this chapter.

Probabilities were first considered in games of chance, or gambling. Players of
various games of chance observed that there seemed to be “rules” that governed
the roll of dice or the results of spinning a roulette wheel. Some of them went as far
as to postulate some of these rules entirely on the basis of experience. But differ-
ences arose among gamblers about probabilities, and they brought their questions
to the noted mathematicians of their day. With this motivation, the modern theory
of probability began to be developed.

Motivated by problems associated with games of chance, the theory of prob-
ability first was developed under the assumption of equal likelihood, expressed in
Theorem 2. Under this assumption one only had to count the number of “success-
ful” outcomes and divide by the total number of “possible” outcomes to arrive at
the probability of an event.

The assumption of equal likelihood fails when we attempt, for example, to find
the probability that a trifecta at the race track will pay off. Here, the different horses
have different probabilities of winning, and we are forced to rely on a different
method of evaluating probabilities. It is common to take into account the various

∗From MERRIAM-WEBSTER’S COLLEGIATE DICTIONARY, ELEVENTH EDITION. Copyright © 2012
by Merriam-Webster, Incorporated (www.Merriam-Webster.com). Reprinted with permission.
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horses’ records in previous races, calculating each horse’s probability of winning by
dividing its number of wins by the number of starts. This idea gives rise to the fre-
quency interpretation of probabilities, which interprets the probability of an event to
be the proportion of times the event has occurred in a long series of repeated exper-
iments. Application of the frequency interpretation requires a well-documented his-
tory of the outcomes of an event over a large number of experimental trials. In the
absence of such a history, a series of experiments can be planned and their results
observed. For example, the probability that a lot of manufactured items will have at
most three defectives is estimated to be 0.90 if, in 90 percent of many previous lots
produced to the same specifications by the same process, the number of defectives
was three or less.

A more recently employed method of calculating probabilities is called the sub-
jective method. Here, a personal or subjective assessment is made of the probability
of an event which is difficult or impossible to estimate in any other way. For exam-
ple, the probability that the major stock market indexes will go up in a given future
period of time cannot be estimated very well using the frequency interpretation
because economic and world conditions rarely replicate themselves very closely. As
another example, juries use this method when determining the guilt or innocence of
a defendant “beyond a reasonable doubt.” Subjective probabilities should be used
only when all other methods fail, and then only with a high level of skepticism.

An important application of probability theory relates to the theory of reliabil-
ity. The reliability of a component or system can be defined as follows.

DEFINITION 7. RELIABILITY. The reliability of a product is the probability that it
will function within specified limits for a specified period of time under specified
environmental conditions.

Thus, the reliability of a “standard equipment” automobile tire is close to 1 for 10,000
miles of operation on a passenger car traveling within the speed limits on paved
roads, but it is close to zero for even short distances at the Indianapolis “500.”

The reliability of a system of components can be calculated from the reliabil-
ities of the individual components if the system consists entirely of components
connected in series, or in parallel, or both. A series system is one in which all com-
ponents are so interrelated that the entire system will fail if any one (or more) of its
components fails. A parallel system will fail only if all its components fail. An exam-
ple of a series system is a string of Christmas lights connected electrically “in series.”
If one bulb fails, the entire string will fail to light. Parallel systems are sometimes
called “redundant” systems. For example, if the hydraulic system on a commercial
aircraft that lowers the landing wheels fails, they may be lowered manually with a
crank.

We shall assume that the components connected in a series system are indepen-
dent; that is, the performance of one part does not affect the reliability of the others.
Under this assumption, the reliability of a parallel system is given by an extension of
Definition 5. Thus, we have the following theorem.

THEOREM 14. The reliability of a series system consisting of n independent
components is given by

Rs =
n∏

i=1

Ri

where Ri is the reliability of the ith component.

Proof The proof follows immediately by iterating in Definition 5.
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Theorem 14 vividly demonstrates the effect of increased complexity on reliability.
For example, if a series system has 5 components, each with a reliability of 0.970,
the reliability of the entire system is only (0.970)5 = 0.859. If the system complexity
were increased so it now has 10 such components, the reliability would be reduced
to (0.970)10 = 0.738.

One way to improve the reliability of a series system is to introduce parallel
redundancy by replacing some or all of its components by several components con-
nected in parallel. If a system consists of n independent components connected in
parallel, it will fail to function only if all components fail. Thus, for the ith com-
ponent, the probability of failure is Fi = 1 − Ri, called the “unreliability” of the
component. Again applying Definition 5, we obtain the following theorem.

THEOREM 15. The reliability of a parallel system consisting of n indepen-
dent components is given by

Rp = 1 −
n∏

i=1

(1 − Ri)

Proof The proof of this theorem is identical to that of Theorem 14, with
(1 − Ri) replacing Ri.

EXAMPLE 29

Consider the system diagramed in Figure 11, which consists of eight components
having the reliabilities shown in the figure. Find the reliability of the system.

Solution
The parallel subsystem C, D, E can be replaced by an equivalent component, C′
having the reliability 1 − (1 − 0.70)3 = 0.973. Likewise, F, G can be replaced by F ′
having the reliability 1 − (1 − 0.75)2 = 0.9375. Thus, the system is reduced to the par-
allel system A, B, C′, F ′, H, having the reliability (0.95)(0.99)(0.973)(0.9375)(0.90) =
0.772.

BA

0.95 0.99

C

0.70

D

0.70

E

0.70

H

0.90

F

0.75

G

0.75

Figure 11. Combination of series and parallel systems.
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Applied Exercises SECS. 1–3

35. If S = {1, 2, 3, 4, 5, 6, 7, 8, 9}, A = {1, 3, 5, 7}, B =
{6, 7, 8, 9}, C = {2, 4, 8}, and D = {1, 5, 9}, list the elements
of the subsets of S corresponding to the following events:

(a) A′ ∩ B; (b) (A′ ∩ B)∩ C; (c) B′ ∪ C;
(d) (B′ ∪ C)∩ D; (e) A′ ∩ C; (f) (A′ ∩ C)∩ D.

36. An electronics firm plans to build a research labora-
tory in Southern California, and its management has to
decide between sites in Los Angeles, San Diego, Long
Beach, Pasadena, Santa Barbara, Anaheim, Santa Mon-
ica, and Westwood. If A represents the event that they
will choose a site in San Diego or Santa Barbara, B repre-
sents the event that they will choose a site in San Diego or
Long Beach, C represents the event that they will choose
a site in Santa Barbara or Anaheim, and D represents
the event that they will choose a site in Los Angeles or
Santa Barbara, list the elements of each of the following
subsets of the sample space, which consists of the eight
site selections:
(a) A′; (b) D′; (c) C ∩ D;
(d) B ∩ C; (e) B ∪ C; (f) A ∪ B;
(g) C ∪ D; (h) (B ∪ C)′; (i) B′ ∩ C′.

37. Among the eight cars that a dealer has in his show-
room, Car 1 is new and has air-conditioning, power steer-
ing, and bucket seats; Car 2 is one year old and has air-
conditioning, but neither power steering nor bucket seats;
Car 3 is two years old and has air-conditioning and power
steering, but no bucket seats; Car 4 is three years old
and has air-conditioning, but neither power steering nor
bucket seats; Car 5 is new and has no air-conditioning, no
power steering, and no bucket seats; Car 6 is one year
old and has power steering, but neither air-conditioning
nor bucket seats; Car 7 is two years old and has no air-
conditioning, no power steering, and no bucket seats; and
Car 8 is three years old, and has no air-conditioning, but
has power steering as well as bucket seats. If a customer
buys one of these cars and the event that he chooses a
new car, for example, is represented by the set {Car 1,
Car 5}, indicate similarly the sets that represent the
events that
(a) he chooses a car without air-conditioning;
(b) he chooses a car without power steering;
(c) he chooses a car with bucket seats;
(d) he chooses a car that is either two or three years old.

38. With reference to Exercise 37, state in words what
kind of car the customer will choose, if his choice is
given by
(a) the complement of the set of part (a);
(b) the union of the sets of parts (b) and (c);

(c) the intersection of the sets of parts (c) and (d);
(d) the intersection of parts (b) and (c) of this exercise.

39. If Ms. Brown buys one of the houses advertised for
sale in a Seattle newspaper (on a given Sunday), T is the
event that the house has three or more baths, U is the
event that it has a fireplace, V is the event that it costs
more than $200,000, and W is the event that it is new,
describe (in words) each of the following events:

(a) T ′; (b) U′; (c) V′;
(d) W′; (e) T ∩ U; (f) T ∩ V;
(g) U′ ∩ V; (h) V ∪ W; (i) V′ ∪ W;
(j) T ∪ U; (k) T ∪ V; (l) V ∩ W.

40. A resort hotel has two station wagons, which it uses
to shuttle its guests to and from the airport. If the larger
of the two station wagons can carry five passengers and
the smaller can carry four passengers, the point (0, 3)
represents the event that at a given moment the larger
station wagon is empty while the smaller one has three
passengers, the point (4, 2) represents the event that at
the given moment the larger station wagon has four pas-
sengers while the smaller one has two passengers, . . . ,
draw a figure showing the 30 points of the corresponding
sample space. Also, if E stands for the event that at least
one of the station wagons is empty, F stands for the event
that together they carry two, four, or six passengers, and
G stands for the event that each carries the same num-
ber of passengers, list the points of the sample space that
correspond to each of the following events:

(a) E; (b) F; (c) G;
(d) E ∪ F; (e) E ∩ F; (f) F ∪ G;
(g) E ∪ F ′; (h) E ∩ G′; (i) F ′ ∩ E′.

41. A coin is tossed once. Then, if it comes up heads, a
die is thrown once; if the coin comes up tails, it is tossed
twice more. Using the notation in which (H, 2), for exam-
ple, denotes the event that the coin comes up heads and
then the die comes up 2, and (T, T, T) denotes the event
that the coin comes up tails three times in a row, list
(a) the 10 elements of the sample space S;
(b) the elements of S corresponding to event A that
exactly one head occurs;
(c) the elements of S corresponding to event B that at
least two tails occur or a number greater than 4 occurs.

42. An electronic game contains three components
arranged in the series–parallel circuit shown in Figure 12.
At any given time, each component may or may not be
operative, and the game will operate only if there is a
continuous circuit from P to Q. Let A be the event
that the game will operate; let B be the event that
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P Q

y

x

z

Figure 12. Diagram for Exercise 42.

the game will operate though component x is not oper-
ative; and let C be the event that the game will operate
though component y is not operative. Using the notation
in which (0, 0, 1), for example, denotes that component z
is operative but components x and y are not,
(a) list the elements of the sample space S and also the
elements of S corresponding to events A, B, and C;
(b) determine which pairs of events, A and B, A and C, or
B and C, are mutually exclusive.

43. An experiment consists of rolling a die until a 3
appears. Describe the sample space and determine
(a) how many elements of the sample space correspond
to the event that the 3 appears on the kth roll of the die;
(b) how many elements of the sample space correspond
to the event that the 3 appears not later than the kth roll
of the die.

44. Express symbolically the sample space S that consists
of all the points (x, y) on or in the circle of radius 3 cen-
tered at the point (2, −3).

45. If S = {x|0 < x < 10}, M = {x|3 < x F 8}, and N =
{x|5 < x < 10}, find
(a) M ∪ N; (b) M ∩ N;
(c) M ∩ N′; (d) M′ ∪ N.

46. In Figure 13, L is the event that a driver has liability
insurance and C is the event that she has collision insur-
ance. Express in words what events are represented by
regions 1, 2, 3, and 4.

2 1 3

4

L C

Figure 13. Venn diagram for Exercise 46.

47. With reference to Exercise 46 and Figure 13, what
events are represented by
(a) regions 1 and 2 together;
(b) regions 2 and 4 together;

(c) regions 1, 2, and 3 together;
(d) regions 2, 3, and 4 together?

48. In Figure 14, E, T, and N are the events that a car
brought to a garage needs an engine overhaul, transmis-
sion repairs, or new tires. Express in words the events
represented by
(a) region 1;
(b) region 3;
(c) region 7;
(d) regions 1 and 4 together;
(e) regions 2 and 5 together;
(f) regions 3, 5, 6, and 8 together.

7 2

1

6 8

5

4 3

E T

N

Figure 14. Venn diagram for Exercise 48.

49. With reference to Exercise 48 and Figure 14, list the
region or combinations of regions representing the events
that a car brought to the garage needs
(a) transmission repairs, but neither an engine overhaul
nor new tires;
(b) an engine overhaul and transmission repairs;
(c) transmission repairs or new tires, but not an
engine overhaul;
(d) new tires.

50. A market research organization claims that, among
500 shoppers interviewed, 308 regularly buy Product X,
266 regularly buy Product Y, 103 regularly buy both, and
59 buy neither on a regular basis. Using a Venn diagram
and filling in the number of shoppers associated with the
various regions, check whether the results of this study
should be questioned.

51. In a group of 200 college students, 138 are enrolled
in a course in psychology, 115 are enrolled in a course in
sociology, and 91 are enrolled in both. How many of these
students are not enrolled in either course? (Hint: Draw a
suitable Venn diagram and fill in the numbers associated
with the various regions.)

52. Among 120 visitors to Disneyland, 74 stayed for at
least 3 hours, 86 spent at least $20, 64 went on the Mat-
terhorn ride, 60 stayed for at least 3 hours and spent at
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least $20, 52 stayed for at least 3 hours and went on the
Matterhorn ride, 54 spent at least $20 and went on the
Matterhorn ride, and 48 stayed for at least 3 hours, spent
at least $20, and went on the Matterhorn ride. Drawing a
Venn diagram with three circles (like that of Figure 4) and
filling in the numbers associated with the various regions,
find how many of the 120 visitors to Disneyland
(a) stayed for at least 3 hours, spent at least $20, but did
not go on the Matterhorn ride;
(b) went on the Matterhorn ride, but stayed less than 3
hours and spent less than $20;
(c) stayed less than 3 hours, spent at least $20, but did not
go on the Matterhorn ride.

SECS. 4–5
53. An experiment has five possible outcomes, A, B, C, D,
and E, that are mutually exclusive. Check whether the fol-
lowing assignments of probabilities are permissible and
explain your answers:
(a) P(A) = 0.20, P(B) = 0.20, P(C) = 0.20, P(D) = 0.20,
and P(E) = 0.20;
(b) P(A) = 0.21, P(B) = 0.26, P(C) = 0.58, P(D) = 0.01,
and P(E) = 0.06;
(c) P(A) = 0.18, P(B) = 0.19, P(C) = 0.20, P(D) = 0.21,
and P(E) = 0.22;
(d) P(A) = 0.10, P(B) = 0.30, P(C) = 0.10, P(D) = 0.60,
and P(E) = −0.10;
(e) P(A) = 0.23, P(B) = 0.12, P(C) = 0.05, P(D) = 0.50,
and P(E) = 0.08.

54. If A and B are mutually exclusive, P(A) = 0.37, and
P(B) = 0.44, find
(a) P(A′); (b) P(B′); (c) P(A ∪ B);
(d) P(A ∩ B); (e) P(A ∩ B′); (f) P(A′ ∩ B′).

55. Explain why there must be a mistake in each of the
following statements:
(a) The probability that Jean will pass the bar examina-
tion is 0.66 and the probability that she will not pass is
−0.34.
(b) The probability that the home team will win an
upcoming football game is 0.77, the probability that it will
tie the game is 0.08, and the probability that it will win or
tie the game is 0.95.
(c) The probabilities that a secretary will make 0, 1, 2, 3, 4,
or 5 or more mistakes in typing a report are, respectively,
0.12, 0.25, 0.36, 0.14, 0.09, and 0.07.
(d) The probabilities that a bank will get 0, 1, 2, or 3 or
more bad checks on any given day are, respectively, 0.08,
0.21, 0.29, and 0.40.

56. The probabilities that the serviceability of a new
X-ray machine will be rated very difficult, difficult, aver-
age, easy, or very easy are, respectively, 0.12, 0.17, 0.34,
0.29, and 0.08. Find the probabilities that the serviceabil-
ity of the machine will be rated

(a) difficult or very difficult;
(b) neither very difficult nor very easy;
(c) average or worse;
(d) average or better.

57. Suppose that each of the 30 points of the sample space
of Exercise 40 is assigned the probability 1

30 . Find the
probabilities that at a given moment
(a) at least one of the station wagons is empty;
(b) each of the two station wagons carries the same num-
ber of passengers;
(c) the larger station wagon carries more passengers than
the smaller station wagon;
(d) together they carry at least six passengers.

58. A hat contains 20 white slips of paper numbered from
1 through 20, 10 red slips of paper numbered from 1
through 10, 40 yellow slips of paper numbered from 1
through 40, and 10 blue slips of paper numbered from 1
through 10. If these 80 slips of paper are thoroughly shuf-
fled so that each slip has the same probability of being
drawn, find the probabilities of drawing a slip of paper
that is
(a) blue or white;
(b) numbered 1, 2, 3, 4, or 5;
(c) red or yellow and also numbered 1, 2, 3, or 4;
(d) numbered 5, 15, 25, or 35;
(e) white and numbered higher than 12 or yellow and
numbered higher than 26.

59. A police department needs new tires for its patrol
cars and the probabilities are 0.15, 0.24, 0.03, 0.28, 0.22,
and 0.08, respectively, that it will buy Uniroyal tires,
Goodyear tires, Michelin tires, General tires, Goodrich
tires, or Armstrong tires. Find the probabilities that it
will buy
(a) Goodyear or Goodrich tires;
(b) Uniroyal, Michelin, or Goodrich tires;
(c) Michelin or Armstrong tires;
(d) Uniroyal, Michelin, General, or Goodrich tires.

60. Two cards are randomly drawn from a deck of 52
playing cards. Find the probability that both cards will be
greater than 3 and less than 8.

61. Four candidates are seeking a vacancy on a school
board. If A is twice as likely to be elected as B, and B
and C are given about the same chance of being elected,
while C is twice as likely to be elected as D, what are the
probabilities that
(a) C will win;
(b) A will not win?

62. In a poker game, five cards are dealt at random from
an ordinary deck of 52 playing cards. Find the probabili-
ties of getting
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(a) two pairs (any two distinct face values occurring
exactly twice);
(b) four of a kind (four cards of equal face value).

63. In a game of Yahtzee, five balanced dice are rolled
simultaneously. Find the probabilities of getting
(a) two pairs;
(b) three of a kind;
(c) a full house (three of a kind and a pair);
(d) four of a kind.

64. Explain on the basis of the various rules of
Exercises 5 through 9 why there is a mistake in each of
the following statements:
(a) The probability that it will rain is 0.67, and the proba-
bility that it will rain or snow is 0.55.
(b) The probability that a student will get a passing grade
in English is 0.82, and the probability that she will get a
passing grade in English and French is 0.86.
(c) The probability that a person visiting the San Diego
Zoo will see the giraffes is 0.72, the probability that he
will see the bears is 0.84, and the probability that he will
see both is 0.52.

65. Among the 78 doctors on the staff of a hospital, 64
carry malpractice insurance, 36 are surgeons, and 34 of
the surgeons carry malpractice insurance. If one of these
doctors is chosen by lot to represent the hospital staff at
an A.M.A. convention (that is, each doctor has a proba-
bility of 1

78 of being selected), what is the probability that
the one chosen is not a surgeon and does not carry mal-
practice insurance?

66. A line segment of length l is divided by a point
selected at random within the segment. What is the prob-
ability that it will divide the line segment in a ratio greater
than 1:2? What is the probability that it will divide the
segment exactly in half?

67. A right triangle has the legs 3 and 4 units, respectively.
Find the probability that a line segment, drawn at random
parallel to the hypotenuse and contained entirely in the
triangle, will divide the triangle so that the area between
the line and the vertex opposite the hypotenuse will equal
at least half the area of the triangle.

68. For married couples living in a certain suburb, the
probability that the husband will vote in a school board
election is 0.21, the probability that the wife will vote in
the election is 0.28, and the probability that they will both
vote is 0.15. What is the probability that at least one of
them will vote?

69. Given P(A) = 0.59, P(B) = 0.30, and P(A ∩ B) =
0.21, find
(a) P(A ∪ B); (b) P(A ∩ B′);
(c) P(A′ ∪ B′); (d) P(A′ ∩ B′).

70. At Roanoke College it is known that 1
3 of the stu-

dents live off campus. It is also known that 5
9 of the stu-

dents are from within the state of Virginia and that 3
4

of the students are from out of state or live on campus.
What is the probability that a student selected at ran-
dom from Roanoke College is from out of state and lives
on campus?

71. A biology professor has two graduate assistants help-
ing her with her research. The probability that the older
of the two assistants will be absent on any given day is
0.08, the probability that the younger of the two will be
absent on any given day is 0.05, and the probability that
they will both be absent on any given day is 0.02. Find the
probabilities that
(a) either or both of the graduate assistants will be absent
on any given day;
(b) at least one of the two graduate assistants will not be
absent on any given day;
(c) only one of the two graduate assistants will be absent
on any given day.

72. Suppose that if a person visits Disneyland, the prob-
ability that he will go on the Jungle Cruise is 0.74, the
probability that he will ride the Monorail is 0.70, the prob-
ability that he will go on the Matterhorn ride is 0.62, the
probability that he will go on the Jungle Cruise and ride
the Monorail is 0.52, the probability that he will go on the
Jungle Cruise as well as the Matterhorn ride is 0.46, the
probability that he will ride the Monorail and go on the
Matterhorn ride is 0.44, and the probability that he will
go on all three of these rides is 0.34. What is the proba-
bility that a person visiting Disneyland will go on at least
one of these three rides?

73. Suppose that if a person travels to Europe for the
first time, the probability that he will see London is 0.70,
the probability that he will see Paris is 0.64, the proba-
bility that he will see Rome is 0.58, the probability that
he will see Amsterdam is 0.58, the probability that he
will see London and Paris is 0.45, the probability that he
will see London and Rome is 0.42, the probability that
he will see London and Amsterdam is 0.41, the probabil-
ity that he will see Paris and Rome is 0.35, the probability
that he will see Paris and Amsterdam is 0.39, the proba-
bility that he will see Rome and Amsterdam is 0.32, the
probability that he will see London, Paris, and Rome is
0.23, the probability that he will see London, Paris, and
Amsterdam is 0.26, the probability that he will see Lon-
don, Rome, and Amsterdam is 0.21, the probability that
he will see Paris, Rome, and Amsterdam is 0.20, and the
probability that he will see all four of these cities is 0.12.
What is the probability that a person traveling to Europe
for the first time will see at least one of these four cities?
(Hint: Use the formula of Exercise 13.)
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74. Use the formula of Exercise 15 to convert each of the
following odds to probabilities:
(a) If three eggs are randomly chosen from a carton of 12
eggs of which 3 are cracked, the odds are 34 to 21 that at
least one of them will be cracked.
(b) If a person has eight $1 bills, five $5 bills, and one $20
bill, and randomly selects three of them, the odds are 11
to 2 that they will not all be $1 bills.
(c) If we arbitrarily arrange the letters in the word “nest,”
the odds are 5 to 1 that we will not get a meaningful word
in the English language.

75. Use the definition of “odds” given in Exercise 15 to
convert each of the following probabilities to odds:
(a) The probability that the last digit of a car’s license
plate is a 2, 3, 4, 5, 6, or 7 is 6

10 .
(b) The probability of getting at least two heads in four
flips of a balanced coin is 11

16 .
(c) The probability of rolling “7 or 11” with a pair of bal-
anced dice is 2

9 .

SECS. 6–8
76. There are 90 applicants for a job with the news depart-
ment of a television station. Some of them are college
graduates and some are not; some of them have at least
three years’ experience and some have not, with the exact
breakdown being

College
graduates

Not
college
graduates

At least three years’ experience 18 9

Less than three years’ experience 36 27

If the order in which the applicants are interviewed by
the station manager is random, G is the event that the
first applicant interviewed is a college graduate, and T is
the event that the first applicant interviewed has at least
three years’ experience, determine each of the following
probabilities directly from the entries and the row and
column totals of the table:
(a) P(G); (b) P(T ′); (c) P(G ∩ T);
(d) P(G′ ∩ T ′); (e) P(T|G); (f) P(G′|T ′).

77. Use the results of Exercise 76 to verify that

(a) P(T|G) = P(G∩T)
P(G)

;

(b) P(G′|T ′) = P(G′∩T′)
P(T′) .

78. With reference to Exercise 65, what is the probability
that the doctor chosen to represent the hospital staff at
the convention carries malpractice insurance given that
he or she is a surgeon?

79. With reference to Exercise 68, what is the probability
that a husband will vote in the election given that his wife
is going to vote?

80. With reference to Exercise 70, what is the probability
that one of the students will be living on campus given
that he or she is from out of state?

81. A bin contains 100 balls, of which 25 are red, 40 are
white, and 35 are black. If two balls are selected from the
bin without replacement, what is the probability that one
will be red and one will be white?

82. If subjective probabilities are determined by the
method suggested in Exercise 16, the third postulate of
probability may not be satisfied. However, proponents
of the subjective probability concept usually impose this
postulate as a consistency criterion; in other words, they
regard subjective probabilities that do not satisfy the pos-
tulate as inconsistent.
(a) A high school principal feels that the odds are 7 to 5
against her getting a $1,000 raise and 11 to 1 against her
getting a $2,000 raise. Furthermore, she feels that it is an
even-money bet that she will get one of these raises or
the other. Discuss the consistency of the corresponding
subjective probabilities.
(b) Asked about his political future, a party official
replies that the odds are 2 to 1 that he will not run for
the House of Representatives and 4 to 1 that he will not
run for the Senate. Furthermore, he feels that the odds
are 7 to 5 that he will run for one or the other. Are the
corresponding probabilities consistent?

83. If we let x = the number of spots facing up when a
pair of dice is cast, then we can use the sample space S2 of
Example 2 to describe the outcomes of the experiment.
(a) Find the probability of each outcome in S2.
(b) Verify that the sum of these probabilities is 1.

84. There are two Porsches in a road race in Italy, and a
reporter feels that the odds against their winning are 3
to 1 and 5 to 3. To be consistent (see Exercise 82), what
odds should the reporter assign to the event that either
car will win?

85. Using a computer program that can generate random
integers on the interval (0, 9) with equal probabilities,
generate 1,000 such integers and use the frequency inter-
pretation to estimate the probability that such a randomly
chosen integer will have a value less than 1.

86. Using the method of Exercise 85, generate a second
set of 1,000 random integers on (0, 9). Estimate the prob-
ability that A: an integer selected at random from the first
set will be less than 1 or B: an integer selected at random
from the second set will be less than 1
(a) using the frequency interpretation of probabilities;
(b) using Theorem 7 and P(A ∩ B) = 1

81 .
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87. It is felt that the probabilities are 0.20, 0.40, 0.30,
and 0.10 that the basketball teams of four universities,
T, U, V, and W, will win their conference championship.
If university U is placed on probation and declared
ineligible for the championship, what is the probabil-
ity that university T will win the conference champi-
onship?

88. With reference to Exercise 72, find the probabilities
that a person who visits Disneyland will
(a) ride the Monorail given that he will go on the Jun-
gle Cruise;
(b) go on the Matterhorn ride given that he will go on the
Jungle Cruise and ride the Monorail;
(c) not go on the Jungle Cruise given that he will ride the
Monorail and/or go on the Matterhorn ride;
(d) go on the Matterhorn ride and the Jungle Cruise given
that he will not ride the Monorail.

(Hint: Draw a Venn diagram and fill in the probabilities
associated with the various regions.)

89. Crates of eggs are inspected for blood clots by ran-
domly removing three eggs in succession and examining
their contents. If all three eggs are good, the crate is
shipped; otherwise it is rejected. What is the probability
that a crate will be shipped if it contains 120 eggs, of which
10 have blood clots?

90. The probability of surviving a certain transplant oper-
ation is 0.55. If a patient survives the operation, the prob-
ability that his or her body will reject the transplant within
a month is 0.20. What is the probability of surviving both
of these critical stages?

91. Suppose that in Vancouver, B.C., the probability that
a rainy fall day is followed by a rainy day is 0.80 and the
probability that a sunny fall day is followed by a rainy
day is 0.60. Find the probabilities that a rainy fall day is
followed by
(a) a rainy day, a sunny day, and another rainy day;
(b) two sunny days and then a rainy day;
(c) two rainy days and then two sunny days;
(d) rain two days later.

[Hint: In part (c) use the formula of Exercise 19.]

92. Use the formula of Exercise 19 to find the probability
of randomly choosing (without replacement) four healthy
guinea pigs from a cage containing 20 guinea pigs, of
which 15 are healthy and 5 are diseased.

93. A sharpshooter hits a target with probability 0.75.
Assuming independence, find the probabilities of getting
(a) a hit followed by two misses;
(b) two hits and a miss in any order.

94. A balanced die is tossed twice. If A is the event that
an even number comes up on the first toss, B is the event
that an even number comes up on the second toss, and C
is the event that both tosses result in the same number,
are the events A, B, and C
(a) pairwise independent;
(b) independent?

95. A shipment of 1,000 parts contains 1 percent defective
parts. Find the probability that
(a) the first four parts chosen arbitrarily for inspection are
nondefective;
(b) the first defective part found will be on the fourth
inspection.

96. A coin is loaded so that the probabilities of heads and
tails are 0.52 and 0.48, respectively. If the coin is tossed
three times, what are the probabilities of getting
(a) all heads;
(b) two tails and a head in that order?

97. If 5 of a company’s 10 delivery trucks do not meet
emission standards and 3 of them are chosen for inspec-
tion, what is the probability that none of the trucks cho-
sen will meet emission standards?

98. Medical records show that one out of 10 persons in
a certain town has a thyroid deficiency. If 12 persons in
this town are randomly chosen and tested, what is the
probability that at least one of them will have a thy-
roid deficiency?

99. If a person randomly picks 4 of the 15 gold coins a
dealer has in stock, and 6 of the coins are counterfeits,
what is the probability that the coins picked will all be
counterfeits?

100. A department store that bills its charge-account cus-
tomers once a month has found that if a customer pays
promptly one month, the probability is 0.90 that he or
she will also pay promptly the next month; however, if
a customer does not pay promptly one month, the prob-
ability that he or she will pay promptly the next month is
only 0.40. (Assume that the probability of paying or not
paying on any given month depends only on the outcome
of the previous month.)
(a) What is the probability that a customer who pays
promptly one month will also pay promptly the next
three months?
(b) What is the probability that a customer who does not
pay promptly one month will also not pay promptly the
next two months and then make a prompt payment the
month after that?

101. With reference to Figure 15, verify that events A, B,
C, and D are independent. Note that the region repre-
senting A consists of two circles, and so do the regions
representing B and C.
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Figure 15. Diagram for Exercise 101.

102. At an electronics plant, it is known from past expe-
rience that the probability is 0.84 that a new worker who
has attended the company’s training program will meet
the production quota, and that the corresponding prob-
ability is 0.49 for a new worker who has not attended
the company’s training program. If 70 percent of all new
workers attend the training program, what is the proba-
bility that a new worker will meet the production quota?

103. It is known from experience that in a certain indus-
try 60 percent of all labor–management disputes are over
wages, 15 percent are over working conditions, and 25
percent are over fringe issues. Also, 45 percent of the
disputes over wages are resolved without strikes, 70 per-
cent of the disputes over working conditions are resolved
without strikes, and 40 percent of the disputes over fringe
issues are resolved without strikes. What is the probabil-
ity that a labor–management dispute in this industry will
be resolved without a strike?

104. In a T-maze, a rat is given food if it turns left and an
electric shock if it turns right. On the first trial there is
a 50–50 chance that a rat will turn either way; then, if it
receives food on the first trial, the probability is 0.68 that
it will turn left on the next trial, and if it receives a shock
on the first trial, the probability is 0.84 that it will turn left
on the next trial. What is the probability that a rat will
turn left on the second trial?

105. With reference to Exercise 103, what is the probabil-
ity that if a labor–management dispute in this industry is
resolved without a strike, it was over wages?

106. The probability that a one-car accident is due to
faulty brakes is 0.04, the probability that a one-car acci-
dent is correctly attributed to faulty brakes is 0.82, and

the probability that a one-car accident is incorrectly
attributed to faulty brakes is 0.03. What is the probabil-
ity that
(a) a one-car accident will be attributed to faulty brakes;
(b) a one-car accident attributed to faulty brakes was
actually due to faulty brakes?

107. With reference to Example 25, suppose that we dis-
cover later that the job was completed on time. What is
the probability that there had been a strike?

108. In a certain community, 8 percent of all adults over
50 have diabetes. If a health service in this community
correctly diagnoses 95 percent of all persons with dia-
betes as having the disease and incorrectly diagnoses 2
percent of all persons without diabetes as having the dis-
ease, find the probabilities that
(a) the community health service will diagnose an adult
over 50 as having diabetes;
(b) a person over 50 diagnosed by the health service as
having diabetes actually has the disease.

109. An explosion at a construction site could have
occurred as the result of static electricity, malfunctioning
of equipment, carelessness, or sabotage. Interviews with
construction engineers analyzing the risks involved led
to the estimates that such an explosion would occur with
probability 0.25 as a result of static electricity, 0.20 as a
result of malfunctioning of equipment, 0.40 as a result of
carelessness, and 0.75 as a result of sabotage. It is also
felt that the prior probabilities of the four causes of the
explosion are 0.20, 0.40, 0.25, and 0.15. Based on all this
information, what is
(a) the most likely cause of the explosion;
(b) the least likely cause of the explosion?
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110. A mail-order house employs three stock clerks, U,
V, and W, who pull items from shelves and assemble
them for subsequent verification and packaging. U makes
a mistake in an order (gets a wrong item or the wrong
quantity) one time in a hundred, V makes a mistake in
an order five times in a hundred, and W makes a mistake
in an order three times in a hundred. If U, V, and W fill,
respectively, 30, 40, and 30 percent of all orders, what are
the probabilities that
(a) a mistake will be made in an order;
(b) if a mistake is made in an order, the order was filled
by U;
(c) if a mistake is made in an order, the order was filled
by V?

111. An art dealer receives a shipment of five old paint-
ings from abroad, and, on the basis of past experience,
she feels that the probabilities are, respectively, 0.76, 0.09,
0.02, 0.01, 0.02, and 0.10 that 0, 1, 2, 3, 4, or all 5 of them
are forgeries. Since the cost of authentication is fairly
high, she decides to select one of the five paintings at ran-
dom and send it away for authentication. If it turns out
that this painting is a forgery, what probability should she
now assign to the possibility that all the other paintings
are also forgeries?

112. To get answers to sensitive questions, we sometimes
use a method called the randomized response technique.
Suppose, for instance, that we want to determine what
percentage of the students at a large university smoke
marijuana. We construct 20 flash cards, write “I smoke
marijuana at least once a week” on 12 of the cards, where
12 is an arbitrary choice, and “I do not smoke marijuana
at least once a week” on the others. Then, we let each stu-
dent (in the sample interviewed) select one of the 20 cards
at random and respond “yes” or “no” without divulging
the question.
(a) Establish a relationship between P(Y), the probabil-
ity that a student will give a “yes” response, and P(M),
the probability that a student randomly selected at that
university smokes marijuana at least once a week.

(b) If 106 of 250 students answered “yes” under these
conditions, use the result of part (a) and 106

250 as an esti-
mate of P(Y) to estimate P(M).

SEC. 9
113. A series system consists of three components, each
having the reliability 0.95, and three components, each
having the reliability 0.99. Find the reliability of the
system.

114. Find the reliability of a series systems having five
components with reliabilities 0.995, 0.990, 0.992, 0.995,
and 0.998, respectively.

115. What must be the reliability of each component in a
series system consisting of six components that must have
a system reliability of 0.95?

116. Referring to Exercise 115, suppose now that there
are 10 components, and the system reliability must be
0.90.

117. Suppose a system consists of four components, con-
nected in parallel, having the reliabilities 0.8, 0.7, 0.7, and
0.65, respectively. Find the system reliability.

118. Referring to Exercise 117, suppose now that the sys-
tem has five components with reliabilities 0.85, 0.80, 0.65,
0.60, and 0.70, respectively. Find the system reliability.

119. A system consists of two components having the reli-
abilities 0.95 and 0.90, connected in series to two parallel
subsystems, the first containing four components, each
having the reliability 0.60, and the second containing two
components, each having the reliability 0.75. Find the sys-
tem reliability.

120. A series system consists of two components having
the reliabilities 0.98 and 0.99, respectively, connected to a
parallel subsystem containing five components having the
reliabilities 0.75, 0.60, 0.65, 0.70, and 0.60, respectively.
Find the system reliability.
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Answers to Odd-Numbered Exercises

35 (a) {6, 8, 9}; (b) {8}; (c) {1, 2, 3, 4, 5, 8}; (d) {1, 5};
(e) {2, 4, 8}; (f) Ø.
37 (a) {Car 5, Car 6, Car 7, Car 8};
(b) {Car 2, Car 4, Car 5, Car 7}; (c) {Car 1, Car 8};
(d) {Car 3, Car 4, Car 7, Car 8}.
39 (a) The house has fewer than three baths. (b) The house
does not have a fireplace. (c) The house does not cost more
than $200,000. (d) The house is not new. (e) The house has
three or more baths and a fireplace. (f) The house has three
or more baths and costs more than $200,000. (g) The house
costs more than $200,000 but has no fireplace. (h) The house
is new or costs more than $200,000. (i) The house is new or
costs at most $200,000. (j) The house has three or more baths
and/or a fireplace. (k) The house has three or more baths
and/or costs more than $200,000. (l) The house is new and
costs more than $200,000.
41 (a) (H,1), (H,2), (H,3), (H,4), (H,5), (H,6), (T,H,H),
(T,H,T), (T,T,H), and (T,T,T); (b) (H,1), (H,2), (H,3),
(H,4), (H,5), (H,6), (T,H,T), and (T,T,H); (c) (H,5), (H,6),
(T,H,T), (T,T,H), and (T,T,T).

43 (a) 5k−1; (b)
5k − 1

4
.

45 (a) (x|3 < x < 10); (b) (x|15 < x ≤ 8); (c) (x|3 < x ≤ 5); (d)
(x|0 < x ≤ 3) or (5 < x < 10).
47 (a) The event that a driver has liability insurance. (b) The
event that a driver does not have collision insurance. (c) The
event that a driver has liability insurance or collision insur-
ance, but not both. (d) The event that a driver does not have
both kinds of insurance.
49 (a) Region 5; (b) regions 1 and 2 together; (c) regions
3, 5, and 6 together; (d) regions 1, 3, 4, and 6 together.
51 38.
53 (a) Permissible; (b) not permissible because the sum
of the probabilities exceeds 1; (c) permissible; (d) not
permissible because P(E) is negative; (e) not permissible
because the sum of the probabilities is less than 1.
55 (a) The probability that she cannot pass cannot be neg-
ative. (b) 0.77 + 0.08 = 0.85 Z 0.95; (c) 0.12 + 0.25 + 0.36 +
0.14 + 0.09 + 0.07=1.03 > 1; (d) 0.08 + 0.21 + 0.29 + 0.40=
0.98 < 1.

57 (a) 1
3 ; (b) 1

6 ; (c) 1
2 ; (d) 1

3 .
59 (a) 0.46; (b) 0.40; (c) 0.11 (d) 0.68.

61 (a) 2
9 ; (b) 5

9 .

63 (a) 25
108 ; (b) 25

162 ; (c) 25
648 ; (d) 25

1296 .

65 2
13 .

67 1 −
√

2
2 .

69 (a) 0.68; (b) 0.38; (c) 0.79; (d) 0.32.
71 (a) 0.11; (b) 0.98; (c) 0.09.
73 0.94.
75 (a) 3 to 2; (b) 11 to 5; (c) 7 to 2 against it.

77 (a) 1
3 ; (b) 3

7 .

79 15
28 .

81 (a) 0.2; (b) 20
99 .

83
Outcome 2 3 4 5 6 7 8 9 10 11 12

Probability 1
36

1
18

1
12

1
9

5
36

1
6

5
36

1
9

1
12

1
18

1
36

87 1
3 .

89 0.7685.
91 (a) 0.096; (b) 0.048; (c) 0.0512; (d) 0.76.
93 (a) 3

64 ; (b) 27
64 .

95 (a) Required probability = 0.9606; exact probability =
0.9605; (b) required probability = 0.0097 (assuming inde-
pendence); exact probability = 0.0097.

97 1
12 .

99 1
91 .

103 0.475.
105 0.5684.
107 0.3818.
109 (a) Most likely cause is sabotage (P = 0.3285);
(b) least likely cause is static electricity (P = 0.1460).
111 0.6757.
113 0.832.
115 0.991.
117 0.9937.
119 0.781.
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1 Random Variables
In most applied problems involving probabilities we are interested only in a partic-
ular aspect (or in two or a few particular aspects) of the outcomes of experiments.
For instance, when we roll a pair of dice we are usually interested only in the total,
and not in the outcome for each die; when we interview a randomly chosen married
couple we may be interested in the size of their family and in their joint income, but
not in the number of years they have been married or their total assets; and when we
sample mass-produced light bulbs we may be interested in their durability or their
brightness, but not in their price.

In each of these examples we are interested in numbers that are associated with
the outcomes of chance experiments, that is, in the values taken on by random vari-
ables. In the language of probability and statistics, the total we roll with a pair of dice
is a random variable, the size of the family of a randomly chosen married couple and
their joint income are random variables, and so are the durability and the brightness
of a light bulb randomly picked for inspection.

To be more explicit, consider Figure 1, which pictures the sample space for an
experiment in which we roll a pair of dice, and let us assume that each of the 36
possible outcomes has the probability 1

36 . Note, however, that in Figure 1 we have
attached a number to each point: For instance, we attached the number 2 to the point
(1, 1), the number 6 to the point (1, 5), the number 8 to the point (6, 2), the number
11 to the point (5, 6), and so forth. Evidently, we associated with each point the value
of a random variable, that is, the corresponding total rolled with the pair of dice.

Since “associating a number with each point (element) of a sample space” is
merely another way of saying that we are “defining a function over the points of a
sample space,” let us now make the following definition.

From Chapter 3 of John E. Freund’s Mathematical Statistics with Applications,
Eighth Edition. Irwin Miller, Marylees Miller. Copyright © 2014 by Pearson Education, Inc.
All rights reserved.
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1
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Red die

Green
die

Figure 1. The total number of points rolled with a pair of dice.

DEFINITION 1. RANDOM VARIABLE. If S is a sample space with a probability measure
and X is a real-valued function defined over the elements of S, then X is called a
random variable.†

In this chapter we shall denote random variables by capital letters and their values
by the corresponding lowercase letters; for instance, we shall write x to denote a
value of the random variable X.

With reference to the preceding example and Figure 1, observe that the random
variable X takes on the value 9, and we write X = 9 for the subset

{(6, 3), (5, 4), (4, 5), (3, 6)}

of the sample space S. Thus, X = 9 is to be interpreted as the set of elements of S
for which the total is 9 and, more generally, X = x is to be interpreted as the set of
elements of the sample space for which the random variable X takes on the value x.
This may seem confusing, but it reminds one of mathematicians who say “f (x) is a
function of x” instead of “f (x) is the value of a function at x.”

EXAMPLE 1

Two socks are selected at random and removed in succession from a drawer contain-
ing five brown socks and three green socks. List the elements of the sample space, the
corresponding probabilities, and the corresponding values w of the random variable
W, where W is the number of brown socks selected.

†Instead of “random variable,” the terms “chance variable,” “stochastic variable,” and “variate” are also used in
some books.

62



Probability Distributions and Probability Densities

Solution
If B and G stand for brown and green, the probabilities for BB, BG, GB, and GG
are, respectively, 5

8 · 4
7 = 5

14 , 5
8 · 3

7 = 15
56 , 3

8 · 5
7 = 15

56 , and 3
8 · 2

7 = 3
28 , and the results are

shown in the following table:

Element of
sample space Probability w

BB
5

14
2

BG
15
56

1

GB
15
56

1

GG
3

28
0

Also, we can write P(W = 2) = 5
14 , for example, for the probability of the event that

the random variable W will take on the value 2.

EXAMPLE 2

A balanced coin is tossed four times. List the elements of the sample space that are
presumed to be equally likely, as this is what we mean by a coin being balanced, and
the corresponding values x of the random variable X, the total number of heads.

Solution
If H and T stand for heads and tails, the results are as shown in the following table:

Element of
sample space Probability x

HHHH
1

16
4

HHHT
1

16
3

HHTH
1

16
3

HTHH
1

16
3

THHH
1

16
3

HHTT
1

16
2

HTHT
1

16
2
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Element of
sample space Probability x

HTTH
1

16
2

THHT
1

16
2

THTH
1

16
2

TTHH
1

16
2

HTTT
1

16
1

THTT
1

16
1

TTHT
1

16
1

TTTH
1

16
1

TTTT
1

16
0

Thus, we can write P(X = 3) = 4
16 , for example, for the probability of the event that

the random variable X will take on the value 3.

The fact that Definition 1 is limited to real-valued functions does not impose any
restrictions. If the numbers we want to assign to the outcomes of an experiment are
complex numbers, we can always look upon the real and the imaginary parts sepa-
rately as values taken on by two random variables. Also, if we want to describe the
outcomes of an experiment quantitatively, say, by giving the color of a person’s hair,
we can arbitrarily make the descriptions real-valued by coding the various colors,
perhaps by representing them with the numbers 1, 2, 3, and so on.

In all of the examples of this section we have limited our discussion to discrete
sample spaces, and hence to discrete random variables, namely, random variables
whose range is finite or countably infinite. Continuous random variables defined
over continuous sample spaces will be taken up in Section 3.

2 Probability Distributions
As we already saw in Examples 1 and 2, the probability measure defined over a dis-
crete sample space automatically provides the probabilities that a random variable
will take on any given value within its range.

For instance, having assigned the probability 1
36 to each element of the sam-

ple space of Figure 1, we immediately find that the random variable X, the total
rolled with the pair of dice, takes on the value 9 with probability 4

36 ; as described in
Section 1, X = 9 contains four of the equally likely elements of the sample space.
The probabilities associated with all possible values of X are shown in the follow-
ing table:
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x P(X = x)

2
1

36

3
2

36

4
3

36

5
4

36

6
5

36

7
6

36

8
5

36

9
4

36

10
3

36

11
2

36

12
1

36

Instead of displaying the probabilities associated with the values of a random
variable in a table, as we did in the preceding illustration, it is usually preferable to
give a formula, that is, to express the probabilities by means of a function such that
its values, f (x), equal P(X = x) for each x within the range of the random variable
X. For instance, for the total rolled with a pair of dice we could write

f (x) = 6 − |x − 7|
36

for x = 2, 3, . . . , 12

as can easily be verified by substitution. Clearly,

f (2) = 6 − |2 − 7|
36

= 6 − 5
36

= 1
36

f (3) = 6 − |3 − 7|
36

= 6 − 4
36

= 2
36

. . . . . . . . . . . . . . . . . . . . .

f (12) = 6 − |12 − 7|
36

= 6 − 5
36

= 1
36

and all these values agree with the ones shown in the preceding table.

DEFINITION 2. PROBABILITY DISTRIBUTION. If X is a discrete random variable, the
function given by f(x) = P(X = x) for each x within the range of X is called the
probability distribution of X.
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Based on the postulates of probability, we obtain the following theorem.

THEOREM 1. A function can serve as the probability distribution of a dis-
crete random variable X if and only if its values, f (x), satisfy the conditions

1. f (x) G 0 for each value within its domain;

2.
∑
x

f (x) = 1, where the summation extends over all the values within

its domain.

EXAMPLE 3

Find a formula for the probability distribution of the total number of heads obtained
in four tosses of a balanced coin.

Solution
Based on the probabilities in the table, we find that P(X = 0) = 1

16 , P(X = 1) =
4
16 , P(X = 2) = 6

16 , P(X = 3) = 4
16 , and P(X = 4) = 1

16 . Observing that the
numerators of these five fractions, 1, 4, 6, 4, and 1, are the binomial coefficients(

4
0

)
,
(

4
1

)
,
(

4
2

)
,
(

4
3

)
, and

(
4
4

)
, we find that the formula for the probability distri-

bution can be written as

f (x) =

(
4
x

)

16
for x = 0, 1, 2, 3, 4

EXAMPLE 4

Check whether the function given by

f (x) = x + 2
25

for x = 1, 2, 3, 4, 5

can serve as the probability distribution of a discrete random variable.

Solution
Substituting the different values of x, we get f (1) = 3

25 , f (2) = 4
25 , f (3) = 5

25 ,
f (4) = 6

25 , and f (5) = 7
25 . Since these values are all nonnegative, the first condition

of Theorem 1 is satisfied, and since

f (1)+ f (2)+ f (3)+ f (4)+ f (5) = 3
25

+ 4
25

+ 5
25

+ 6
25

+ 7
25

= 1

the second condition of Theorem 1 is satisfied. Thus, the given function can serve as
the probability distribution of a random variable having the range {1, 2, 3, 4, 5}. Of
course, whether any given random variable actually has this probability distribution
is an entirely different matter.

In some problems it is desirable to present probability distributions graphi-
cally, and two kinds of graphical presentations used for this purpose are shown in
Figures 2 and 3. The one shown in Figure 2, called a probability histogram, repre-
sents the probability distribution of Example 3. The height of each rectangle equals
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0 1 2
Number of heads

3 4
x

f (x)

6
16

4
16

1
16

Figure 2. Probability histogram.

0 1 2
Number of heads

3 4
x

f (x)

6
16

4
16

1
16

Figure 3. Bar chart.

the probability that X takes on the value that corresponds to the midpoint of its
base. By representing 0 with the interval from −0.5 to 0.5, 1 with the interval from
0.5 to 1.5, . . ., and 4 with the interval from 3.5 to 4.5, we are, so to speak, “spreading”
the values of the given discrete random variable over a continuous scale.

Since each rectangle of the probability histogram of Figure 2 has unit width, we
could have said that the areas of the rectangles, rather than their heights, equal the
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corresponding probabilities. There are certain advantages to identifying the areas
of the rectangles with the probabilities, for instance, when we wish to approximate
the graph of a discrete probability distribution with a continuous curve. This can be
done even when the rectangles of a probability histogram do not all have unit width
by adjusting the heights of the rectangles or by modifying the vertical scale.

The graph of Figure 3 is called a bar chart, but it is also referred to as a his-
togram. As in Figure 2, the height of each rectangle, or bar, equals the probability of
the corresponding value of the random variable, but there is no pretense of having
a continuous horizontal scale. Sometimes, as shown in Figure 4, we use lines (rect-
angles with no width) instead of the rectangles, but we still refer to the graphs as
probability histograms.

In this chapter, histograms and bar charts are used mainly in descriptive statis-
tics to convey visually the information provided by a probability distribution or a
distribution of actual data (see Section 8).

There are many problems in which it is of interest to know the probability that
the value of a random variable is less than or equal to some real number x. Thus,
let us write the probability that X takes on a value less than or equal to x as F(x) =
P(X F x) and refer to this function defined for all real numbers x as the distribution
function, or the cumulative distribution, of X.

0 1 2
Number of heads

3 4
x

f (x)

6
16

4
16

1
16

Figure 4. Probability histogram.

DEFINITION 3. DISTRIBUTION FUNCTION. If X is a discrete random variable, the func-
tion given by

F(x) = P(X ≤ x) =
∑
t≤x

f (t) for −q< x<q

where f(t) is the value of the probability distribution of X at t, is called the distri-
bution function, or the cumulative distribution of X.
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Based on the postulates of probability and some of their immediate consequences,
we obtain the following theorem.

THEOREM 2. The values F(x) of the distribution function of a discrete ran-
dom variable X satisfy the conditions

1. F(−q) = 0 and F(q) = 1;

2. if a<b, then F(a) F F(b) for any real numbers a and b.

If we are given the probability distribution of a discrete random variable, the
corresponding distribution function is generally easy to find.

EXAMPLE 5

Find the distribution function of the total number of heads obtained in four tosses
of a balanced coin.

Solution
Given f (0) = 1

16 , f (1) = 4
16 , f (2) = 6

16 , f (3) = 4
16 , and f (4) = 1

16 from Example 3, it
follows that

F(0) = f (0) = 1
16

F(1) = f (0)+ f (1) = 5
16

F(2) = f (0)+ f (1)+ f (2) = 11
16

F(3) = f (0)+ f (1)+ f (2)+ f (3) = 15
16

F(4) = f (0)+ f (1)+ f (2)+ f (3)+ f (4) = 1

Hence, the distribution function is given by

F(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for x< 0
1
16

for 0 F x< 1

5
16

for 1 F x< 2

11
16

for 2 F x< 3

15
16

for 3 F x< 4

1 for x G 4

Observe that this distribution function is defined not only for the values taken on
by the given random variable, but for all real numbers. For instance, we can write
F(1.7) = 5

16 and F(100) = 1, although the probabilities of getting “at most 1.7 heads”
or “at most 100 heads” in four tosses of a balanced coin may not be of any real
significance.
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EXAMPLE 6

Find the distribution function of the random variable W of Example 1 and plot
its graph.

Solution
Based on the probabilities given in the table in Section 1, we can write f (0) =
3
28 , f (1) = 15

56 + 15
56 = 15

28 , and f (2) = 5
14 , so that

F(0) = f (0) = 3
28

F(1) = f (0)+ f (1) = 9
14

F(2) = f (0)+ f (1)+ f (2) = 1

Hence, the distribution function of W is given by

F(w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for w< 0

3
28

for 0 F w< 1

9
14

for 1 F w< 2

1 for w G 2

The graph of this distribution function, shown in Figure 5, was obtained by first plot-
ting the points (w, F(w)) for w = 0, 1, and 2 and then completing the step function
as indicated. Note that at all points of discontinuity the distribution function takes
on the greater of the two values, as indicated by the heavy dots in Figure 5.

Figure 5. Graph of the distribution function of Example 6.
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We can also reverse the process illustrated in the two preceding examples, that
is, obtain values of the probability distribution of a random variable from its distri-
bution function. To this end, we use the following result.

THEOREM 3. If the range of a random variable X consists of the values x1<

x2< x3< · · ·< xn, then f (x1) = F(x1) and

f (xi) = F(xi)− F(xi−1) for i = 2, 3, . . . , n

EXAMPLE 7

If the distribution function of X is given by

F(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for x< 2

1
36

for 2 F x< 3

3
36

for 3 F x< 4

6
36

for 4 F x< 5

10
36

for 5 F x< 6

15
36

for 6 F x< 7

21
36

for 7 F x< 8

26
36

for 8 F x< 9

30
36

for 9 F x< 10

33
36

for 10 F x< 11

35
36

for 11 F x< 12

1 for x G 12

find the probability distribution of this random variable.

Solution
Making use of Theorem 3, we get f (2) = 1

36 , f (3) = 3
36 − 1

36 = 2
36 , f (4) = 6

36 −
3
36 = 3

36 , f (5) = 10
36 − 6

36 = 4
36 , . . . , f (12) = 1 − 35

36 = 1
36 , and comparison with the

probabilities in the table in Section 2 reveals that the random variable with which
we are concerned here is the total number of points rolled with a pair of dice.

In the remainder of this chapter we will be concerned with continuous ran-
dom variables and their distributions and with problems relating to the simultaneous
occurrence of the values of two or more random variables.
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Exercises
1. For each of the following, determine whether the
given values can serve as the values of a probability dis-
tribution of a random variable with the range x = 1, 2, 3,
and 4:
(a) f (1) = 0.25, f (2) = 0.75, f (3) = 0.25, and f (4) =

−0.25;
(b) f (1) = 0.15, f (2) = 0.27, f (3) = 0.29, and f (4) = 0.29;

(c) f (1) = 1
19

, f (2) = 10
19

, f (3) = 2
19

, and f (4) = 5
19
.

2. For each of the following, determine whether the given
function can serve as the probability distribution of a ran-
dom variable with the given range:

(a) f (x) = x − 2
5

for x = 1, 2, 3, 4, 5;

(b) f (x) = x2

30
for x = 0, 1, 2, 3, 4;

(c) f (x) = 1
5

for x = 0, 1, 2, 3, 4, 5.

3. Verify that f (x) = 2x
k(k + 1)

for x = 1, 2, 3, . . . , k can

serve as the probability distribution of a random variable
with the given range.

4. For each of the following, determine c so that the func-
tion can serve as the probability distribution of a random
variable with the given range:

(a) f (x) = cx for x = 1, 2, 3, 4, 5;

(b) f (x) = c

(
5
x

)
for x = 0, 1, 2, 3, 4, 5;

(c) f (x) = cx2 for x = 1, 2, 3, . . . , k;

(d) f (x) = c
(

1
4

)x

for x = 1, 2, 3, . . . .

5. For what values of k can

f (x) = (1 − k)kx

serve as the values of the probability distribution of a
random variable with the countably infinite range x =
0, 1, 2, . . .?

6. Show that there are no values of c such that

f (x) = c
x

can serve as the values of the probability distribution
of a random variable with the countably infinite range
x = 1, 2, 3, . . . .

7. Construct a probability histogram for each of the fol-
lowing probability distributions:

(a) f (x) =

⎛
⎝2

x

⎞
⎠
⎛
⎝ 4

3 − x

⎞
⎠

⎛
⎝6

3

⎞
⎠

for x = 0, 1, 2;

(b) f (x) =
(

5
x

)(
1
5

)x (4
5

)5−x

for x = 0, 1, 2, 3, 4, 5.

8. Prove Theorem 2.

9. For each of the following, determine whether the given
values can serve as the values of a distribution function of
a random variable with the range x = 1, 2, 3, and 4:
(a) F(1) = 0.3, F(2) = 0.5, F(3) = 0.8, and F(4) = 1.2;
(b) F(1) = 0.5, F(2) = 0.4, F(3) = 0.7, and F(4) = 1.0;
(c) F(1) = 0.25, F(2) = 0.61, F(3) = 0.83, and
F(4) = 1.0.

10. Find the distribution function of the random variable
of part (a) of Exercise 7 and plot its graph.

11. If X has the distribution function

F(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for x< 1

1
3

for 1 F x< 4

1
2

for 4 F x< 6

5
6

for 6 F x< 10

1 for x G 10

find
(a) P(2<X F 6);
(b) P(X = 4);
(c) the probability distribution of X.

12. Find the distribution function of the random variable
that has the probability distribution

f (x) = x
15

for x = 1, 2, 3, 4, 5
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13. If X has the distribution function

F(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for x<−1

1
4

for −1 F x< 1

1
2

for 1 F x< 3

3
4

for 3 F x< 5

1 for x G 5

find
(a) P(X F 3); (b) P(X = 3); (c) P(X < 3);
(d) P(X G 1); (e) P(−0.4<X < 4); (f) P(X = 5).

14. With reference to Example 4, verify that the values of
the distribution function are given by

F(x) = x2 + 5x
50

for x = 1, 2, 3, 4, and 5.

15. With reference to Theorem 3, verify that

(a) P(X > xi) = 1 − F(xi) for i = 1, 2, 3, . . . , n;
(b) P(X G xi) = 1 − F(xi−1) for i = 2, 3, . . . , n,

and P(X G x1) = 1.

3 Continuous Random Variables
In Section 1 we introduced the concept of a random variable as a real-valued func-
tion defined over the points of a sample space with a probability measure, and in
Figure 1 we illustrated this by assigning the total rolled with a pair of dice to each
of the 36 equally likely points of the sample space. In the continuous case, where
random variables can take on values on a continuous scale, the procedure is very
much the same. The outcomes of experiments are represented by the points on line
segments or lines, and the values of random variables are numbers appropriately
assigned to the points by means of rules or equations. When the value of a ran-
dom variable is given directly by a measurement or observation, we generally do
not bother to distinguish between the value of the random variable (the measure-
ment that we obtain) and the outcome of the experiment (the corresponding point
on the real axis). Thus, if an experiment consists of determining the actual content of
a 230-gram jar of instant coffee, the result itself, say, 225.3 grams, is the value of the
random variable with which we are concerned, and there is no real need to add that
the sample space consists of a certain continuous interval of points on the positive
real axis.

The problem of defining probabilities in connection with continuous sample
spaces and continuous random variables involves some complications. To illustrate,
let us consider the following situation.

EXAMPLE 8

Suppose that we are concerned with the possibility that an accident will occur on a
freeway that is 200 kilometers long and that we are interested in the probability that
it will occur at a given location, or perhaps on a given stretch of the road. The sample
space of this “experiment” consists of a continuum of points, those on the interval
from 0 to 200, and we shall assume, for the sake of argument, that the probability

that an accident will occur on any interval of length d is
d

200
, with d measured in
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kilometers. Note that this assignment of probabilities is consistent with Postulates 1
and 2. (Postulate 1 states that probability of an event is a nonnegative real number;
that is, P(A)G 0 for any subset A of S but in Postulate 2 P(S) = 1.) The probabilities

d
200

are all nonnegative and P(S) = 200
200

= 1. So far this assignment of probabilities

applies only to intervals on the line segment from 0 to 200, but if we use Postulate 3
(Postulate 3: If A1, A2, A3, . . . , is a finite or infinite sequence of mutually exclusive
events of S, then P(A1 ∪ A2 ∪ A3 ∪ · · · ) = P(A1)+ P(A2)+ P(A3)+ · · · ), we can
also obtain probabilities for the union of any finite or countably infinite sequence
of nonoverlapping intervals. For instance, the probability that an accident will occur
on either of two nonoverlapping intervals of length d1 and d2 is

d1 + d2

200

and the probability that it will occur on any one of a countably infinite sequence of
nonoverlapping intervals of length d1, d2, d3, . . . is

d1 + d2 + d3 + · · ·
200

With reference to Example 8, observe also that the probability of the accident
occurring on a very short interval, say, an interval of 1 centimeter, is only 0.00000005,
which is very small. As the length of the interval approaches zero, the probability
that an accident will occur on it also approaches zero; indeed, in the continuous case
we always assign zero probability to individual points. This does not mean that the
corresponding events cannot occur; after all, when an accident occurs on the 200-
kilometer stretch of road, it has to occur at some point even though each point has
zero probability.

4 Probability Density Functions
The way in which we assigned probabilities in Example 8 is very special, and it is
similar in nature to the way in which we assign equal probabilities to the six faces
of a die, heads and tails, the 52 playing cards in a standard deck, and so forth.
To treat the problem of associating probabilities with values of continuous ran-
dom variables more generally, suppose that a bottler of soft drinks is concerned
about the actual amount of a soft drink that his bottling machine puts into
16-ounce bottles. Evidently, the amount will vary somewhat from bottle to bottle;
it is, in fact, a continuous random variable. However, if he rounds the amounts
to the nearest tenth of an ounce, he will be dealing with a discrete random vari-
able that has a probability distribution, and this probability distribution may be
pictured as a histogram in which the probabilities are given by the areas of rect-
angles, say, as in the diagram at the top of Figure 6. If he rounds the amounts to
the nearest hundredth of an ounce, he will again be dealing with a discrete random
variable (a different one) that has a probability distribution, and this probability
distribution may be pictured as a probability histogram in which the probabilities
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15.9

Amounts rounded to nearest tenth of an ounce

16.0 16.1

15.9 16.0 16.1

15.90

Amounts rounded to nearest hundredth of an ounce

16.00 16.10

Figure 6. Definition of probability in the continuous case.

are given by the areas of rectangles, say, as in the diagram in the middle of
Figure 6.

It should be apparent that if he rounds the amounts to the nearest thousandth
of an ounce or to the nearest ten-thousandth of an ounce, the probability histograms
of the probability distributions of the corresponding discrete random variables will
approach the continuous curve shown in the diagram at the bottom of Figure 6,
and the sum of the areas of the rectangles that represent the probability that the
amount falls within any specified interval approaches the corresponding area under
the curve.

Indeed, the definition of probability in the continuous case presumes for
each random variable the existence of a function, called a probability density
function, such that areas under the curve give the probabilities associated with the
corresponding intervals along the horizontal axis. In other words, a probability
density function, integrated from a to b (with a F b), gives the probability that
the corresponding random variable will take on a value on the interval from
a to b.
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DEFINITION 4. PROBABILITY DENSITY FUNCTION. A function with values f(x), defined
over the set of all real numbers, is called a probability density function of the
continuous random variable X if and only if

P(a ≤ X ≤ b) =
∫ b

a
f (x)dx

for any real constants a and b with a … b.

Probability density functions are also referred to, more briefly, as probability densi-
ties, density functions, densities, or p.d.f.’s.

Note that f (c), the value of the probability density of X at c, does not give
P(X = c) as in the discrete case. In connection with continuous random variables,
probabilities are always associated with intervals and P(X = c) = 0 for any real
constant c. This agrees with what we said on the previous page and it also follows
directly from Definition 4 with a = b = c.

Because of this property, the value of a probability density function can be
changed for some of the values of a random variable without changing the prob-
abilities, and this is why we said in Definition 4 that f (x) is the value of a probability
density, not the probability density, of the random variable X at x. Also, in view of
this property, it does not matter whether we include the endpoints of the interval
from a to b; symbolically, we have the following theorem.

THEOREM 4. If X is a continuous random variable and a and b are real
constants with a F b, then

P(a F X F b) = P(a F X <b) = P(a<X F b) = P(a<X <b)

Analogous to Theorem 1, let us now state the following properties of probability
densities, which again follow directly from the postulates of probability.

THEOREM 5. A function can serve as a probability density of a continuous
random variable X if its values, f (x), satisfy the conditions†

1. f (x) G 0 for −q< x<q;

2.
∫ q

−q
f (x)dx = 1.

EXAMPLE 9

If X has the probability density

f (x) =
{

k · e−3x for x> 0
0 elsewhere

find k and P(0.5 F X F 1).

†The conditions are not “if and only if” as in Theorem 1 because f (x) could be negative for some values of
the random variable without affecting any of the probabilities. However, both conditions of Theorem 5 will be
satisfied by nearly all the probability densities used in practice and studied in this text.
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Solution
To satisfy the second condition of Theorem 5, we must have

∫ q

−q
f (x)dx =

∫ q

0
k · e−3x dx = k · lim

t→q

e−3x

−3

∣∣∣t
0

= k
3

= 1

and it follows that k = 3. For the probability we get

P(0.5 F X F 1) =
∫ 1

0.5
3e−3x dx = −e−3x

∣∣∣1
0.5

= −e−3 + e−1.5 = 0.173

Although the random variable of the preceding example cannot take on negative
values, we artificially extended the domain of its probability density to include all
the real numbers. This is a practice we shall follow throughout this text.

As in the discrete case, there are many problems in which it is of interest to
know the probability that the value of a continuous random variable X is less than
or equal to some real number x. Thus, let us make the following definition analogous
to Definition 3.

DEFINITION 5. DISTRIBUTION FUNCTION. If X is a continuous random variable and
the value of its probability density at t is f(t), then the function given by

F(x) = P(X ≤ x) =
∫ x

−q
f (t)dt for −q< x<q

is called the distribution function or the cumulative distribution function of X.

The properties of distribution functions given in Theorem 2 hold also for the
continuous case; that is, F(−q) = 0, F(q) = 1, and F(a) F F(b) when a<b. Fur-
thermore, based on Definition 5, we can state the following theorem.

THEOREM 6. If f (x) and F(x) are the values of the probability density and
the distribution function of X at x, then

P(a F X F b) = F(b)− F(a)

for any real constants a and b with a F b, and

f (x) = dF(x)
dx

where the derivative exists.

EXAMPLE 10

Find the distribution function of the random variable X of Example 9, and use it to
reevaluate P(0.5 F X F 1).
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Solution
For x> 0,

F(x) =
∫ x

−q
f (t)dt =

∫ x

0
3e−3tdt = −e−3t

∣∣∣x
0

= 1 − e−3x

and since F(x) = 0 for x F 0, we can write

F(x) =
{

0 for x F 0
1 − e−3x for x> 0

To determine the probability P(0.5 F X F 1), we use the first part of Theorem 6,
getting

P(0.5 F X F 1) = F(1)− F(0.5)

= (1 − e−3)− (1 − e−1.5)

= 0.173

This agrees with the result obtained by using the probability density directly in
Example 9.

EXAMPLE 11

Find a probability density function for the random variable whose distribution func-
tion is given by

F(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 for x F 0
x for 0< x< 1
1 for x G 1

and plot its graph.

Solution
Since the given density function is differentiable everywhere except at x = 0 and x =
1, we differentiate for x< 0, 0< x< 1, and x> 1, getting 0, 1, and 0. Thus, according
to the second part of Theorem 6, we can write

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

0 for x< 0
1 for 0< x< 1
0 for x> 1

To fill the gaps at x = 0 and x = 1, we let f (0) and f (1) both equal zero. Actually, it
does not matter how the probability density is defined at these two points, but there
are certain advantages for choosing the values in such a way that the probability
density is nonzero over an open interval. Thus, we can write the probability density
of the original random variable as

f (x) =
{

1 for 0< x< 1
0 elsewhere

Its graph is shown in Figure 7.
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0

f (x)

x
1

1

Figure 7. Probability density of Example 11.

In most applications we encounter random variables that are either discrete or
continuous, so the corresponding distribution functions have a steplike appearance
as in Figure 5, or they are continuous curves or combinations of lines as in Figure 8,
which shows the graph of the distribution function of Example 11.

Discontinuous distribution functions like the one shown in Figure 9 arise when
random variables are mixed. Such a distribution function will be discontinuous at
each point having a nonzero probability and continuous elsewhere. As in the dis-
crete case, the height of the step at a point of discontinuity gives the probability that

10
x

F(x)

1

Figure 8. Distribution function of Example 11.

0

F(x)

x
0.5 1

1

4

1

2

3

4

1

Figure 9. Distribution function of a mixed random variable.
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the random variable will take on that particular value. With reference to Figure 9,
P(X = 0.5) = 3

4 − 1
4 = 1

2 , but otherwise the random variable is like a continuous
random variable.

In this chapter we shall limit ourselves to random variables that are discrete or
continuous with the latter having distribution functions that are differentiable for all
but a finite set of values of the random variables.

Exercises
16. Find the distribution function of the random variable
X of Exercise 17 and use it to reevaluate part (b).

17. The probability density of the continuous random
variable X is given by

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

1
5

for 2< x< 7

0 elsewhere

(a) Draw its graph and verify that the total area under the
curve (above the x-axis) is equal to 1.
(b) Find P(3<X < 5).

18. (a) Show that

f (x) = e−x for 0< x<q

represents a probability density function.
(b) Sketch a graph of this function and indicate the area
associated with the probability that x> 1.
(c) Calculate the probability that x> 1.

19. (a) Show that

f (x) = 3x2 for 0< x< 1

represents a density function.
(b) Sketch a graph of this function, and indicate the area
associated with the probability that 0.1< x< 0.5.
(c) Calculate the probability that 0.1< x< 0.5.

20. The probability density of the random variable Y is
given by

f (y) =

⎧⎪⎨
⎪⎩

1
8
(y + 1) for 2< y< 4

0 elsewhere

Find P(Y< 3.2) and P(2.9<Y< 3.2).

21. Find the distribution function of the random variable
Y of Exercise 20 and use it to determine the two proba-
bilities asked for in that exercise.

22. The p.d.f. of the random variable X is given by

f (x) =

⎧⎪⎨
⎪⎩

c√
x

for 0< x< 4

0 elsewhere

Find
(a) the value of c;
(b) P(X < 1

4 ) and P(X > 1).

23. Find the distribution function of the random variable
X of Exercise 22 and use it to determine the two proba-
bilities asked for in part (b) of that exercise.

24. The probability density of the random variable Z is
given by

f (z) =
{

kze−z2
for z> 0

0 for z F 0

Find k and draw the graph of this probability density.

25. With reference to Exercise 24, find the distribution
function of Z and draw its graph.

26. The density function of the random variable X is
given by

g(x) =
{

6x(1 − x) for 0< x< 1
0 elsewhere

Find P(X < 1
4 ) and P(X > 1

2 ).

27. With reference to Exercise 26, find the distribution
function of X and use it to reevaluate the two probabili-
ties asked for in that exercise.

28. Find the distribution function of the random variable
X whose probability density is given by

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

x for 0< x< 1
2 − x for 1 F x< 2
0 elsewhere
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Also sketch the graphs of the probability density and dis-
tribution functions.

29. Find the distribution function of the random variable
X whose probability density is given by

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
3

for 0< x< 1

1
3

for 2< x< 4

0 elsewhere

Also sketch the graphs of the probability density and dis-
tribution functions.

30. With reference to Exercise 28, find P(0.8<X < 1.2)
using
(a) the probability density;
(b) the distribution function.

31. Find the distribution function of the random variable
X whose probability density is given by

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x
2

for 0< x F 1

1
2

for 1< x F 2

3 − x
2

for 2< x< 3

0 elsewhere

Also sketch the graphs of these probability density and
distribution functions.

32. The distribution function of the random variable X is
given by

F(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 for x<−1

x + 1
2

for −1 F x< 1

1 for x G 1

Find P(− 1
2 <X < 1

2 ) and P(2<X < 3).

33. With reference to Exercise 32, find the probability
density of X and use it to recalculate the two proba-
bilities.

34. The distribution function of the random variable Y is
given by

F(y) =

⎧⎪⎨
⎪⎩

1 − 9
y2 for y> 3

0 elsewhere

Find P(Y F 5) and P(Y> 8).

35. With reference to Exercise 34, find the probabil-
ity density of Y and use it to recalculate the two
probabilities.

36. With reference to Exercise 34 and the result of
Exercise 35, sketch the graphs of the distribution
function and the probability density of Y, letting
f (3) = 0.

37. The distribution function of the random variable X is
given by

F(x) =
{

1 − (1 + x)e−x for x> 0
0 for x F 0

Find P(X F 2), P(1<X < 3), and P(X > 4).

38. With reference to Exercise 37, find the probability
density of X.

39. With reference to Figure 9, find expressions for the
values of the distribution function of the mixed random
variable X for
(a) x F 0; (b) 0< x< 0.5;
(c) 0.5 F x< 1; (d) x G 1.

40. Use the results of Exercise 39 to find expressions for
the values of the probability density of the mixed random
variable X for
(a) x< 0; (b) 0< x< 0.5;
(c) 0.5< x< 1; (d) x> 1.

P(X = 0.5) = 1
2 , and f (0) and f (1) are undefined.

41. The distribution function of the mixed random vari-
able Z is given by

F(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 for z<−2

z + 4
8

for −2 F z< 2

1 for z G 2

Find P(Z = −2), P(Z = 2), P(−2<Z< 1), and P(0 F
Z F 2).
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5 Multivariate Distributions
In the beginning of this chapter we defined a random variable as a real-valued func-
tion defined over a sample space with a probability measure, and it stands to reason
that many different random variables can be defined over one and the same sample
space. With reference to the sample space of Figure 1, for example, we considered
only the random variable whose values were the totals rolled with a pair of dice, but
we could also have considered the random variable whose values are the products of
the numbers rolled with the two dice, the random variable whose values are the dif-
ferences between the numbers rolled with the red die and the green die, the random
variable whose values are 0, 1, or 2 depending on the number of dice that come up
2, and so forth. Closer to life, an experiment may consist of randomly choosing some
of the 345 students attending an elementary school, and the principal may be inter-
ested in their I.Q.’s, the school nurse in their weights, their teachers in the number
of days they have been absent, and so forth.

In this section we shall be concerned first with the bivariate case, that is, with
situations where we are interested at the same time in a pair of random variables
defined over a joint sample space. Later, we shall extend this discussion to the mul-
tivariate case, covering any finite number of random variables.

If X and Y are discrete random variables, we write the probability that X will
take on the value x and Y will take on the value y as P(X = x, Y = y). Thus, P(X = x,
Y = y) is the probability of the intersection of the events X = x and Y = y. As in
the univariate case, where we dealt with one random variable and could display the
probabilities associated with all values of X by means of a table, we can now, in the
bivariate case, display the probabilities associated with all pairs of values of X and
Y by means of a table.

EXAMPLE 12

Two caplets are selected at random from a bottle containing 3 aspirin, 2 sedative, and
4 laxative caplets. If X and Y are, respectively, the numbers of aspirin and sedative
caplets included among the 2 caplets drawn from the bottle, find the probabilities
associated with all possible pairs of values of X and Y.

Solution
The possible pairs are (0, 0), (0, 1), (1, 0), (1, 1), (0, 2), and (2, 0). To find the prob-
ability associated with (1, 0), for example, observe that we are concerned with the
event of getting one of the 3 aspirin caplets, none of the 2 sedative caplets, and,
hence, one of the 4 laxative caplets. The number of ways in which this can be done is(

3
1

)(
2
0

)(
4
1

)
= 12, and the total number of ways in which 2 of the 9 caplets can be

selected is
(

9
2

)
= 36. Since those possibilities are all equally likely by virtue of the

assumption that the selection is random, it follows from a theorem (If an experiment
can result in any one of N different equally likely outcomes, and if n of these out-
comes together constitute event A, then the probability of event A is P(A) = n/N)
that the probability associated with (1, 0) is 12

36 = 1
3 . Similarly, the probability associ-

ated with (1, 1) is (
3
1

)(
2
1

)(
4
0

)

36
= 6

36
= 1

6
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and, continuing this way, we obtain the values shown in the following table:

x

0 1 2

0
1
6

1
3

1
12

y 1
2
9

1
6

2
1

36

Actually, as in the univariate case, it is generally preferable to represent proba-
bilities such as these by means of a formula. In other words, it is preferable to express
the probabilities by means of a function with the values f (x, y) = P(X = x, Y = y)
for any pair of values (x, y) within the range of the random variables X and Y. For
instance, for the two random variables of Example 12 we can write

f (x, y) =

(
3
x

)(
2
y

)(
4

2 − x − y

)
(

9
2

) for x = 0, 1, 2; y = 0, 1, 2;
0 F x + y F 2

DEFINITION 6. JOINT PROBABILITY DISTRIBUTION. If X and Y are discrete random
variables, the function given by f(x, y) = P(X = x, Y = y) for each pair of values
(x, y) within the range of X and Y is called the joint probability distribution of
X and Y.

Analogous to Theorem 1, let us state the following theorem, which follows from the
postulates of probability.

THEOREM 7. A bivariate function can serve as the joint probability distri-
bution of a pair of discrete random variables X and Y if and only if its
values, f (x, y), satisfy the conditions

1. f (x, y) G 0 for each pair of values (x, y) within its domain;

2.
∑
x

∑
y

f (x, y) = 1, where the double summation extends over all

possible pairs (x, y) within its domain.

EXAMPLE 13

Determine the value of k for which the function given by

f (x, y) = kxy for x = 1, 2, 3; y = 1, 2, 3

can serve as a joint probability distribution.
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Solution
Substituting the various values of x and y, we get f (1, 1) = k, f (1, 2) = 2k, f (1, 3) =
3k, f (2, 1) = 2k, f (2, 2) = 4k, f (2, 3) = 6k, f (3, 1) = 3k, f (3, 2) = 6k, and f (3, 3) = 9k.
To satisfy the first condition of Theorem 7, the constant k must be nonnegative, and
to satisfy the second condition,

k + 2k + 3k + 2k + 4k + 6k + 3k + 6k + 9k = 1

so that 36k = 1 and k = 1
36 .

As in the univariate case, there are many problems in which it is of interest to
know the probability that the values of two random variables are less than or equal
to some real numbers x and y.

DEFINITION 7. JOINT DISTRIBUTION FUNCTION. If X and Y are discrete random vari-
ables, the function given by

F(x, y) = P(X ≤ x, Y ≤ y) =
∑
s≤x

∑
t≤y

f (s, t) for −q< x<q
−q< y<q

where f(s, t) is the value of the joint probability distribution of X and Y at (s, t), is
called the joint distribution function, or the joint cumulative distribution of X
and Y.

In Exercise 48 the reader will be asked to prove properties of joint distribution func-
tions that are analogous to those of Theorem 2.

EXAMPLE 14

With reference to Example 12, find F(1, 1).

Solution
F(1, 1) = P(X F 1, Y F 1)

= f (0, 0)+ f (0, 1)+ f (1, 0)+ f (1, 1)

= 1
6

+ 2
9

+ 1
3

+ 1
6

= 8
9

As in the univariate case, the joint distribution function of two random variables
is defined for all real numbers. For instance, for Example 12 we also get F(−2, 1) =
P(X F −2, Y F 1) = 0 and F(3.7, 4.5) = P(X F 3.7, Y F 4.5) = 1.

Let us now extend the various concepts introduced in this section to the contin-
uous case.
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DEFINITION 8. JOINT PROBABILITY DENSITY FUNCTION. A bivariate function with
values f(x, y) defined over the xy-plane is called a joint probability density
function of the continuous random variables X and Y if and only if

P(X, Y) ∈ A =
∫∫
A

f (x, y)dxdy

for any region A in the xy-plane.

Analogous to Theorem 5, it follows from the postulates of probability that

THEOREM 8. A bivariate function can serve as a joint probability density
function of a pair of continuous random variables X and Y if its values,
f (x, y), satisfy the conditions

1. f (x, y) G 0 for −q< x<q, −q< y<q;

2.
∫ q

−q

∫ q

−q
f (x, y)dx dy = 1.

EXAMPLE 15

Given the joint probability density function

f (x, y) =

⎧⎪⎪⎨
⎪⎪⎩

3
5

x(y + x) for 0< x< 1, 0< y< 2

0 elsewhere

of two random variables X and Y, find P[(X, Y) ∈ A], where A is the region {(x, y)|0<
x< 1

2 , 1< y< 2}.

Solution

P[(X, Y) ∈ A] = P
(

0<X <
1
2

, 1<Y< 2
)

=
∫ 2

1

∫ 1
2

0

3
5

x(y + x)dx dy

=
∫ 2

1

3x2y
10

+ 3x3

15

∣∣∣∣∣
x= 1

2

dy

=
∫ 2

1

(
3y
40

+ 1
40

)
dy = 3y2

80
+ y

40

∣∣∣∣
2

1

= 11
80

Analogous to Definition 7, we have the following definition of the joint distribu-
tion function of two continuous random variables.
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DEFINITION 9. JOINT DISTRIBUTION FUNCTION. If X and Y are continuous random
variables, the function given by

F(x, y) = P(X ≤ x, Y ≤ y) =
∫ y

−q

∫ x

−q
f (s, t)ds dt for −q< x<q,

−q< y<q

where f(s, t) is the joint probability density of X and Y at (s, t), is called the joint
distribution function of X and Y.

Note that the properties of joint distribution functions, which the reader will be
asked to prove in Exercise 48 for the discrete case, hold also for the continuous case.

As in Section 4, we shall limit our discussion here to random variables whose
joint distribution function is continuous everywhere and partially differentiable with
respect to each variable for all but a finite set of values of the two random variables.

Analogous to the relationship f (x) = dF(x)
dx

of Theorem 6, partial differentia-

tion in Definition 9 leads to

f (x, y) = �2

�x�y
F(x, y)

wherever these partial derivatives exist. As in Section 4, the joint distribution func-
tion of two continuous random variables determines their joint density (short for
joint probability density function) at all points (x, y) where the joint density is con-
tinuous. Also as in Section 4, we generally let the values of joint probability densities
equal zero wherever they are not defined by the above relationship.

EXAMPLE 16

If the joint probability density of X and Y is given by

f (x, y) =
{

x + y for 0< x< 1, 0< y< 1
0 elsewhere

find the joint distribution function of these two random variables.

Solution
If either x< 0 or y< 0, it follows immediately that F(x, y) = 0. For 0< x< 1 and
0< y< 1 (Region I of Figure 10), we get

F(x, y) =
∫ y

0

∫ x

0
(s + t)ds dt = 1

2
xy(x + y)

for x> 1 and 0< y< 1 (Region II of Figure 10), we get

F(x, y) =
∫ y

0

∫ 1

0
(s + t)ds dt = 1

2
y(y + 1)
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Figure 10. Diagram for Example 16.

for 0< x< 1 and y> 1 (Region III of Figure 10), we get

F(x, y) =
∫ 1

0

∫ x

0
(s + t)ds dt = 1

2
x(x + 1)

and for x> 1 and y> 1 (Region IV of Figure 10), we get

F(x, y) =
∫ 1

0

∫ 1

0
(s + t)ds dt = 1

Since the joint distribution function is everywhere continuous, the boundaries
between any two of these regions can be included in either one, and we can write

F(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for x F 0 or y F 0

1
2

xy(x + y) for 0< x< 1, 0< y< 1

1
2

y(y + 1) for x G 1, 0< y< 1

1
2

x(x + 1) for 0< x< 1, y G 1

1 for x G 1, y G 1

EXAMPLE 17

Find the joint probability density of the two random variables X and Y whose joint
distribution function is given by

F(x, y) =
{
(1 − e−x)(1 − e−y) for x> 0 and y> 0
0 elsewhere

Also use the joint probability density to determine P(1<X < 3, 1<Y < 2).
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Solution
Since partial differentiation yields

�2

�x�y
F(x, y) = e−(x+y)

for x> 0 and y> 0 and 0 elsewhere, we find that the joint probability density of X
and Y is given by

f (x, y) =
{

e−(x+y) for x> 0 and y> 0
0 elsewhere

Thus, integration yields

∫ 2

1

∫ 3

1
e−(x+y) dx dy = (e−1 − e−3)(e−1 − e−2)

= e−2 − e−3 − e−4 + e−5

= 0.074

for P(1<X < 3, 1<Y < 2).

For two random variables, the joint probability is, geometrically speaking, a sur-
face, and the probability that we calculated in the preceding example is given by the
volume under this surface, as shown in Figure 11.

All the definitions of this section can be generalized to the multivariate case,
where there are n random variables. Corresponding to Definition 6, the values of
the joint probability distribution of n discrete random variables X1, X2, . . ., and Xn
are given by

f (x1, x2, . . . , xn) = P(X1 = x1, X2 = x2, . . . , Xn = xn)

f (x, y)

x

y

f (x, y)  e (x y)

1

1 2 3

2

3

Figure 11. Diagram for Example 17.
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for each n-tuple (x1, x2, . . . , xn) within the range of the random variables; and corre-
sponding to Definition 7, the values of their joint distribution function are given by

F(x1, x2, . . . , xn) = P(X1 F x1, X2 F x2, . . . , Xn F xn)

for −q< x1<q, −q< x2<q, . . . , −q< xn<q.

EXAMPLE 18

If the joint probability distribution of three discrete random variables X, Y, and Z
is given by

f (x, y, z) = (x + y)z
63

for x = 1, 2; y = 1, 2, 3; z = 1, 2

find P(X = 2, Y + Z F 3).

Solution
P(X = 2, Y + Z F 3) = f (2, 1, 1)+ f (2, 1, 2)+ f (2, 2, 1)

= 3
63

+ 6
63

+ 4
63

= 13
63

In the continuous case, probabilities are again obtained by integrating the joint
probability density, and the joint distribution function is given by

F(x1, x2, . . . , xn) =
∫ xn

−q
. . .

∫ x2

−q

∫ x1

−q
f (t1, t2, . . . , tn)dt1 dt2 . . . dtn

for −q< x1<q, −q< x2<q, . . . , −q< xn<q, analogous to Definition 9. Also,
partial differentiation yields

f (x1, x2, . . . , xn) = �n

�x1�x2 · · · �xn
F(x1, x2, . . . , xn)

wherever these partial derivatives exist.

EXAMPLE 19

If the trivariate probability density of X1, X2, and X3 is given by

f (x1, x2, x3) =
{
(x1 + x2)e−x3 for 0< x1< 1, 0< x2< 1, x3> 0
0 elsewhere

find P[(X1, X2, X3) ∈ A], where A is the region

{
(x1, x2, x3)|0< x1<

1
2

,
1
2
< x2< 1, x3< 1

}
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Solution
P[(X1, X2, X3) ∈ A] = P

(
0<X1<

1
2

,
1
2
<X2< 1, X3< 1

)

=
∫ 1

0

∫ 1

1
2

∫ 1
2

0
(x1 + x2)e

−x3 dx1 dx2 dx3

=
∫ 1

0

∫ 1

1
2

(
1
8

+ x2

2

)
e−x3 dx2 dx3

=
∫ 1

0

1
4

e−x3 dx3

= 1
4
(1 − e−1) = 0.158

Exercises
42. If the values of the joint probability distribution of X
and Y are as shown in the table

x
0 1 2

0
1

12
1
6

1
24

1
1
4

1
4

1
40

y
2

1
8

1
20

3
1

120

find
(a) P(X = 1, Y = 2); (b) P(X = 0, 1 F Y< 3);
(c) P(X + Y F 1); (d) P(X >Y).

43. With reference to Exercise 42, find the following val-
ues of the joint distribution function of the two ran-
dom variables:
(a) F(1.2, 0.9); (b) F(−3, 1.5);
(c) F(2, 0); (d) F(4, 2.7).

44. If the joint probability distribution of X and Y is
given by

f (x, y) = c(x2 + y2) for x = −1, 0, 1, 3; y = −1, 2, 3

find the value of c.

45. With reference to Exercise 44 and the value obtai-
ned for c, find
(a) P(X F 1, Y> 2);
(b) P(X = 0, Y F 2);
(c) P(X + Y> 2).

46. Show that there is no value of k for which

f (x, y) = ky(2y − x) for x = 0, 3; y = 0, 1, 2

can serve as the joint probability distribution of two ran-
dom variables.

47. If the joint probability distribution of X and Y is
given by

f (x, y) = 1
30
(x + y) for x = 0, 1, 2, 3; y = 0, 1, 2

construct a table showing the values of the joint distribu-
tion function of the two random variables at the 12 points
(0, 0), (0, 1), . . . , (3, 2).

48. If F(x, y) is the value of the joint distribution func-
tion of two discrete random variables X and Y at (x, y),
show that
(a) F(−q, −q) = 0;
(b) F(q, q) = 1;
(c) if a<b and c<d, then F(a, c) F F(b, d).

49. Determine k so that

f (x, y) =
{

kx(x − y) for 0< x< 1, −x< y< x
0 elsewhere

can serve as a joint probability density.

50. If the joint probability density of X and Y is given by

f (x, y) =
{

24xy for 0< x< 1, 0< y< 1, x + y< 1
0 elsewhere

find P(X + Y< 1
2 ).
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51. If the joint probability density of X and Y is given by

f (x, y) =
{

2 for x> 0, y> 0, x + y< 1
0 elsewhere

find
(a) P(X F 1

2 , Y F 1
2 );

(b) P(X + Y> 2
3 );

(c) P(X > 2Y).

52. With reference to Exercise 51, find an expression for
the values of the joint distribution function of X and Y
when x> 0, y> 0, and x + y< 1, and use it to verify the
result of part (a).

53. If the joint probability density of X and Y is given by

f (x, y) =

⎧⎪⎨
⎪⎩

1
y

for 0< x< y, 0< y< 1

0 elsewhere

find the probability that the sum of the values of X and Y
will exceed 1

2 .

54. Find the joint probability density of the two random
variables X and Y whose joint distribution function is
given by

F(x, y) =
{
(1 − e−x2

)(1 − e−y2
) for x> 0, y> 0

0 elsewhere

55. Use the joint probability density obtained in Exer-
cise 54 to find P(1<X F 2, 1<Y F 2).

56. Find the joint probability density of the two random
variables X and Y whose joint distribution function is
given by

F(x, y) =
{

1 − e−x − e−y + e−x−y for x> 0, y> 0
0 elsewhere

57. Use the joint probability density obtained in Exer-
cise 56 to find P(X + Y> 3).

58. If F(x, y) is the value of the joint distribution func-
tion of the two continuous random variables X and Y at
(x, y), express P(a<X F b, c<Y F d) in terms of F(a, c),
F(a, d), F(b, c), and F(b, d). Observe that the result holds
also for discrete random variables.

59. Use the formula obtained in Exercise 58 to verify the
result, 0.074, of Example 17.

60. Use the formula obtained in Exercise 58 to verify the
result of Exercise 55.

61. Use the formula obtained in Exercise 58 to verify the
result of Exercise 57.

62. Find k if the joint probability distribution of X, Y, and
Z is given by

f (x, y, z) = kxyz

for x = 1, 2; y = 1, 2, 3; z = 1, 2.

63. With reference to Exercise 62, find
(a) P(X = 1, Y F 2, Z = 1);
(b) P(X = 2, Y + Z = 4).

64. With reference to Exercise 62, find the following val-
ues of the joint distribution function of the three ran-
dom variables:
(a) F(2, 1, 2);
(b) F(1, 0, 1);
(c) F(4, 4, 4).

65. Find k if the joint probability density of X, Y, and Z
is given by

f (x, y, z) =

⎧⎪⎪⎨
⎪⎪⎩

kxy(1 − z) for 0< x< 1, 0< y< 1,
0< z< 1, x + y + z< 1

0 elsewhere

66. With reference to Exercise 65, find P(X + Y< 1
2 ).

67. Use the result of Example 16 to verify that the joint
distribution function of the random variables X1, X2, and
X3 of Example 19 is given by

F(x1, x2, x3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for x1 F 0, x2 F 0, or x3 F 0

1
2

x1x2(x1 + x2)(1 − e−x3 ) for 0< x1 < 1, 0< x2 < 1, x3 > 0

1
2

x2(x2 + 1)(1 − e−x3 ) for x1 G 1, 0< x2 < 1, x3 > 0

1
2

x1(x1 + 1)(1 − e−x3 ) for 0< x1 < 1, x2 G 1, x3 > 0

1 − e−x3 for x1 G 1, x2 G 1, x3 > 0

68. If the joint probability density of X, Y, and Z is
given by

f (x, y, z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
3
(2x + 3y + z) for 0< x< 1, 0< y< 1,

0< z< 1

0 elsewhere

find
(a) P(X = 1

2 , Y = 1
2 , Z = 1

2 );

(b) P(X < 1
2 , Y< 1

2 , Z< 1
2 ).
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6 Marginal Distributions
To introduce the concept of a marginal distribution, let us consider the following
example.

EXAMPLE 20

In Example 12 we derived the joint probability distribution of two random variables
X and Y, the number of aspirin caplets and the number of sedative caplets included
among two caplets drawn at random from a bottle containing three aspirin, two seda-
tive, and four laxative caplets. Find the probability distribution of X alone and that
of Y alone.

Solution
The results of Example 12 are shown in the following table, together with the marginal
totals, that is, the totals of the respective rows and columns:

x
0 1 2

0
1
6

1
3

1
12

7
12

y 1
2
9

1
6

7
18

2
1

36
1
36

5
12

1
2

1
12

The column totals are the probabilities that X will take on the values 0, 1, and 2. In
other words, they are the values

g(x) =
2∑

y=0

f (x, y) for x = 0, 1, 2

of the probability distribution of X. By the same token, the row totals are the values

h(y) =
2∑

x=0

f (x, y) for y = 0, 1, 2

of the probability distribution of Y.

We are thus led to the following definition.

DEFINITION 10. MARGINAL DISTRIBUTION. If X and Y are discrete random variables
and f(x, y) is the value of their joint probability distribution at (x, y), the function
given by

g(x) =
∑

y

f (x, y)
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for each x within the range of X is called the marginal distribution of X. Corre-
spondingly, the function given by

h(y) =
∑

x

f (x, y)

for each y within the range of Y is called the marginal distribution of Y.

When X and Y are continuous random variables, the probability distributions are
replaced by probability densities, the summations are replaced by integrals, and
we obtain the following definition.

DEFINITION 11. MARGINAL DENSITY. If X and Y are continuous random variables
and f(x, y) is the value of their joint probability density at (x, y), the function
given by

g(x) =
∫ q

−q
f (x, y)dy for −q< x<q

is called the marginal density of X. Correspondingly, the function given by

h(y) =
∫ q

−q
f (x, y)dx for −q< y<q

is called the marginal density of Y.

EXAMPLE 21

Given the joint probability density

f (x, y) =

⎧⎪⎪⎨
⎪⎪⎩

2
3
(x + 2y) for 0< x< 1, 0< y< 1

0 elsewhere

find the marginal densities of X and Y.

Solution
Performing the necessary integrations, we get

g(x) =
∫ q

−q
f (x, y)dy =

∫ 1

0

2
3
(x + 2y)dy = 2

3
(x + 1)

for 0< x< 1 and g(x) = 0 elsewhere. Likewise,

h(y) =
∫ q

−q
f (x, y)dx =

∫ 1

0

2
3
(x + 2y)dx = 1

3
(1 + 4y)

for 0< y< 1 and h(y) = 0 elsewhere.

When we are dealing with more than two random variables, we can speak not
only of the marginal distributions of the individual random variables, but also of the
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joint marginal distributions of several of the random variables. If the joint probabil-
ity distribution of the discrete random variables X1, X2, . . ., and Xn has the values
f (x1, x2, . . . , xn), the marginal distribution of X1 alone is given by

g(x1) =
∑
x2

· · ·
∑
xn

f (x1, x2, . . . , xn)

for all values within the range of X1, the joint marginal distribution of X1, X2, and
X3 is given by

m(x1, x2, x3) =
∑
x4

· · ·
∑
xn

f (x1, x2, . . . , xn)

for all values within the range of X1, X2, and X3, and other marginal distributions
can be defined in the same way. For the continuous case, probability distributions
are replaced by probability densities, summations are replaced by integrals, and if
the joint probability density of the continuous random variables X1, X2, . . ., and Xn
has the values f (x1, x2, . . . , xn), the marginal density of X2 alone is given by

h(x2) =
∫ q

−q
· · ·
∫ q

−q
f (x1, x2, . . . , xn)dx1 dx3 · · · dxn

for −q< x2<q, the joint marginal density of X1 and Xn is given by

ϕ(x1, xn) =
∫ q

−q
· · ·
∫ q

−q
f (x1, x2, . . . , xn)dx2 dx3 · · · dxn−1

for −q< x1<q and −q< xn<q, and so forth.

EXAMPLE 22

Considering again the trivariate probability density of Example 19,

f (x1, x2, x3) =
{
(x1 + x2)e−x3 for 0< x1< 1, 0< x2< 1, x3> 0
0 elsewhere

find the joint marginal density of X1 and X3 and the marginal density of X1 alone.

Solution
Performing the necessary integration, we find that the joint marginal density of X1
and X3 is given by

m(x1, x3) =
∫ 1

0
(x1 + x2)e

−x3 dx2 =
(

x1 + 1
2

)
e−x3

for 0< x1< 1 and x3> 0 and m(x1, x3) = 0 elsewhere. Using this result, we find that
the marginal density of X1 alone is given by

g(x1) =
∫ q

0

∫ 1

0
f (x1, x2, x3)dx2 dx3 =

∫ q

0
m(x1, x3)dx3

=
∫ q

0

(
x1 + 1

2

)
e−x3 dx3 = x1 + 1

2

for 0< x1< 1 and g(x1) = 0 elsewhere.
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Corresponding to the various marginal and joint marginal distributions and den-
sities we have introduced in this section, we can also define marginal and joint
marginal distribution functions. Some problems relating to such distribution func-
tions will be left to the reader in Exercises 72, 79, and 80.

7 Conditional Distributions
In the conditional probability of event A, given event B, as

P(A|B) = P(A ∩ B)
P(B)

provided P(B)Z 0. Suppose now that A and B are the events X = x and Y = y so
that we can write

P(X = x|Y = y) = P(X = x, Y = y)
P(Y = y)

= f (x, y)
h(y)

provided P(Y = y) = h(y)Z 0, where f (x, y) is the value of the joint probability
distribution of X and Y at (x, y), and h(y) is the value of the marginal distribution of
Y at y. Denoting the conditional probability by f (x|y) to indicate that x is a variable
and y is fixed, let us now make the following definition.

DEFINITION 12. CONDITIONAL DISTRIBUTION. If f(x, y) is the value of the joint prob-
ability distribution of the discrete random variables X and Y at (x, y) and h(y) is
the value of the marginal distribution of Y at y, the function given by

f (x|y) = f (x, y)
h(y)

h(y)Z 0

for each x within the range of X is called the conditional distribution of X given
Y = y. Correspondingly, if g(x) is the value of the marginal distribution of X at x,
the function given by

w(y|x) = f (x, y)
g(x)

g(x)Z 0

for each y within the range of Y is called the conditional distribution of Y given
X = x.

EXAMPLE 23

With reference to Examples 12 and 20, find the conditional distribution of X
given Y = 1.

Solution
Substituting the appropriate values from the table in Example 20, we get

f (0|1) =
2
9
7
18

= 4
7

95



Probability Distributions and Probability Densities

f (1|1) =
1
6
7
18

= 3
7

f (2|1) = 0
7
18

= 0

When X and Y are continuous random variables, the probability distributions
are replaced by probability densities, and we obtain the following definition.

DEFINITION 13. CONDITIONAL DENSITY. If f(x, y) is the value of the joint density of
the continuous random variables X and Y at (x, y) and h(y) is the value of the
marginal distribution of Y at y, the function given by

f (x|y) = f (x, y)
h(y)

h(y)Z 0

for −q< x<q, is called the conditional density of X given Y = y. Correspond-
ingly, if g(x) is the value of the marginal density of X at x, the function
given by

w(y|x) = f (x, y)
g(x)

g(x)Z 0

for −q< y<q, is called the conditional density of Y given X = x.

EXAMPLE 24

With reference to Example 21, find the conditional density of X given Y = y, and
use it to evaluate P(X F 1

2 |Y = 1
2 ).

Solution
Using the results obtained on the previous page, we have

f (x|y) = f (x, y)
h(y)

=
2
3
(x + 2y)

1
3
(1 + 4y)

= 2x + 4y
1 + 4y

for 0< x< 1 and f (x|y) = 0 elsewhere. Now,

f

(
x

∣∣∣∣12
)

=
2x + 4 · 1

2

1 + 4 · 1
2

= 2x + 2
3
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and we can write

P

(
X F

1
2

∣∣∣∣Y = 1
2

)
=
∫ 1

2

0

2x + 2
3

dx = 5
12

It is of interest to note that in Figure 12 this probability is given by the ratio of the
area of trapezoid ABCD to the area of trapezoid AEFD.

Figure 12. Diagram for Example 24.

EXAMPLE 25

Given the joint probability density

f (x, y) =
{

4xy for 0< x< 1, 0< y< 1
0 elsewhere

find the marginal densities of X and Y and the conditional density of X given Y = y.

Solution
Performing the necessary integrations, we get

g(x) =
∫ q

−q
f (x, y)dy =

∫ 1

0
4xy dy

= 2xy2

∣∣∣∣∣
y=1

y=0

= 2x

for 0< x< 1, and g(x) = 0 elsewhere; also

h(y) =
∫ q

−q
f (x, y)dx =

∫ 1

0
4xy dx

= 2x2y

∣∣∣∣∣
x=1

x=0

= 2y
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for 0< y< 1, and h(y) = 0 elsewhere. Then, substituting into the formula for a con-
ditional density, we get

f (x|y) = f (x, y)
h(y)

= 4xy
2y

= 2x

for 0< x< 1, and f (x|y) = 0 elsewhere.

When we are dealing with more than two random variables, whether continuous
or discrete, we can consider various different kinds of conditional distributions or
densities. For instance, if f (x1, x2, x3, x4) is the value of the joint distribution of the
discrete random variables X1, X2, X3, and X4 at (x1, x2, x3, x4), we can write

p(x3|x1, x2, x4) = f (x1, x2, x3, x4)

g(x1, x2, x4)
g(x1, x2, x4)Z 0

for the value of the conditional distribution of X3 at x3 given X1 = x1, X2 = x2, and
X4 = x4, where g(x1, x2, x4) is the value of the joint marginal distribution of X1, X2,
and X4 at (x1, x2, x4). We can also write

q(x2, x4|x1, x3) = f (x1, x2, x3, x4)

m(x1, x3)
m(x1, x3)Z 0

for the value of the joint conditional distribution of X2 and X4 at (x2, x4) given
X1 = x1 and X3 = x3, or

r(x2, x3, x4|x1) = f (x1, x2, x3, x4)

b(x1)
b(x1)Z 0

for the value of the joint conditional distribution of X2, X3, and X4 at (x2, x3, x4)

given X1 = x1.
When we are dealing with two or more random variables, questions of indepen-

dence are usually of great importance. In Example 25 we see that f (x|y) = 2x does
not depend on the given value Y = y, but this is clearly not the case in Example 24,

where f (x|y) = 2x + 4y
1 + 4y

. Whenever the values of the conditional distribution of X

given Y = y do not depend on y, it follows that f (x|y) = g(x), and hence the formulas
of Definitions 12 and 13 yield

f (x, y) = f (x|y) · h(y) = g(x) · h(y)

That is, the values of the joint distribution are given by the products of the corre-
sponding values of the two marginal distributions. Generalizing from this observa-
tion, let us now make the following definition.

DEFINITION 14. INDEPENDENCE OF DISCRETE RANDOM VARIABLES. If f(x1, x2, . . . , xn) is
the value of the joint probability distribution of the discrete random variables
X1, X2, . . . , Xn at (x1, x2, . . . , xn) and fi(xi) is the value of the marginal distribution
of Xi at xi for i = 1, 2, . . . , n, then the n random variables are independent if and
only if

f (x1, x2, . . . , xn) = f1(x1) · f2(x2) · . . . · fn(xn)

for all (x1, x2, . . . , xn) within their range.

To give a corresponding definition for continuous random variables, we simply
substitute the word “density” for the word “distribution.”

With this definition of independence, it can easily be verified that the three ran-
dom variables of Example 22 are not independent, but that the two random variables
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X1 and X3 and also the two random variables X2 and X3 are pairwise independent
(see Exercise 81).

The following examples serve to illustrate the use of Definition 14 in finding
probabilities relating to several independent random variables.

EXAMPLE 26

Considering n independent flips of a balanced coin, let Xi be the number of heads
(0 or 1) obtained in the ith flip for i = 1, 2, . . . , n. Find the joint probability distribu-
tion of these n random variables.

Solution
Since each of the random variables Xi, for i = 1, 2, . . . , n, has the probability distri-
bution

fi(xi) = 1
2

for xi = 0, 1

and the n random variables are independent, their joint probability distribution is
given by

f (x1, x2, . . . , xn) = f1(x1) · f2(x2) · . . . · fn(xn)

= 1
2

· 1
2

· . . . · 1
2

=
(

1
2

)n

where xi = 0 or 1 for i = 1, 2, . . . , n.

EXAMPLE 27

Given the independent random variables X1, X2, and X3 with the probability
densities

f1(x1) =
{

e−x1 for x1> 0
0 elsewhere

f2(x2) =
{

2e−2x2 for x2> 0
0 elsewhere

f3(x3) =
{

3e−3x3 for x3> 0
0 elsewhere

find their joint probability density, and use it to evaluate the probability P(X1 +
X2 F 1, X3> 1).

Solution
According to Definition 14, the values of the joint probability density are
given by

f (x1, x2, x3) = f1(x1) · f2(x2) · f3(x3)

= e−x1 · 2e−2x2 · 3e−3x3

= 6e−x1−2x2−3x3
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for x1> 0, x2> 0, x3> 0, and f (x1, x2, x3) = 0 elsewhere. Thus,

P(X1 + X2 F 1, X3> 1) =
∫ q

1

∫ 1

0

∫ 1−x2

0
6e−x1−2x2−3x3 dx1 dx2 dx3

= (1 − 2e−1 + e−2)e−3

= 0.020

Exercises
69. Given the values of the joint probability distribution
of X and Y shown in the table

x
−1 1

−1
1
8

1
2

y 0 0
1
4

1
1
8

0

find
(a) the marginal distribution of X;
(b) the marginal distribution of Y;
(c) the conditional distribution of X given Y = −1.

70. With reference to Exercise 42, find
(a) the marginal distribution of X;
(b) the marginal distribution of Y;
(c) the conditional distribution of X given Y = 1;
(d) the conditional distribution of Y given X = 0.

71. Given the joint probability distribution

f (x, y, z) = xyz
108

for x = 1, 2, 3; y = 1, 2, 3; z = 1, 2

find
(a) the joint marginal distribution of X and Y;
(b) the joint marginal distribution of X and Z;
(c) the marginal distribution of X;
(d) the conditional distribution of Z given X = 1 and
Y = 2;
(e) the joint conditional distribution of Y and Z given
X = 3.

72. With reference to Example 20, find
(a) the marginal distribution function of X, that is, the
function given by G(x) = P(X F x) for −q< x<q;
(b) the conditional distribution function of X given Y =
1, that is, the function given by F(x|1) = P(X F x|Y = 1)
for −q< x<q.

73. Check whether X and Y are independent if their joint
probability distribution is given by
(a) f (x, y) = 1

4 for x = −1 and y = −1, x = −1 and
y = 1, x = 1 and y = −1, and x = 1 and y = 1;
(b) f (x, y) = 1

3 for x = 0 and y = 0, x = 0 and y = 1, and
x = 1 and y = 1.

74. If the joint probability density of X and Y is given by

f (x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1
4
(2x + y) for 0< x< 1, 0< y< 2

0 elsewhere

find
(a) the marginal density of X;
(b) the conditional density of Y given X = 1

4 .

75. With reference to Exercise 74, find
(a) the marginal density of Y;
(b) the conditional density of X given Y = 1.

76. If the joint probability density of X and Y is given by

f (x, y) =
{

24y(1 − x − y) for x> 0, y> 0, x + y< 1
0 elsewhere

find
(a) the marginal density of X;
(b) the marginal density of Y.

Also determine whether the two random variables are
independent.

77. With reference to Exercise 53, find
(a) the marginal density of X;
(b) the marginal density of Y.

Also determine whether the two random variables are
independent.

78. With reference to Example 22, find
(a) the conditional density of X2 given X1 = 1

3 and
X3 = 2;
(b) the joint conditional density of X2 and X3 given
X1 = 1

2 .
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79. If F(x, y) is the value of the joint distribution function
of X and Y at (x, y), show that the marginal distribution
function of X is given by

G(x) = F(x, q) for −q< x<q

Use this result to find the marginal distribution function
of X for the random variables of Exercise 54.

80. If F(x1, x2, x3) is the value of the joint distribution
function of X1, X2, and X3 at (x1, x2, x3), show that the
joint marginal distribution function of X1 and X3 is
given by

M(x1, x3) = F(x1, q, x3) for −q< x1<q, −q< x3<q

and that the marginal distribution function of X1 is
given by

G(x1) = F(x1, q, q) for −q< x1<q

With reference to Example 19, use these results to find

(a) the joint marginal distribution function of X1 and X3;
(b) the marginal distribution function of X1.

81. With reference to Example 22, verify that the three
random variables X1, X2, and X3 are not independent,
but that the two random variables X1 and X3 and
also the two random variables X2 and X3 are pairwise
independent.

82. If the independent random variables X and Y have
the marginal densities

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

1
2

for 0< x< 2

0 elsewhere

π(y) =

⎧⎪⎪⎨
⎪⎪⎩

1
3

for 0< y< 3

0 elsewhere

find
(a) the joint probability density of X and Y;
(b) the value of P(X2 + Y2> 1).

8 The Theory in Practice
This chapter has been about how probabilities can group themselves into probability
distributions, and how, in the case of continuous random variables, these distribu-
tions become probability density functions. In practice, however, all data appear to
be discrete. (Even if data arise from continuous random variables, the limitations
of measuring instruments and roundoff produce discrete values.) In this section, we
shall introduce some applications of the ideas of probability distributions and den-
sities to the exploration of raw data, an important element of what is called data
analysis.

When confronted with raw data, often consisting of a long list of measurements,
it is difficult to understand what the data are informing us about the process, product,
or service which gave rise to them. The following data, giving the response times of
30 integrated circuits (in picoseconds), illustrate this point:

Integrated Circuit Response Times (ps)

4.6 4.0 3.7 4.1 4.1 5.6 4.5 6.0 6.0 3.4

3.4 4.6 3.7 4.2 4.6 4.7 4.1 3.7 3.4 3.3

3.7 4.1 4.5 4.6 4.4 4.8 4.3 4.4 5.1 3.9

Examination of this long list of numbers seems to tell us little other than, per-
haps, the response times are greater than 3 ps or less than 7 ps. (If the list contained
several hundred numbers, even this information would be difficult to elicit.)

A start at exploring data can be made by constructing a stem-and-leaf display.
To construct such a display, the first digit of each response time is listed in a column
at the left, and the associated second digits are listed to the right of each first digit.
For the response-time data, we obtain the following stem-and-leaf display:
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3 7 4 4 7 7 4 3 7 9

4 6 0 1 1 5 6 2 6 7 1 1 5 6 4 8 3 4

5 6 1

6 0 0

In this display, each row is a stem and the numbers in the column to the left of the
vertical line are called stem labels. Each number on a stem to the right of the vertical
line is called a leaf.

The stem-and-leaf display allows examination of the data in a way that would
be difficult, if not impossible, from the original listing. For example, it can quickly
be seen that there are more response times in the range 4.0 to 4.9 ps than any other,
and that the great majority of circuits had response times of less than 5. This method
of exploratory data analysis yields another advantage; namely there is no loss of
information in a stem-and-leaf display.

The first two stems of this stem-and-leaf display contain the great majority of
the observations, and more detail might be desirable. To obtain a finer subdivision
of the data in each stem, a double-stem display can be constructed by dividing each
stem in half so that the leaves in the first half of each stem are 0, 1, 2, 3, and 4, and
those in the second half are 5, 6, 7, 8, and 9. The resulting double-stem display looks
like this:

3f 4 4 4 3

3s 7 7 7 7 9

4f 0 1 1 2 1 1 4 3 4

4s 6 5 6 6 7 5 6 8

5∗ 6 1

6∗ 0 0

The stem labels include the letter f (for first) to denote that the leaves of this stem
are 0–4, and s (for second) to denote that the leaves are 5–9. The asterisk is used with
stem labels 5 and 6 to show that all 10 digits are included in these stems.

Numerical data can be grouped according to their values in several other ways
in addition to stem-and-leaf displays.

DEFINITION 15. FREQUENCY DISTRIBUTION. A grouping of numerical data into classes
having definite upper and lower limits is called a frequency distribution.

The construction of a frequency distribution is easily facilitated with a computer
program such as MINITAB. The following discussion may be omitted if a computer
program is used to construct frequency distributions.

To construct a frequency distribution, first a decision is made about the number
of classes to use in grouping the data. The number of classes can be chosen to make
the specification of upper and lower class limits convenient. Generally, the number
of classes should increase as the number of observations becomes larger, but it is
rarely helpful to use fewer than 5 or more than 15 classes.
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The smallest and largest observations that can be put into each class are called
the class limits. In choosing class limits, it is important that the classes do not over-
lap, so there is no ambiguity about which class contains any given observation. Also,
enough classes should be included to accommodate all observations. Finally, the
observations are tallied to determine the class frequencies, the number of obser-
vations falling into each class.

EXAMPLE 28

Construct a frequency distribution of the following compressive strengths (in psi) of
concrete samples, given to the nearest 10 psi:

4890 4830 5490 4820 5230 4860 5040 5060 4500 5260

4610 5100 4730 5250 5540 4910 4430 4850 5040 5000

4600 4630 5330 5160 4950 4480 5310 4730 4700 4390

4710 5160 4970 4710 4430 4260 4890 5110 5030 4850

4820 4550 4970 4740 4840 4910 5200 4880 5150 4890

4900 4990 4570 4790 4480 5060 4340 4830 4670 4750

Solution
Since the smallest observation is 4260 and the largest is 5540, it will be convenient
to choose seven classes, having the class limits 4200–4390, 4400–4590, . . ., 5400–5990.
(Note that class limits of 4200–4400, 4400–4600, etc., are not used because they would
overlap and assignment of 4400, for example, would be ambiguous; it could fit into
either of the first two classes.) The following table exhibits the results of tallying the
observations, that is, counting the number that fall into each class:

Class Limits Tally Frequency

4200–4390 3

4400–4590 7

4600–4790 12

4800–4990 19

5000–5190 11

5200–5390 6

5400–5590 2

Total 60

Note the similarity between frequency distributions and probability distribu-
tions. A frequency distribution represents data, but a probability distribution rep-
resents a theoretical distribution of probabilities.

The midpoint between the upper class limit of a class and the lower class limit of
the next class in a frequency distribution is called a class boundary. Class boundaries,
rather than class marks, are used in constructing cumulative distributions
(Exercise 88). The interval between successive class boundaries is called the class
interval; it can also be defined as the difference between successive lower class lim-
its or successive upper class limits. (Note that the class interval is not obtained by

103



Probability Distributions and Probability Densities

subtracting the lower class limit of a class from its upper class limit.) A class can be
represented by a single number, called the class mark. This number is calculated for
any class by averaging its upper and lower class limits.

Once data have been grouped into a frequency distribution, each observation
in a given class is treated as if its value is the class mark of that class. In so doing,
its actual value is lost; it is known only that its value lies somewhere between the
class limits of its class. Such an approximation is the price paid for the convenience
of working with a frequency distribution.

EXAMPLE 29

For the frequency distribution of compressive strengths of concrete given in
Example 28, find (a) the class boundaries, (b) the class interval, and (c) the class
mark of each class.

Solution

(a) The class boundaries of the first class are 4195–4395. The class boundaries
of the second through the sixth classes are 4395–4595, 4595–4795, 4795–4995,
4995–5195, and 5195–5395, respectively. The class boundaries of the last class
are 5395–5595. Note that the lower class boundary of the first class is calculated
as if there were a class below the first class, and the upper class boundary of the
last class is calculated as if there were a class above it. Also note that, unlike
class limits, the class boundaries overlap.

(b) The class interval is 200, the difference between the upper and lower class
boundaries of any class. It also can be found by subtracting successive lower
class limits, for example, 4400 − 4200 = 200 psi, or by subtracting successive
upper class limits, for example, 4590 − 4390 = 200.

(c) The class mark of the first class is (4200 + 4390)/2 = 4295; it is (4400 + 4590)/
2 = 4495 for the second class; and the class marks are 4695, 4895, 5095, 5295,
and 5495 for the remaining five classes. Note that the class interval, 200, also is
given by the difference between any two successive class marks.

Histograms are easily constructed using most statistical software packages. Using
MINITAB software to construct the histogram of compressive strengths, we obtain
the result shown in Figure 13.

EXAMPLE 30

Suppose a wire is soldered to a board and pulled with continuously increasing force
until the bond breaks. The forces required to break the solder bonds are as follows:

Force Required to Break Solder Bonds (grams)

19.8 13.9 30.4 16.4 11.6 36.9 14.8 21.1 13.5 5.8

10.0 17.1 14.1 16.6 23.3 12.1 18.8 10.4 9.4 23.8

14.2 26.7 7.8 22.9 12.6 6.8 13.5 10.7 12.2 27.7

9.0 14.9 24.0 12.0 7.1 12.8 18.6 26.0 37.4 13.3

Use MINITAB or other statistical software to obtain a histogram of these data.
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Figure 13. Histogram of compressive strengths.

Solution
The resulting histogram is shown in Figure 14. This histogram exhibits a right-hand
“tail,” suggesting that while most of the solder bonds have low or moderate breaking
strengths, a few had strengths that were much greater than the rest.
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Figure 14. Histogram of solder-bond strengths.

Data having histograms with a long tail on the right or on the left are said to be
skewed. A histogram exhibiting a long right-hand tail arises when the data have pos-
itive skewness. Likewise, if the tail is on the left, the data are said the have negative
skewness. Examples of data that often are skewed include product lifetimes, many
kinds of stress tests, workers’ incomes, and many weather-related phenomena, such
as the proportion of cloudiness on a given day.
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The shape of a histogram can be a valuable guide to a search for causes of
production problems in the early stages of an investigation. For example, a skewed
histogram often arises from “drifting” of machine settings from their nominal val-
ues. Sometimes skewed distributions do not arise from underlying causes but are
the natural consequences of the type of measurements made. Some examples of
“naturally” skewed data include the duration of telephone calls, the time intervals
between emissions of radioactive particles, and, as previously mentioned, incomes
of workers.

Histograms sometimes show more than one mode, or “high points.” A mode
is a bar in a histogram that is surrounded by bars of lower frequency. A histogram
exhibiting two modes is said to be bimodal, and one having more than two modes
is said to be multimodal. An example of a bimodal histogram is shown in Figure 15.
If there are several causes operating, each cause may generate its own distribution,
and the histogram of all the data may be multimodal, each mode representing the
center of the data that would arise from the corresponding cause if it were operating
alone. Thus, multimodality can facilitate a search for underlying causes of error with
the aim of eliminating them.

Figure 15. Bimodal histogram.

Applied Exercises SECS. 1–2

83. With reference to Example 3, find the probability dis-
tribution of Y, the difference between the number of
heads and the number of tails obtained in four tosses of a
balanced coin.

84. An urn contains four balls numbered 1, 2, 3, and 4. If
two balls are drawn from the urn at random (that is, each
pair has the same chance of being selected) and Z is the
sum of the numbers on the two balls drawn, find
(a) the probability distribution of Z and draw a histo-
gram;
(b) the distribution function of Z and draw its graph.

85. A coin is biased so that heads is twice as likely as tails.
For three independent tosses of the coin, find
(a) the probability distribution of X, the total number
of heads;
(b) the probability of getting at most two heads.

86. With reference to Exercise 85, find the distribution
function of the random variable X and plot its graph. Use
the distribution function of X to find

(a) P(1<X F 3); (b) P(X > 2).

87. The probability distribution of V, the weekly num-
ber of accidents at a certain intersection, is given by
g(0) = 0.40, g(1) = 0.30, g(2) = 0.20, and g(3) = 0.10.
Construct the distribution function of V and draw
its graph.

88. With reference to Exercise 87, find the probability
that there will be at least two accidents in any one
week, using
(a) the original probabilities;
(b) the values of the distribution function.

89. This question has been intentionally omitted for this
edition.

90. With reference to Exercise 80, find the distribution
function of the sum of the spots on the dice, that is, the
probability that this sum of the spots on the dice will be
at most S, where S = 2, 3, . . . , 12.

106



Probability Distributions and Probability Densities

SECS. 3–4
91. The actual amount of coffee (in grams) in a 230-gram
jar filled by a certain machine is a random variable whose
probability density is given by

f (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 for x F 227.5

1
5

for 227.5< x< 232.5

0 for x G 232.5

Find the probabilities that a 230-gram jar filled by this
machine will contain
(a) at most 228.65 grams of coffee;
(b) anywhere from 229.34 to 231.66 grams of coffee;
(c) at least 229.85 grams of coffee.

92. The number of minutes that a flight from Phoenix to
Tucson is early or late is a random variable whose proba-
bility density is given by

f (x) =

⎧⎪⎨
⎪⎩

1
288

(36 − x2) for −6< x< 6

0 elsewhere

where negative values are indicative of the flight’s being
early and positive values are indicative of its being late.
Find the probabilities that one of these flights will be
(a) at least 2 minutes early;
(b) at least 1 minute late;
(c) anywhere from 1 to 3 minutes early;
(d) exactly 5 minutes late.

93. The tread wear (in thousands of kilometers) that car
owners get with a certain kind of tire is a random variable
whose probability density is given by

f (x) =

⎧⎪⎨
⎪⎩

1
30

e− x
30 for x> 0

0 for x F 0

Find the probabilities that one of these tires will last
(a) at most 18,000 kilometers;
(b) anywhere from 27,000 to 36,000 kilometers;
(c) at least 48,000 kilometers.

94. The shelf life (in hours) of a certain perishable pack-
aged food is a random variable whose probability density
function is given by

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

20,000
(x + 100)3

for x> 0

0 elsewhere

Find the probabilities that one of these packages will have
a shelf life of

(a) at least 200 hours;
(b) at most 100 hours;
(c) anywhere from 80 to 120 hours.

95. The total lifetime (in years) of five-year-old dogs of
a certain breed is a random variable whose distribution
function is given by

F(x) =

⎧⎪⎨
⎪⎩

0 for x F 5

1 − 25
x2 for x> 5

Find the probabilities that such a five-year-old dog
will live
(a) beyond 10 years;
(b) less than eight years;
(c) anywhere from 12 to 15 years.

96. In a certain city the daily consumption of water (in
millions of liters) is a random variable whose probability
density is given by

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

1
9

xe− x
3 for x> 0

0 elsewhere

What are the probabilities that on a given day
(a) the water consumption in this city is no more than 6
million liters;
(b) the water supply is inadequate if the daily capacity of
this city is 9 million liters?

SEC. 5
97. Two textbooks are selected at random from a shelf
that contains three statistics texts, two mathematics texts,
and three physics texts. If X is the number of statistics
texts and Y the number of mathematics texts actually
chosen, construct a table showing the values of the joint
probability distribution of X and Y.

98. Suppose that we roll a pair of balanced dice and X is
the number of dice that come up 1, and Y is the number
of dice that come up 4, 5, or 6.
(a) Draw a diagram like that of Figure 1 showing the val-
ues of X and Y associated with each of the 36 equally
likely points of the sample space.
(b) Construct a table showing the values of the joint prob-
ability distribution of X and Y.

99. If X is the number of heads and Y the number of
heads minus the number of tails obtained in three flips
of a balanced coin, construct a table showing the values
of the joint probability distribution of X and Y.

100. A sharpshooter is aiming at a circular target with
radius 1. If we draw a rectangular system of coordinates
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with its origin at the center of the target, the coordinates
of the point of impact, (X, Y), are random variables hav-
ing the joint probability density

f (x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1
π

for 0< x2 + y2< 1

0 elsewhere

Find
(a) P[(X, Y) ∈ A], where A is the sector of the circle in
the first quadrant bounded by the lines y = 0 and y = x;
(b) P[(X, Y) ∈ B], where B = {(x, y)|0< x2 + y2< 1

2 }.
101. Suppose that P, the price of a certain commodity (in
dollars), and S, its total sales (in 10,000 units), are ran-
dom variables whose joint probability distribution can be
approximated closely with the joint probability density

f (p, s) =
{

5pe−ps for 0.20<p< 0.40, s> 0
0 elsewhere

Find the probabilities that
(a) the price will be less than 30 cents and sales will
exceed 20,000 units;
(b) the price will be between 25 cents and 30 cents and
sales will be less than 10,000 units.

102. A certain college gives aptitude tests in the sciences
and the humanities to all entering freshmen. If X and Y
are, respectively, the proportions of correct answers that
a student gets on the tests in the two subjects, the joint
probability distribution of these random variables can be
approximated with the joint probability density

f (x, y) =

⎧⎪⎪⎨
⎪⎪⎩

2
5
(2x + 3y) for 0< x< 1, 0< y< 1

0 elsewhere

What are the probabilities that a student will get
(a) less than 0.40 on both tests;
(b) more than 0.80 on the science test and less than 0.50
on the humanities test?

SECS. 6–7
103. With reference to Exercise 97, find
(a) the marginal distribution of X;
(b) the conditional distribution of Y given X = 0.

104. If X is the proportion of persons who will respond to
one kind of mail-order solicitation, Y is the proportion of
persons who will respond to another kind of mail-order

solicitation, and the joint probability density of X and Y
is given by

f (x, y) =

⎧⎪⎪⎨
⎪⎪⎩

2
5
(x + 4y) for 0< x< 1, 0< y< 1

0 elsewhere

find the probabilities that
(a) at least 30 percent will respond to the first kind of
mail-order solicitation;
(b) at most 50 percent will respond to the second kind of
mail-order solicitation given that there has been a 20 per-
cent response to the first kind of mail-order solicitation.

105. If two cards are randomly drawn (without replace-
ment) from an ordinary deck of 52 playing cards, Z is the
number of aces obtained in the first draw, and W is the
total number of aces obtained in both draws, find
(a) the joint probability distribution of Z and W;
(b) the marginal distribution of Z;
(c) the conditional distribution of W given Z = 1.

106. With reference to Exercise 101, find
(a) the marginal density of P;
(b) the conditional density of S given P = p;
(c) the probability that sales will be less than 30,000 units
when p = 25 cents.

107. If X is the amount of money (in dollars) that a sales-
person spends on gasoline during a day and Y is the cor-
responding amount of money (in dollars) for which he or
she is reimbursed, the joint density of these two random
variables is given by

f (x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1
25

(
20 − x

x

)
for 10< x< 20,

x
2
< y< x

0 elsewhere

find
(a) the marginal density of X;
(b) the conditional density of Y given X = 12;
(c) the probability that the salesperson will be reim-
bursed at least $8 when spending $12.

108. Show that the two random variables of Exercise 102
are not independent.

109. The useful life (in hours) of a certain kind of inte-
grated circuit is a random variable having the probabil-
ity density

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

20,000
(x + 100)3

for x> 0

0 elsewhere
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If three of these circuits operate independently, find
(a) the joint probability density of X1, X2, and X3, repre-
senting the lengths of their useful lives;
(b) the value of P(X1< 100, X2< 100, X3 G 200).

SEC. 8
110. The following are the percentages of tin in measure-
ments made on 24 solder joints:

61 63 59 54 65 60 62 61 67 60 55 68

57 64 65 62 59 59 60 62 61 63 58 61

(a) Construct a stem-and-leaf diagram using 5 and 6 as
the stem labels.
(b) Construct a double-stem display.
(c) Which is more informative?

111. Suppose the first row of 12 observations in Exer-
cise 110 came from solder connections made at station
105 and the second row came from station 107. Use a
pair of stem-and-leaf diagrams to determine whether you
should suspect a difference in the soldering process at the
two stations.

112. Two different lathes turn shafts to be used in electric
motors. Measurements made of their diameters (in cm)
are

Lathe A: 1.42 1.38 1.40 1.41 1.39 1.44 1.36 1.42 1.40

Lathe B: 1.47 1.31 1.56 1.33 1.29 1.46 1.28 1.51

Construct two stem-and-leaf diagrams to see if you
should suspect that the two lathes are turning out shafts
of different diameters.

113. Use MINITAB or some other computer software to
construct a stem-and-leaf display for the following data
representing the time to make coke (in hours) in succes-
sive runs of a coking oven.

7.8 9.2 6.4 8.2 7.6 5.9 7.4 7.1 6.7 8.5

10.1 8.6 7.7 5.9 9.3 6.4 6.8 7.9 7.2 10.2

6.9 7.4 7.8 6.6 8.1 9.5 6.4 7.6 8.4 9.2

114. Use MINITAB or some other computer software to
construct a stem-and-leaf display for the combined data
of Exercise 112.

115. The following are the drying times (minutes) of 100
sheets coated with polyurethane under various ambient
conditions:

45.6 50.3 55.1 63.0 58.2 65.5 51.1 57.4 60.4 54.9

56.1 62.1 43.5 63.8 64.9 59.9 63.0 67.7 53.8 57.9

61.8 52.2 61.2 51.6 58.6 73.8 53.9 64.1 57.2 75.4

55.9 70.1 46.2 63.6 56.0 48.1 62.2 58.8 50.8 68.1

51.4 73.9 66.7 42.9 71.0 56.1 60.8 58.6 70.6 62.2

59.9 47.5 72.5 62.0 56.8 54.3 61.0 66.3 52.6 63.5

64.3 63.6 53.5 55.1 62.8 63.3 64.7 54.9 54.4 69.6

64.2 59.3 60.6 57.1 68.3 46.7 73.7 56.8 62.9 58.4

68.5 68.9 62.1 62.8 74.4 43.8 40.0 64.4 50.8 49.9

55.8 66.8 67.0 64.8 57.6 68.3 42.5 64.4 48.3 56.5

Construct a frequency distribution of these data, using
eight classes.

116. Eighty pilots were tested in a flight simulator and
the time for each to take corrective action for a given
emergency was measured in seconds, with the following
results:

11.1 5.2 3.6 7.6 12.4 6.8 3.8 5.7 9.0 6.0 4.9 12.6

7.4 5.3 14.2 8.0 12.6 13.7 3.8 10.6 6.8 5.4 9.7 6.7

14.1 5.3 11.1 13.4 7.0 8.9 6.2 8.3 7.7 4.5 7.6 5.0

9.4 3.5 7.9 11.0 8.6 10.5 5.7 7.0 5.6 9.1 5.1 4.5

6.2 6.8 4.3 8.5 3.6 6.1 5.8 10.0 6.4 4.0 5.4 7.0

4.1 8.1 5.8 11.8 6.1 9.1 3.3 12.5 8.5 10.8 6.5 7.9

6.8 10.1 4.9 5.4 9.6 8.2 4.2 3.4

Construct a frequency distribution of these data.

117. Find the class boundaries, the class interval, and the
class marks of the frequency distribution constructed in
Exercise 115.

118. Find the class boundaries, the class interval, and the
class marks of the frequency distribution constructed in
Exercise 116.

119. The following are the number of highway accidents
reported on 30 successive days in a certain county:

6 4 0 3 5 6 2 0 0 12 3 7 2 1 1

0 4 0 0 0 1 8 0 2 4 7 3 6 2 0

Construct a frequency distribution of these data. Iden-
tify the class boundaries, the class marks, and the class
interval.

120. A percentage distribution is obtained from a fre-
quency distribution by replacing each frequency by 100
times the ratio of that frequency to the total frequency.
Construct a percentage distribution using the reaction-
time data of Exercise 116.
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121. Construct a percentage distribution using the drying-
time data of Exercise 115.

122. Percentage distributions are useful in comparing two
frequency distributions having different total frequen-
cies. Construct percentage distributions from the follow-
ing two frequency distributions and determine whether
the distributions of daily absences in the two departments
follow similar patterns.

FREQUENCIES

Class Shipping Security
Limits Department Department

0–1 26 18

2–3 18 11

4–5 10 7

6–7 4 3

8–9 2 1

Totals 60 40

123. A cumulative frequency distribution is constructed
from a frequency distribution by replacing each fre-
quency with the sum of the frequency of the given class
and the frequencies of all classes above it, and represent-
ing each class by its upper class boundary. Construct a
cumulative frequency distribution using the data of Exer-
cise 115.

124. Construct a cumulative frequency distribution using
the data of Exercise 116.

125. Construct cumulative percentage distributions from
the frequency distributions of absences given in Exer-
cise 122.

126. Unequal class intervals. The small number of obser-
vations greater than 7 in Exercise 119 may cause some
difficulty in constructing a frequency distribution. To
keep class intervals equal, one is faced with the dilemma
of either creating too many classes for only 30 observa-
tions or using a small number of classes with excessive
loss of information in the first few classes. In such cases,
one is tempted to drop the rule of equal-size classes, using
a larger interval for the last class.
(a) If that were done, what would the resulting frequency
distribution become?
(b) Is there a unique class interval?

127. The following are the times to failure of 38 light
bulbs, given in hours of operation.

150 389 345 310 20 310 175 376 334 340

332 331 327 344 328 341 325 2 311 320

256 315 55 345 111 349 245 367 81 327

355 309 375 316 336 278 396 287

(a) Dropping the rule that class intervals must be equal,
construct a frequency distribution from these data.
(b) Can you find the class mark of every class?

128. (a) Construct a histogram of the reaction times of
pilots from the data in Exercise 116.
(b) What can be said about the shape of this histogram?

129. (a) Construct a histogram of the drying times of
polyurethane from the data in Exercise 115.
(b) What can be said about the shape of this histogram?

130. Use the data of Exercise 128 to illustrate that class
marks are given by the midpoint between successive class
boundaries as well as the midpoint between successive
class limits.

131. Using the data of Exercise 129, show that the class
marks also are given by the midpoint between successive
class boundaries.

132. Construct a histogram using the solder-joint data in
Exercise 110.

133. (a) Using only the first two rows of the data for the
response times given in Section 8, construct a histogram.
(b) How would you describe the shape of the histogram?

134. (a) Combining the data for both lathes in Exer-
cise 112, construct a histogram.
(b) How would you describe the shape of the histogram?

135. Use MINITAB or some other computer software to
construct a histogram of the coking-time data given in
Exercise 113.

136. Use MINITAB or some other computer software to
construct a histogram of the drying-time data in Exer-
cise 115.

137. A plot of the points (x, f ), where x represents the
class mark of a given class in a frequency distribution and
f represents its frequency, is called a frequency polygon.
Construct a frequency polygon using the data in Exer-
cise 116.

138. Construct a frequency polygon from the data in
Exercise 115.

139. A plot of the cumulative frequency (see Exer-
cise 123) on the y-axis and the corresponding upper class
boundary on the x-axis is called an ogive.
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(a) Construct an ogive for the data of Exercise 115.
(b) Using the same set of axes, relabel the y-axis so that
the same graph also shows the ogive of the percentage
distribution of drying times.

140. (a) Construct an ogive for the reaction times given
in Exercise 116.
(b) Construct an ogive representing the cumulative per-
centage distribution.
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Answers to Odd-Numbered Exercises

1 (a) no, because f (4) is negative; (b) yes; (c) no, because
the sum of the probabilities is less than 1.
5 0<k< 1.
9 (a) no, because F(4) exceeds 1; (b) no, because F(2) is
less than F(1); (c) yes.

11 (a) 1
2 ; (b) 1

6 ; (c) f (1) = 1
3 ; f (4) = 1

6 ; f (6) = 2
3 ;

f (10) = 1
6 ; f (x) = 0 elsewhere.

13 (a) 3
4 ; (b) 1

4 ; (c) 1
2 ; (d) 3

4 ; (e) 1
2 ; (f) 1

4 .

17 (b) 2
5 .

19 (c) 0.124.

21 F(y) =

⎧⎪⎪⎨
⎪⎪⎩

0 for y … 2
1

16 (y
2 + 2y − 8) for 2< y< 4

1 for y Ú 4

The probabilities are 0.454 and 0.1519.

23 F(x) =

⎧⎪⎨
⎪⎩

0 for x … 0
1
2
√

x for 0< x< 4;
1 for x Ú 4

(b) 1
4 and 1

2 .

25 F(z) =
{

0 for z … 0

1 − e−z2
for z> 0

27 G(x) =

⎧⎪⎨
⎪⎩

0 for x … 0
3x2 − 2x3 for 0< x< 1
1 for x Ú 1

The probabilities are 5
32 and 1

2 .

29 F(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 for x … 0
x2

2
for 0< x< 1

2x − x2

2
− 1 for … x< 2

1 for x Ú 2

31 F(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for x … 0
x2

4
for 0< x … 1

1
4 (2x − 1) for 1< x … 2
1
4 (6x − x2 − 5) for 2< x< 3
1 for x Ú 3

33 f (x) = 1
2 for − 1< x< 1 and f (x) = 0 elsewhere.

35 f (y) = 18

y3
for y> 0 and f (y) = 0 elsewhere; the two prob-

abilities are 16
25 and 9

64 .

37 The three probabilities are 1 − 3e−2, 2e−1 − 4e−3, and
5e−5.
39 (a) F(x) = 0; (b) F(x) = 1

2 x; (c) F(x) = 1
2 (x + 1);

(d) F(x) = 0.

41 The probabilities are 1
4 , 1

4 , 3
8 , and 1

2 .

43 (a) 1
4 ; (b) 0; (c) 7

24 ; (d) 119
120 .

45 (a) 29
89 ; (b) 5

89 ; (c) 55
89 .

111



Probability Distributions and Probability Densities

47 x
0 1 2 3

0 0 1
30

1
10

1
5

y 1 1
30

2
15

3
10

8
15

2 1
10

3
10

3
5 1

49 k = 2.
51 (a) 1

2 ; (b) 5
9 ; (c) 1

3 .

53 1 − 1
2 ln 2 = 0.6354.

55 (e−1 − e−4)2.
57 (e−2 − e−3)2.
63 (a) 1

18 ; (b) 7
27 .

65 k = 144.
71 (a) m(x, y) = xy

36
for x = 1, 2, 3 and y = 1, 2, 3;

(b) n(x, z) = xz
18

for x = 1, 2, 3 and z = 1, 2;

(c) g(x) = x
6

for x = 1, 2, 3; (d) φ(z|1, 2) = z
3

for z = 1, 2;

(e) ψ(y, z|3) = yz
18

for y = 1, 2, 3 and z = 1, 2.

73 (a) Independent; (b) not independent.

75 (a) h(y) = 1
4 (1 + y) for 0< y< 2 and h(y) = 0 elsewhere;

(b) f (x|1) = 1
2 (2x + 1) for 0< x< 1 and f (x|1) = 0 elsewhere.

77 (a) g(x) = − ln x for 0< x< 1 and g(x) = 0 elsewhere;
(b) h(y) = 1 for 0< y< 1 and h(y) = 0 elsewhere. The two
random variables are not independent.

79 G(x) = 1 − e−x2
for x> 0 and G(x) = 0 elsewhere.

83 Y −4 −2 0 2 4

P(Y) 1
16

4
16

6
16

4
16

1
16

85 (a) X 0 1 2 3

P(X) 1
27

6
27

12
27

8
27

(b) 19
27 .

87 F(V) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 for V< 0
0.40 for 0 … V< 1
0.70 for 1 … V< 2
0.90 for 2 … V< 3

1 for V Ú 3

.

89 Yes;
12∑

x=2

f (x) = 1.

91 (a) 0.23; (b) 0.464; (c) 0.53.
93 (a) 0.4512; (b) 0.1054; (c) 0.2019.

95 (a) 1
4 ; (b) 39

64 ; (c) 1
16 .

101 (a) 0.3038; (b) 1
221 .

103 (a) g(0) = 5
14 , g(1) = 15

28 , g(2) = 3
28 ;

(b) φ(0|0) = 3
10 , φ(1|0) = 6

10 , φ(2|0) = 1
10 .

105 (a) f (0, 0) = 188
221 , f (0, 1) = 16

221 , f (1, 0) = 16
221 ,

f (1, 1) = 1
221 . (b) g(0) = 204

221 , g(1) = 17
221 ; (c) φ(0|0) = 16

17 ,

φ(1, 1) = 1
17 .

107 (a) g(x) = 20 − x
50

for 10< x< 20 and g(x) = 0 else-

where; (b) φ(y|12) = 1
6 for 6< y< 12 and φ(y|12) = 0

elsewhere; (c) 2
3 .

109 (a) f (x1, x2, x3) = (20, 000)3

(x1 + 100)3(x2 + 100)3(x3 + 100)3

for x1> 0, x2> 0, x3> 0 and f (x1, x2, x3) = 0 elsewhere;
(b) 1

16 .
111 Station 107 data show less variability than station
105 data.
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Mathematical Expectation

1 Introduction
2 The Expected Value of a Random

Variable
3 Moments
4 Chebyshev’s Theorem
5 Moment-Generating Functions

6 Product Moments
7 Moments of Linear Combinations of Random

Variables
8 Conditional Expectations
9 The Theory in Practice

1 Introduction Originally, the concept of a mathematical expectation arose in connection with games
of chance, and in its simplest form it is the product of the amount a player stands to
win and the probability that he or she will win. For instance, if we hold one of 10,000
tickets in a raffle for which the grand prize is a trip worth $4,800, our mathemati-
cal expectation is 4,800 · 1

10,000 = $0.48. This amount will have to be interpreted in
the sense of an average—altogether the 10,000 tickets pay $4,800, or on the average
$4,800
10,000 = $0.48 per ticket.

If there is also a second prize worth $1,200 and a third prize worth $400, we can
argue that altogether the 10,000 tickets pay $4,800 + $1,200 + $400 = $6,400, or on
the average $6,400

10,000 = $0.64 per ticket. Looking at this in a different way, we could
argue that if the raffle is repeated many times, we would lose 99.97 percent of the
time (or with probability 0.9997) and win each of the prizes 0.01 percent of the time
(or with probability 0.0001). On the average we would thus win

0(0.9997)+ 4,800(0.0001)+ 1,200(0.0001)+ 400(0.0001) = $0.64

which is the sum of the products obtained by multiplying each amount by the corre-
sponding probability.

2 The Expected Value of a Random Variable
In the illustration of the preceding section, the amount we won was a random vari-
able, and the mathematical expectation of this random variable was the sum of the
products obtained by multiplying each value of the random variable by the corre-
sponding probability. Referring to the mathematical expectation of a random vari-
able simply as its expected value, and extending the definition to the continuous case
by replacing the operation of summation by integration, we thus have the following
definition.

From Chapter 4 of John E. Freund’s Mathematical Statistics with Applications,
Eighth Edition. Irwin Miller, Marylees Miller. Copyright © 2014 by Pearson Education, Inc.
All rights reserved.
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DEFINITION 1. EXPECTED VALUE. If X is a discrete random variable and f(x) is the
value of its probability distribution at x, the expected value of X is

E(X) =
∑

x
x · f (x)

Correspondingly, if X is a continuous random variable and f(x) is the value of its
probability density at x, the expected value of X is

E(X) =
∫ q

−q
x · f (x)dx

In this definition it is assumed, of course, that the sum or the integral exists; other-
wise, the mathematical expectation is undefined.

EXAMPLE 1

A lot of 12 television sets includes 2 with white cords. If 3 of the sets are chosen
at random for shipment to a hotel, how many sets with white cords can the shipper
expect to send to the hotel?

Solution
Since x of the 2 sets with white cords and 3 − x of the 10 other sets can be chosen

in

(
2
x

) (
10

3 − x

)
ways, 3 of the 12 sets can be chosen in

(
12
3

)
ways, and these

(
12
3

)
possibilities are presumably equiprobable, we find that the probability distribution
of X, the number of sets with white cords shipped to the hotel, is given by

f (x) =

(
2
x

)(
10

3 − x

)
(

12
3

) for x = 0, 1, 2

or, in tabular form,

x 0 1 2

f (x)
6

11
9

22
1

22

Now,

E(X) = 0 · 6
11

+ 1 · 9
22

+ 2 · 1
22

= 1
2

and since half a set cannot possibly be shipped, it should be clear that the term
“expect” is not used in its colloquial sense. Indeed, it should be interpreted as an
average pertaining to repeated shipments made under the given conditions.
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EXAMPLE 2

Certain coded measurements of the pitch diameter of threads of a fitting have the
probability density

f (x) =

⎧⎪⎨
⎪⎩

4
π(1 + x2)

for 0< x< 1

0 elsewhere

Find the expected value of this random variable.

Solution
Using Definition 1, we have

E(X) =
∫ 1

0
x · 4
π(1 + x2)

dx

= 4
π

∫ 1

0

x
1 + x2 dx

= ln 4
π

= 0.4413

There are many problems in which we are interested not only in the expected
value of a random variable X, but also in the expected values of random variables
related to X. Thus, we might be interested in the random variable Y, whose values
are related to those of X by means of the equation y = g(x); to simplify our notation,
we denote this random variable by g(X). For instance, g(X) might be X3 so that
when X takes on the value 2, g(X) takes on the value 23 = 8. If we want to find
the expected value of such a random variable g(X), we could first determine its
probability distribution or density and then use Definition 1, but generally it is easier
and more straightforward to use the following theorem.

THEOREM 1. If X is a discrete random variable and f (x) is the value of its
probability distribution at x, the expected value of g(X) is given by

E[g(X)] =
∑

x

g(x) · f (x)

Correspondingly, if X is a continuous random variable and f (x) is the
value of its probability density at x, the expected value of g(X) is given by

E[g(X)] =
∫ q

−q
g(x) · f (x)dx

Proof Since a more general proof is beyond the scope of this chapter, we
shall prove this theorem here only for the case where X is discrete and
has a finite range. Since y = g(x) does not necessarily define a one-to-one
correspondence, suppose that g(x) takes on the value gi when x takes on
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the values xi1, xi2, . . . , xini . Then, the probability that g(X) will take on the
value gi is

P[g(X) = gi] =
ni∑

j=1

f (xij)

and if g(x) takes on the values g1, g2, . . . , gm, it follows that

E[g(X)] =
m∑

i=1

gi · P[g(X) = gi]

=
m∑

i=1

gi ·
ni∑

j=1

f (xij)

=
m∑

i=1

ni∑
j=1

gi · f (xij)

=
∑

x

g(x) · f (x)

where the summation extends over all values of X.

EXAMPLE 3

If X is the number of points rolled with a balanced die, find the expected value of
g(X) = 2X2 + 1.

Solution
Since each possible outcome has the probability 1

6 , we get

E[g(X)] =
6∑

x=1

(2x2 + 1) · 1
6

= (2 · 12 + 1) · 1
6

+ · · · + (2 · 62 + 1) · 1
6

= 94
3

EXAMPLE 4

If X has the probability density

f (x) =
{

ex for x> 0
0 elsewhere

find the expected value of g(X) = e3X/4.
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Solution
According to Theorem 1, we have

E[e3X/4] =
∫ q

0
e3x/4 · e−x dx

=
∫ q

0
e−x/4 dx

= 4

The determination of mathematical expectations can often be simplified by using
the following theorems, which enable us to calculate expected values from other
known or easily computed expectations. Since the steps are essentially the same,
some proofs will be given for either the discrete case or the continuous case; others
are left for the reader as exercises.

THEOREM 2. If a and b are constants, then

E(aX + b) = aE(X)+ b

Proof Using Theorem 1 with g(X) = aX + b, we get

E(aX + b) =
∫ q

−q
(ax + b) · f (x)dx

= a
∫ q

−q
x · f (x)dx + b

∫ q

−q
f (x)dx

= aE(X)+ b

If we set b = 0 or a = 0, we can state the following corollaries to Theorem 2.

COROLLARY 1. If a is a constant, then

E(aX) = aE(X)

COROLLARY 2. If b is a constant, then

E(b) = b

Observe that if we write E(b), the constant b may be looked upon as a random
variable that always takes on the value b.

THEOREM 3. If c1, c2, . . . , and cn are constants, then

E

⎡
⎣ n∑

i=1

cigi(X)

⎤
⎦ =

n∑
i=1

ciE[gi(X)]
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Proof According to Theorem 1 with g(X) =
n∑

i=1
cigi(X), we get

E

⎡
⎣ n∑

i=1

cigi(X)

⎤
⎦ =

∑
x

⎡
⎣ n∑

i=1

cigi(x)

⎤
⎦ f (x)

=
n∑

i=1

∑
x

cigi(x)f (x)

=
n∑

i=1

ci

∑
x

gi(x)f (x)

=
n∑

i=1

ciE[gi(X)]

EXAMPLE 5

Making use of the fact that

E(X2) = (12 + 22 + 32 + 42 + 52 + 62) · 1
6

= 91
6

for the random variable of Example 3, rework that example.

Solution

E(2X2 + 1) = 2E(X2)+ 1 = 2 · 91
6

+ 1 = 94
3

EXAMPLE 6

If the probability density of X is given by

f (x) =
{

2(1 − x) for 0< x< 1
0 elsewhere

(a) show that

E(Xr) = 2
(r + 1)(r + 2)

(b) and use this result to evaluate
E[(2X + 1)2]

Solution

(a)

E(Xr) =
∫ 1

0
xr · 2(1 − x)dx = 2

∫ 1

0
(xr − xr+1)dx

= 2
(

1
r + 1

− 1
r + 2

)
= 2
(r + 1)(r + 2)

118



Mathematical Expectation

(b) Since E[(2X + 1)2] = 4E(X2)+ 4E(X)+ 1 and substitution of r = 1 and r = 2
into the preceding formula yields E(X) = 2

2·3 = 1
3 and E(X2) = 2

3·4 = 1
6 , we get

E[(2X + 1)2] = 4 · 1
6

+ 4 · 1
3

+ 1 = 3

EXAMPLE 7

Show that

E[(aX + b)n] =
n∑

i=0

(
n
i

)
an−ibiE(Xn−i)

Solution

Since (ax + b)n =
n∑

i=0

(
n
i

)
(ax)n−ibi, it follows that

E[(aX + b)n] = E

⎡
⎣ n∑

i=0

(
n
i

)
an−ibiXn−i

⎤
⎦

=
n∑

i=0

(
n
i

)
an−ibiE(Xn−i)

The concept of a mathematical expectation can easily be extended to situations
involving more than one random variable. For instance, if Z is the random variable
whose values are related to those of the two random variables X and Y by means of
the equation z = g(x, y), we can state the following theorem.

THEOREM 4. If X and Y are discrete random variables and f (x, y) is the
value of their joint probability distribution at (x, y), the expected value of
g(X, Y) is

E[g(X, Y)] =
∑

x

∑
y

g(x, y) · f (x, y)

Correspondingly, if X and Y are continuous random variables and f (x, y)
is the value of their joint probability density at (x, y), the expected value of
g(X, Y) is

E[g(X, Y)] =
∫ q

−q

∫ q

−q
g(x, y)f (x, y)dx dy

Generalization of this theorem to functions of any finite number of random variables
is straightforward.
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EXAMPLE 8

Find the expected value of g(X, Y) = X + Y.

Solution

E(X + Y) =
2∑

x=0

2∑
y=0

(x + y) · f (x, y)

= (0 + 0) · 1
6

+ (0 + 1) · 2
9

+ (0 + 2) · 1
36

+ (1 + 0) · 1
3

+ (1 + 1) · 1
6

+ (2 + 0) · 1
12

= 10
9

EXAMPLE 9

If the joint probability density of X and Y is given by

f (x, y) =
{

2
7 (x + 2y) for 0< x< 1, 1< y< 2
0 elsewhere

find the expected value of g(X, Y) = X/Y3.

Solution

E(X/Y3) =
∫ 2

1

∫ 1

0

2x(x + 2y)
7y3 dx dy

= 2
7

∫ 2

1

(
1

3y3 + 1
y2

)
dy

= 15
84

The following is another theorem that finds useful applications in subsequent
work. It is a generalization of Theorem 3, and its proof parallels the proof of that
theorem.

THEOREM 5. If c1, c2, . . . , and cn are constants, then

E

⎡
⎣ n∑

i=1

cigi(X1, X2, . . . , Xk)

⎤
⎦ =

n∑
i=1

ciE[gi(X1, X2, . . . , Xk)]
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Exercises
1. To illustrate the proof of Theorem 1, consider the ran-
dom variable X, which takes on the values −2, −1, 0, 1,
2, and 3 with probabilities f (−2), f (−1), f (0), f (1), f (2),
and f (3). If g(X) = X2, find
(a) g1, g2, g3, and g4, the four possible values of g(x);
(b) the probabilities P[g(X) = gi] for i = 1, 2, 3, 4;

(c) E[g(X)] =
4∑

i=1
gi · P[g(X) = gi], and show that

it equals ∑
x

g(x) · f (x)

2. Prove Theorem 2 for discrete random variables.

3. Prove Theorem 3 for continuous random variables.

4. Prove Theorem 5 for discrete random variables.

5. Given two continuous random variables X and Y, use
Theorem 4 to express E(X) in terms of
(a) the joint density of X and Y;
(b) the marginal density of X.

6. Find the expected value of the discrete random vari-
able X having the probability distribution

f (x) = |x − 2|
7

for x = −1, 0, 1, 3

7. Find the expected value of the random variable Y
whose probability density is given by

f ( y) =

⎧⎪⎨
⎪⎩

1
8
( y + 1) for 2< y< 4

0 elsewhere

8. Find the expected value of the random variable X
whose probability density is given by

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

x for 0< x< 1
2 − x for 1 F x< 2
0 elsewhere

9. (a) If X takes on the values 0, 1, 2, and 3 with probabil-
ities 1

125 , 12
125 , 48

125 , and 64
125 , find E(X) and E(X2).

(b) Use the results of part (a) to determine the value of
E[(3X + 2)2].

10. (a) If the probability density of X is given by

f (x) =

⎧⎪⎨
⎪⎩

1
x(ln 3)

for 1< x< 3

0 elsewhere

find E(X), E(X2), and E(X3).
(b) Use the results of part (a) to determine E(X3 + 2X2 −
3X + 1).

11. If the probability density of X is given by

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x
2

for 0< x F 1

1
2

for 1< x F 2

3 − x
2

for 2< x< 3

0 elsewhere

find the expected value of g(X) = X2 − 5X + 3.

12. This has been intentionally omitted for this edition.

13. This has been intentionally omitted for this edition.

14. This has been intentionally omitted for this edition.

15. This has been intentionally omitted for this edition.

16. If the probability distribution of X is given by

f (x) =
(

1
2

)x

for x = 1, 2, 3, . . .

show that E(2X) does not exist. This is the famous
Petersburg paradox, according to which a player’s expec-
tation is infinite (does not exist) if he or she is to receive
2x dollars when, in a series of flips of a balanced coin, the
first head appears on the xth flip.

3 Moments In statistics, the mathematical expectations defined here and in Definition 4, called
the moments of the distribution of a random variable or simply the moments of a
random variable, are of special importance.
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DEFINITION 2. MOMENTS ABOUT THE ORIGIN. The rth moment about the origin of a
random variable X, denoted by �′

r, is the expected value of X′; symbolically

μ′
r = E(Xr) =

∑
x

xr · f (x)

for r = 0, 1, 2, . . . when X is discrete, and

μ′
r = E(Xr) =

∫ q

−q
xr · f (x)dx

when X is continuous.

It is of interest to note that the term “moment” comes from the field of physics:
If the quantities f (x) in the discrete case were point masses acting perpendicularly
to the x-axis at distances x from the origin, μ′

1 would be the x-coordinate of the
center of gravity, that is, the first moment divided by

∑
f (x) = 1, and μ′

2 would be
the moment of inertia. This also explains why the moments μ′

r are called moments
about the origin: In the analogy to physics, the length of the lever arm is in each
case the distance from the origin. The analogy applies also in the continuous case,
where μ′

1 and μ′
2 might be the x-coordinate of the center of gravity and the moment

of inertia of a rod of variable density.
When r = 0, we have μ′

0 = E(X0) = E(1) = 1 by Corollary 2 of Theorem 2.
When r = 1, we have μ′

1 = E(X), which is just the expected value of the random
variable X, and in view of its importance in statistics we give it a special symbol and
a special name.

DEFINITION 3. MEAN OF A DISTRIBUTION. �′
1 is called the mean of the distribution of

X, or simply the mean of X, and it is denoted simply by �.

The special moments we shall define next are of importance in statistics because
they serve to describe the shape of the distribution of a random variable, that is, the
shape of the graph of its probability distribution or probability density.

DEFINITION 4. MOMENTS ABOUT THE MEAN. The rth moment about the mean of a
random variable X, denoted by �r, is the expected value of (X − �)r, symbolically

μr = E
[
(X −μ)r] =

∑
x

(x −μ)r · f (x)

for r = 0, 1, 2, . . . , when X is discrete, and

μr = E
[
(X −μ)r] =

∫ q

−q
(x − u)r · f (x)dx

when X is continuous.
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Note that μ0 = 1 and μ1 = 0 for any random variable for which μ exists (see
Exercise 17).

The second moment about the mean is of special importance in statistics because
it is indicative of the spread or dispersion of the distribution of a random variable;
thus, it is given a special symbol and a special name.

DEFINITION 5. VARIANCE. �2 is called the variance of the distribution of X, or sim-
ply the variance of X, and it is denoted by σ 2, σx

2, var(X), or V(X). The positive
square root of the variance, σ , is called the standard deviation of X.

Figure 1 shows how the variance reflects the spread or dispersion of the distribution
of a random variable. Here we show the histograms of the probability distributions
of four random variables with the same mean μ = 5 but variances equaling 5.26,
3.18, 1.66, and 0.88. As can be seen, a small value of σ 2 suggests that we are likely to
get a value close to the mean, and a large value of σ 2 suggests that there is a greater
probability of getting a value that is not close to the mean. This will be discussed
further in Section 4. A brief discussion of how μ3, the third moment about the mean,
describes the symmetry or skewness (lack of symmetry) of a distribution is given in
Exercise 26.

In many instances, moments about the mean are obtained by first calculating
moments about the origin and then expressing the μr in terms of the μ′

r. To serve
this purpose, the reader will be asked to verify a general formula in Exercise 25.
Here, let us merely derive the following computing formula for σ 2.

Figure 1. Distributions with different dispersions.
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THEOREM 6.

σ 2 = μ′
2 −μ2

Proof
σ 2 = E[(X −μ)2]

= E(X2 − 2μX +μ2)

= E(X2)− 2μE(X)+ E(μ2)

= E(X2)− 2μ ·μ+μ2

= μ′
2 −μ2

EXAMPLE 10

Use Theorem 6 to calculate the variance of X, representing the number of points
rolled with a balanced die.

Solution
First we compute

μ = E(X) = 1 · 1
6

+ 2 · 1
6

+ 3 · 1
6

+ 4 · 1
6

+ 5 · 1
6

+ 6 · 1
6

= 7
2

Now,

μ′
2 = E(X2) = 12 · 1

6
+ 22 · 1

6
+ 32 · 1

6
+ 42 · 1

6
+ 52 · 1

6
+ 62 · 1

6

= 91
6

and it follows that

σ 2 = 91
6

−
(

7
2

)2

= 35
12

EXAMPLE 11

With reference to Example 2, find the standard deviation of the random
variable X.

Solution
In Example 2 we showed that μ = E(X) = 0.4413. Now

μ′
2 = E(X2) = 4

π

∫ 1

0

x2

1 + x2 dx

= 4
π

∫ 1

0

(
1 − 1

1 + x2

)
dx
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= 4
π

− 1

= 0.2732

and it follows that

σ 2 = 0.2732 − (0.4413)2 = 0.0785

and σ = √
0.0785 = 0.2802.

The following is another theorem that is of importance in work connected with
standard deviations or variances.

THEOREM 7. If X has the variance σ 2, then

var(aX + b) = a2σ 2

The proof of this theorem will be left to the reader, but let us point out the following
corollaries: For a = 1, we find that the addition of a constant to the values of a
random variable, resulting in a shift of all the values of X to the left or to the right,
in no way affects the spread of its distribution; for b = 0, we find that if the values
of a random variable are multiplied by a constant, the variance is multiplied by the
square of that constant, resulting in a corresponding change in the spread of the
distribution.

4 Chebyshev’s Theorem
To demonstrate how σ or σ 2 is indicative of the spread or dispersion of the distribu-
tion of a random variable, let us now prove the following theorem, called
Chebyshev’s theorem after the nineteenth-century Russian mathematician P. L.
Chebyshev. We shall prove it here only for the continuous case, leaving the discrete
case as an exercise.

THEOREM 8. (Chebyshev’s Theorem) If μ and σ are the mean and the stan-
dard deviation of a random variable X, then for any positive constant
k the probability is at least 1 − 1

k2 that X will take on a value within k
standard deviations of the mean; symbolically,

P(|x −μ|<kσ)Ú 1 − 1
k2 , σ Z 0

Proof According to Definitions 4 and 5, we write

σ 2 = E[(X −μ)2] =
∫ q

−q
(x −μ)2 · f (x)dx
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Figure 2. Diagram for proof of Chebyshev’s theorem.

Then, dividing the integral into three parts as shown in Figure 2, we get

σ 2 =
∫ μ−kσ

−q
(x −μ)2 · f (x)dx +

∫ μ+kσ

μ−kσ
(x −μ)2 · f (x)dx

+
∫ q

μ+kσ
(x −μ)2 · f (x)dx

Since the integrand (x −μ)2 · f (x) is nonnegative, we can form the
inequality

σ 2 G
∫ μ−kσ

−q
(x −μ)2 · f (x)dx +

∫ q

μ+kσ
(x −μ)2 · f (x)dx

by deleting the second integral. Therefore, since (x −μ)2 G k2σ 2 for x F
μ− kσ or x G μ+ kσ it follows that

σ 2 G
∫ μ−kσ

−q
k2σ 2 · f (x)dx +

∫ q

μ+kσ
k2σ 2 · f (x)dx

and hence that

1
k2 G

∫ μ−kσ

−q
f (x)dx +

∫ q

μ+kσ
f (x)dx

provided σ 2 Z 0. Since the sum of the two integrals on the right-hand side
is the probability that X will take on a value less than or equal to μ− kσ
or greater than or equal to μ+ kσ , we have thus shown that

P(|X −μ| G kσ) F
1
k2

and it follows that

P(|X −μ|<kσ) G 1 − 1
k2

For instance, the probability is at least 1 − 1
22 = 3

4 that a random variable X will
take on a value within two standard deviations of the mean, the probability is at
least 1 − 1

32 = 8
9 that it will take on a value within three standard deviations of the

mean, and the probability is at least 1 − 1
52 = 24

25 that it will take on a value within
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five standard deviations of the mean. It is in this sense that σ controls the spread
or dispersion of the distribution of a random variable. Clearly, the probability given
by Chebyshev’s theorem is only a lower bound; whether the probability that a given
random variable will take on a value within k standard deviations of the mean is
actually greater than 1 − 1

k2 and, if so, by how much we cannot say, but Chebyshev’s
theorem assures us that this probability cannot be less than 1 − 1

k2 . Only when the
distribution of a random variable is known can we calculate the exact probability.

EXAMPLE 12

If the probability density of X is given by

f (x) =
{

630x4(1 − x)4 for 0< x< 1
0 elsewhere

find the probability that it will take on a value within two standard deviations of the
mean and compare this probability with the lower bound provided by Chebyshev’s
theorem.

Solution
Straightforward integration shows that μ = 1

2 and σ 2 = 1
44 , so that σ = √

1/44
or approximately 0.15. Thus, the probability that X will take on a value within two
standard deviations of the mean is the probability that it will take on a value between
0.20 and 0.80, that is,

P(0.20<X < 0.80) =
∫ 0.80

0.20
630x4(1 − x)4 dx

= 0.96

Observe that the statement “the probability is 0.96” is a much stronger state-
ment than “the probability is at least 0.75,” which is provided by Chebyshev’s
theorem.

5 Moment-Generating Functions
Although the moments of most distributions can be determined directly by evalu-
ating the necessary integrals or sums, an alternative procedure sometimes provides
considerable simplifications. This technique utilizes moment-generating functions.

DEFINITION 6. MOMENT GENERATING FUNCTION. The moment generating function
of a random variable X, where it exists, is given by

MX(t) = E(etX) =
∑

x

etX · f (x)

when X is discrete, and

MX(t) = E(etX) =
∫ q

−q
etx · f (x)dx

when X is continuous.
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The independent variable is t, and we are usually interested in values of t in the
neighborhood of 0.

To explain why we refer to this function as a “moment-generating” function, let
us substitute for etx its Maclaurin’s series expansion, that is,

etx = 1 + tx + t2x2

2!
+ t3x3

3!
+ · · · + trxr

r!
+ · · ·

For the discrete case, we thus get

MX(t) =
∑

x

[
1 + tx + t2x2

2!
+ · · · + trxr

r!
+ · · ·

]
f (x)

=
∑

x

f (x)+ t ·
∑

x

xf (x)+ t2

2!
·
∑

x

x2f (x)+ · · · + tr

r!
·
∑

x

xrf (x)+ · · ·

= 1 +μ · t +μ′
2 · t2

2!
+ · · · +μ′

r · tr

r!
+ · · ·

and it can be seen that in the Maclaurin’s series of the moment-generating function

of X the coefficient of
tr

r!
is μ′

r, the rth moment about the origin. In the continuous

case, the argument is the same.

EXAMPLE 13

Find the moment-generating function of the random variable whose probability den-
sity is given by

f (x) =
{

e−x for x> 0
0 elsewhere

and use it to find an expression for μ′
r.

Solution
By definition

MX(t) = E(etX) =
∫ q

0
etx · e−x dx

=
∫ q

0
e−x(1−t) dx

= 1
1 − t

for t< 1

As is well known, when |t|< 1 the Maclaurin’s series for this moment-generating
function is

MX(t) = 1 + t + t2 + t3 + · · · + tr + · · ·

= 1 + 1! · t
1!

+ 2! · t2

2!
+ 3! · t3

3!
+ · · · + r! · tr

r!
+ · · ·

and hence μ′
r = r! for r = 0, 1, 2, . . . .
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The main difficulty in using the Maclaurin’s series of a moment-generating func-
tion to determine the moments of a random variable is usually not that of finding
the moment-generating function, but that of expanding it into a Maclaurin’s series.
If we are interested only in the first few moments of a random variable, say, μ′

1 and
μ′

2, their determination can usually be simplified by using the following theorem.

THEOREM 9.
drMX(t)

dtr

∣∣∣
t=0

= μ′
r

This follows from the fact that if a function is expanded as a power series in t, the
coefficient of tr

r! is the rth derivative of the function with respect to t at t = 0.

EXAMPLE 14

Given that X has the probability distribution f (x) = 1
8

(
3
x

)
for x = 0, 1, 2, and 3, find

the moment-generating function of this random variable and use it to determine μ′
1

and μ′
2.

Solution
In accordance with Definition 6,

MX(t) = E(etX) = 1
8

·
3∑

x=0

etx

(
3
x

)

= 1
8
(1 + 3et + 3e2t + e3t)

= 1
8
(1 + et)3

Then, by Theorem 9,

μ′
1 = M′

X(0) = 3
8
(1 + et)2et

∣∣∣
t=0

= 3
2

and

μ′
2 = M′′

X(0) = 3
4
(1 + et)e2t + 3

8
(1 + et)2et

∣∣∣
t=0

= 3

Often the work involved in using moment-generating functions can be simplified
by making use of the following theorem.

THEOREM 10. If a and b are constants, then

1. MX+a(t) = E[e(X+a)t] = eat · MX(t);

2. MbX(t) = E(ebXt) = MX(bt);

3. M X+a
b
(t) = E[e

(
X+a

b

)
t
] = e

a
b t · MX

(
t
b

)
.
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The proof of this theorem is left to the reader in Exercise 39. The first part of the
theorem is of special importance when a = −μ, and the third part is of special
importance when a = −μ and b = σ , in which case

M X−μ
σ

(t) = e−μt
σ · MX

(
t
σ

)

Exercises
17. With reference to Definition 4, show that μ0 = 1
and that μ1 = 0 for any random variable for which
E(X) exists.

18. Find μ,μ′
2, and σ 2 for the random variable X that has

the probability distribution f (x) = 1
2 for x = −2 and

x = 2.

19. Find μ,μ′
2, and σ 2 for the random variable X that has

the probability density

f (x) =

⎧⎪⎨
⎪⎩

x
2

for 0< x< 2

0 elsewhere

20. Find μ′
r and σ 2 for the random variable X that has the

probability density

f (x) =

⎧⎪⎨
⎪⎩

1
ln 3

· 1
x

for 1< x< 3

0 elsewhere

21. Prove Theorem 7.

22. With reference to Exercise 8, find the variance of
g(X) = 2X + 3.

23. If the random variable X has the meanμ and the stan-
dard deviation σ , show that the random variable Z whose
values are related to those of X by means of the equation
z = x−μ

σ
has

E(Z) = 0 and var(Z) = 1

A distribution that has the mean 0 and the variance 1 is
said to be in standard form, and when we perform the
above change of variable, we are said to be standardizing
the distribution of X.

24. If the probability density of X is given by

f (x) =
{

2x−3 for x> 1
0 elsewhere

check whether its mean and its variance exist.

25. Show that

μr = μ′
r −
(

r
1

)
μ′

r−1 ·μ+ · · · + (−1)i
(

r
i

)
μ′

r−i ·μi

+ · · · + (−1)r−1(r − 1) ·μr

for r = 1, 2, 3, . . . , and use this formula to express μ3 and
μ4 in terms of moments about the origin.

26. The symmetry or skewness (lack of symmetry) of a
distribution is often measured by means of the quantity

α3 = μ3

σ 3

Use the formula for μ3 obtained in Exercise 25 to deter-
mine α3 for each of the following distributions (which
have equal means and standard deviations):
(a) f (1) = 0.05, f (2) = 0.15, f (3) = 0.30, f (4) = 0.30,
f (5) = 0.15, and f (6) = 0.05;
(b) f (1) = 0.05, f (2) = 0.20, f (3) = 0.15, f (4) = 0.45,
f (5) = 0.10, and f (6) = 0.05.

Also draw histograms of the two distributions and note
that whereas the first is symmetrical, the second has a
“tail” on the left-hand side and is said to be negatively
skewed.

27. The extent to which a distribution is peaked or flat,
also called the kurtosis of the distribution, is often mea-
sured by means of the quantity

α4 = μ4

σ 4

Use the formula for μ4 obtained in Exercise 25 to find
α4 for each of the following symmetrical distributions,
of which the first is more peaked (narrow humped) than
the second:
(a) f (−3) = 0.06, f (−2) = 0.09, f (−1) = 0.10, f (0) =
0.50, f (1) = 0.10, f (2) = 0.09, and f (3) = 0.06;
(b) f (−3) = 0.04, f (−2) = 0.11, f (−1) = 0.20, f (0) =
0.30, f (1) = 0.20, f (2) = 0.11, and f (3) = 0.04.

28. Duplicate the steps used in the proof of Theorem 8 to
prove Chebyshev’s theorem for a discrete random vari-
able X.

29. Show that if X is a random variable with the mean μ
for which f (x) = 0 for x< 0, then for any positive con-
stant a,
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P(X G a) F
μ

a

This inequality is called Markov’s inequality, and we have
given it here mainly because it leads to a relatively simple
alternative proof of Chebyshev’s theorem.

30. Use the inequality of Exercise 29 to prove Cheby-
shev’s theorem. [Hint: Substitute (X −μ)2 for X.]

31. What is the smallest value of k in Chebyshev’s theo-
rem for which the probability that a random variable will
take on a value between μ− kσ and μ+ kσ is
(a) at least 0.95;
(b) at least 0.99?

32. If we let kσ = c in Chebyshev’s theorem, what does
this theorem assert about the probability that a random
variable will take on a value between μ− c and μ+ c?

33. Find the moment-generating function of the contin-
uous random variable X whose probability density is
given by

f (x) =
{

1 for 0< x< 1
0 elsewhere

and use it to find μ′
1,μ′

2, and σ 2.

34. Find the moment-generating function of the discrete
random variable X that has the probability distribution

f (x) = 2
(

1
3

)x

for x = 1, 2, 3, . . .

and use it to determine the values of μ′
1 and μ′

2.

35. If we let RX(t) = ln MX(t), show that R′
X(0) = μ and

R′′
X(0) = σ 2. Also, use these results to find the mean and

the variance of a random variable X having the moment-
generating function

MX(t) = e4(et−1)

36. Explain why there can be no random variable for
which MX(t) = t

1−t .

37. Show that if a random variable has the probabil-
ity density

f (x) = 1
2

e−|x| for −q< x<q

its moment-generating function is given by

MX(t) = 1
1 − t2

38. With reference to Exercise 37, find the variance of the
random variable by
(a) expanding the moment-generating function as an infi-
nite series and reading off the necessary coefficients;
(b) using Theorem 9.

39. Prove the three parts of Theorem 10.

40. Given the moment-generating function MX(t) =
e3t+8t2 , find the moment-generating function of the ran-
dom variable Z = 1

4 (X − 3), and use it to determine the
mean and the variance of Z.

6 Product Moments
To continue the discussion of Section 3, let us now present the product moments of
two random variables.

DEFINITION 7. PRODUCT MOMENTS ABOUT THE ORIGIN. The rth and sth product
moment about the origin of the random variables X and Y, denoted by �′

r,s, is
the expected value of XrYs; symbolically,

μ′
r,s = E(XrYs) =

∑
x

∑
y

xrys · f (x, y)

for r = 0, 1, 2, . . . and s = 0, 1, 2, . . . when X and Y are discrete, and

μ′
r,s = E(XrYs) =

∫ q

−q

∫ q

−q
xrys · f (x, y)dxdy

when X and Y are continuous.
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In the discrete case, the double summation extends over the entire joint range of the
two random variables. Note that μ′

1,0 = E(X), which we denote here by μX , and that
μ′

0,1 = E(Y), which we denote here by μY .
Analogous to Definition 4, let us now state the following definition of product

moments about the respective means.

DEFINITION 8. PRODUCT MOMENTS ABOUT THE MEAN. The rth and sth product
moment about the means of the random variables X and Y, denoted by �r,s,
is the expected value of (X − �X)r(Y − �Y)

s; symbolically,

μr,s = E[(X −μX)
r(Y −μY)

s]

=
∑

x

∑
y

(x −μX)
r(y −μY)

s·f (x, y)

for r = 0, 1, 2, . . . and s = 0, 1, 2, . . . when X and Y are discrete, and

μr,s = E[(X −μX)
r(Y −μY)

s]

=
∫ q

−q

∫ q

−q
(x −μX)

r(y −μY)
s · f (x, y)dxdy

when X and Y are continuous.

In statistics, μ1,1 is of special importance because it is indicative of the relation-
ship, if any, between the values of X and Y; thus, it is given a special symbol and a
special name.

DEFINITION 9. COVARIANCE. �1,1 is called the covariance of X and Y, and it is
denoted by �XY, cov(X, Y), or C(X, Y).

Observe that if there is a high probability that large values of X will go with large
values of Y and small values of X with small values of Y, the covariance will be posi-
tive; if there is a high probability that large values of X will go with small values of Y,
and vice versa, the covariance will be negative. It is in this sense that the covariance
measures the relationship, or association, between the values of X and Y.

Let us now prove the following result, analogous to Theorem 6, which is useful
in actually determining covariances.

THEOREM 11.

σXY = μ′
1, 1 −μXμY

Proof Using the various theorems about expected values, we can write

σXY = E[(X −μX)(Y −μY)]

= E(XY − XμY − YμX +μXμY)

= E(XY)−μYE(X)−μXE(Y)+μXμY

= E(XY)−μYμX −μXμY +μXμY

= μ′
1, 1 −μXμY
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EXAMPLE 15

The joint and marginal probabilities of X and Y, the numbers of aspirin and sedative
caplets among two caplets drawn at random from a bottle containing three aspirin,
two sedative, and four laxative caplets, are recorded as follows:

x
0 1 2

0
1
6

1
3

1
12

7
12

y 1
2
9

1
6

7
18

2
1

36
1
36

5
12

1
2

1
12

Find the covariance of X and Y.

Solution
Referring to the joint probabilities given here, we get

μ′
1, 1 = E(XY)

= 0 · 0 · 1
6

+ 0 · 1 · 2
9

+ 0 · 2 · 1
36

+ 1 · 0 · 1
3

+ 1 · 1 · 1
6

+ 2 · 0 · 1
12

= 1
6

and using the marginal probabilities, we get

μX = E(X) = 0 · 5
12

+ 1 · 1
2

+ 2 · 1
12

= 2
3

and

μY = E(Y) = 0 · 7
12

+ 1 · 7
18

+ 2 · 1
36

= 4
9

It follows that

σXY = 1
6

− 2
3

· 4
9

= − 7
54

The negative result suggests that the more aspirin tablets we get the fewer sedative
tablets we will get, and vice versa, and this, of course, makes sense.

EXAMPLE 16

Find the covariance of the random variables whose joint probability density is
given by

f (x, y) =
{

2 for x> 0, y> 0, x + y< 1
0 elsewhere
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Solution
Evaluating the necessary integrals, we get

μX =
∫ 1

0

∫ 1−x

0
2x dy dx = 1

3

μY =
∫ 1

0

∫ 1−x

0
2y dy dx = 1

3

and

σ ′
1,1 =

∫ 1

0

∫ 1−x

0
2xy dy dx = 1

12

It follows that

σXY = 1
12

− 1
3

· 1
3

= − 1
36

As far as the relationship between X and Y is concerned, observe that if X
and Y are independent, their covariance is zero; symbolically, we have the following
theorem.

THEOREM 12. If X and Y are independent, then E(XY) = E(X) · E(Y) and
σXY = 0.

Proof For the discrete case we have, by definition,

E(XY) =
∑

x

∑
y

xy · f (x, y)

Since X and Y are independent, we can write f (x, y) = g(x) · h(y), where
g(x) and h(y) are the values of the marginal distributions of X and Y, and
we get

E(XY) =
∑

x

∑
y

xy · g(x)h(y)

=
⎡
⎣∑

x

x · g(x)

⎤
⎦
⎡
⎣∑

y

y · h(y)

⎤
⎦

= E(X) · E(Y)

Hence,
σXY = μ′

1,1 −μXμY

= E(X) · E(Y)− E(X) · E(Y)

= 0

It is of interest to note that the independence of two random variables implies
a zero covariance, but a zero covariance does not necessarily imply their indepen-
dence. This is illustrated by the following example (see also Exercises 46 and 47).
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EXAMPLE 17

If the joint probability distribution of X and Y is given by

x
−1 0 1

−1
1
6

1
3

1
6

2
3

y 0 0 0 0 0

1
1
6

0
1
6

1
3

1
3

1
3

1
3

show that their covariance is zero even though the two random variables are not
independent.

Solution
Using the probabilities shown in the margins, we get

μX = (−1) · 1
3

+ 0 · 1
3

+ 1 · 1
3

= 0

μY = (−1) · 2
3

+ 0 · 0 + 1 · 1
3

= −1
3

and

μ′
1,1 = (−1)(−1) · 1

6
+ 0(−1) · 1

3
+ 1(−1) · 1

6
+ (−1)1 · 1

6
+ 1 · 1 · 1

6
= 0

Thus, σXY = 0 − 0(− 1
3 ) = 0, the covariance is zero, but the two random variables are

not independent. For instance, f (x, y)Z g(x) · h(y) for x = −1 and y = −1.

Product moments can also be defined for the case where there are more than
two random variables. Here let us merely state the important result, in the following
theorem.

THEOREM 13. If X1, X2, . . . , Xn are independent, then

E(X1X2 · . . . · Xn) = E(X1) · E(X2) · . . . · E(Xn)

This is a generalization of the first part of Theorem 12.
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7 Moments of Linear Combinations of Random Variables
In this section we shall derive expressions for the mean and the variance of a linear
combination of n random variables and the covariance of two linear combinations
of n random variables. Applications of these results will be important in our later
discussion of sampling theory and problems of statistical inference.

THEOREM 14. If X1, X2, . . . , Xn are random variables and

Y =
n∑

i=1

aiXi

where a1, a2, . . . , an are constants, then

E(Y) =
n∑

i=1

aiE(Xi)

and
var(Y) =

n∑
i=1

a2
i · var(Xi)+ 2

∑∑
i<j

aiaj · cov(XiXj)

where the double summation extends over all values of i and j, from 1 to
n, for which i< j.

Proof From Theorem 5 with gi(X1, X2, . . . , Xk) = Xi for i = 0, 1, 2, . . . , n,
it follows immediately that

E(Y) = E

⎛
⎝ n∑

i=1

aiXi

⎞
⎠ =

n∑
i=1

aiE(Xi)

and this proves the first part of the theorem. To obtain the expression for
the variance of Y, let us write μi for E(Xi) so that we get

var(Y) = E
(

[Y − E(Y)]2
)

= E

⎧⎪⎨
⎪⎩
⎡
⎣ n∑

i=1

aiXi −
n∑

i=1

aiE(Xi)

⎤
⎦

2
⎫⎪⎬
⎪⎭

= E

⎧⎪⎨
⎪⎩
⎡
⎣ n∑

i=1

ai(Xi −μi)

⎤
⎦

2
⎫⎪⎬
⎪⎭

Then, expanding by means of the multinomial theorem, according to which
(a + b + c + d)2, for example, equals a2 + b2 + c2 + d2 + 2ab + 2ac + 2ad +
2bc + 2bd + 2cd, and again referring to Theorem 5, we get

var(Y) =
n∑

i=1

a2
i E[(Xi −μi)

2] + 2
∑∑

i<j

aiajE[(Xi −μi)(Xj −μj)]

=
n∑

i=1

a2
i · var(Xi)+ 2

∑∑
i<j

aiaj · cov(Xi, Xj)

Note that we have tacitly made use of the fact that cov(Xi, Xj) = cov(Xj, Xi).
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Since cov(Xi, Xj) = 0 when Xi and Xj are independent, we obtain the following
corollary.

COROLLARY 3. If the random variables X1, X2, . . . , Xn are independent and

Y =
n∑

i=1
aiXi, then

var(Y) =
n∑

i=1

a2
i · var(Xi)

EXAMPLE 18

If the random variables X, Y, and Z have the means μX = 2,μY = −3, and μZ = 4,
the variances σ 2

X = 1, σ 2
Y = 5, and σ 2

Z = 2, and the covariances cov(X, Y) = −2,
cov(X, Z) = −1, and cov(Y, Z) = 1, find the mean and the variance of
W = 3X − Y + 2Z.

Solution
By Theorem 14, we get

E(W) = E(3X − Y + 2Z)

= 3E(X)− E(Y)+ 2E(Z)

= 3 · 2 − (−3)+ 2 · 4

= 17

and

var(W) = 9 var(X)+ var(Y)+ 4 var(Z)− 6 cov(X, Y)

+ 12 cov(X, Z)− 4 cov(Y, Z)

= 9 · 1 + 5 + 4 · 2 − 6(−2)+ 12(−1)− 4 · 1

= 18

The following is another important theorem about linear combinations of ran-
dom variables; it concerns the covariance of two linear combinations of n random
variables.

THEOREM 15. If X1, X2, . . . , Xn are random variables and

Y1 =
n∑

i=1

aiXi and Y2 =
n∑

i=1

biXi

where a1, a2, . . . , an, b1, b2, . . . , bn are constants, then

cov(Y1, Y2) =
n∑

i=1

aibi · var(Xi)+
∑∑

i<j

(aibj + ajbi) · cov(Xi, Xj)

The proof of this theorem, which is very similar to that of Theorem 14, will be left to
the reader in Exercise 52.

Since cov(Xi, Xj) = 0 when Xi and Xj are independent, we obtain the following
corollary.
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COROLLARY 4. If the random variables X1, X2, . . . , Xn are independent, Y1 =
n∑

i=1
aiXi and Y2 =

n∑
i=1

biXi, then

cov(Y1, Y2) =
n∑

i=1

aibi · var(Xi)

EXAMPLE 19

If the random variables X, Y, and Z have the means μX = 3,μY = 5, and μZ = 2,
the variances σ 2

X = 8, σ 2
Y = 12, and σ 2

Z = 18, and cov(X, Y) = 1, cov(X, Z) = −3,
and cov(Y, Z) = 2, find the covariance of

U = X + 4Y + 2Z and V = 3X − Y − Z

Solution
By Theorem 15, we get

cov(U, V) = cov(X + 4Y + 2Z, 3X − Y − Z)

= 3 var(X)− 4 var(Y)− 2 var(Z)+ 11 cov(X, Y)

+ 5 cov(X, Z)− 6 cov(Y, Z)

= 3 · 8 − 4 · 12 − 2 · 18 + 11 · 1 + 5(−3)− 6 · 2

= −76

8 Conditional Expectations
Conditional probabilities are obtained by adding the values of conditional prob-
ability distributions, or integrating the values of conditional probability densities.
Conditional expectations of random variables are likewise defined in terms of their
conditional distributions.

DEFINITION 10. CONDITIONAL EXPECTATION. If X is a discrete random variable, and
f(x|y) is the value of the conditional probability distribution of X given Y = y at
x, the conditional expectation of u(X) given Y = y is

E[u(X)|y)] =
∑

x

u(x) · f (x|y)

Correspondingly, if X is a continuous variable and f(x|y) is the value of the condi-
tional probability distribution of X given Y = y at x, the conditional expectation
of u(X) given Y = y is

E[(u(X)|y)] =
∫ q

=q
u(x) · f (x|y)dx

Similar expressions based on the conditional probability distribution or density of Y
given X = x define the conditional expectation of υ(Y) given X = x.

138



Mathematical Expectation

If we let u(X) = X in Definition 10, we obtain the conditional mean of the
random variable X given Y = y, which we denote by

μX|y = E(X|y)
Correspondingly, the conditional variance of X given Y = y is

σ 2
X|y = E[(X −μX|y)2|y]

= E(X2|y)−μ2
X|y

where E(X2|y) is given by Definition 10 with u(X) = X2. The reader should not find
it difficult to generalize Definition 10 for conditional expectations involving more
than two random variables.

EXAMPLE 20

If the joint probability density of X and Y is given by

f (x, y) =

⎧⎪⎨
⎪⎩

2
3
(x + 2y) for 0< x< 1, 0< y< 1

0 elsewhere

find the conditional mean and the conditional variance of X given Y = 1
2 .

Solution
For these random variables the conditional density of X given Y = y is

f (x|y) =

⎧⎪⎨
⎪⎩

2x + 4y
1 + 4y

for 0< x< 1

0 elsewhere

so that

f

(
x

∣∣∣∣12
)

=

⎧⎪⎨
⎪⎩

2
3
(x + 1) for 0< x< 1

0 elsewhere

Thus, μX| 1
2

is given by

E

(
X

∣∣∣∣12
)

=
∫ 1

0

2
3

x(x + 1)dx

= 5
9

Next we find

E

(
X2
∣∣∣∣12
)

=
∫ 1

0

2
3

x2(x + 1)dx

= 7
18

and it follows that

σ 2
X| 1

2
= 7

18
−
(

5
9

)2

= 13
162
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Exercises
41. Prove that cov(X, Y) = cov(Y, X) for both discrete
and continuous random variables X and Y.

42. If X and Y have the joint probability distribution
f (x, y) = 1

4 for x = −3 and y = −5, x = −1 and
y = −1, x = 1 and y = 1, and x = 3 and y = 5, find
cov(X, Y).

43. This has been intentionally omitted for this edition.

44. This has been intentionally omitted for this edition.

45. This has been intentionally omitted for this edition.

46. If X and Y have the joint probability distribution
f (−1, 0) = 0, f (−1, 1) = 1

4 , f (0, 0) = 1
6 , f (0, 1) =

0, f (1, 0) = 1
12 , and f (1, 1) = 1

2 , show that

(a) cov(X, Y) = 0;
(b) the two random variables are not independent.

47. If the probability density of X is given by

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

1 + x for − 1< x F 0
1 − x for 0< x< 1
0 elsewhere

and U = X and V = X2, show that
(a) cov(U, V) = 0;
(b) U and V are dependent.

48. For k random variables X1, X2, . . . , Xk, the values of
their joint moment-generating function are given by

E
(

et1X1+t2X2+···+tkXk
)

(a) Show for either the discrete case or the continuous
case that the partial derivative of the joint moment-
generating function with respect to ti at t1 = t2 = · · · =
tk = 0 is E(Xi).
(b) Show for either the discrete case or the continu-
ous case that the second partial derivative of the joint
moment-generating function with respect to ti and tj, i Z j,
at t1 = t2 = · · · = tk = 0 is E(XiXj).
(c) If two random variables have the joint density
given by

f (x, y) =
{

e−x−y for x> 0, y> 0
0 elsewhere

find their joint moment-generating function and use it
to determine the values of E(XY), E(X), E(Y), and
cov(X, Y).

49. If X1, X2, and X3 are independent and have the means
4, 9, and 3 and the variances 3, 7, and 5, find the mean and
the variance of

(a) Y = 2X1 − 3X2 + 4X3;
(b) Z = X1 + 2X2 − X3.

50. Repeat both parts of Exercise 49, dropping the
assumption of independence and using instead the
information that cov(X1, X2) = 1, cov(X2, X3) = −2,
and cov(X1, X3) = −3.

51. If the joint probability density of X and Y is given by

f (x, y) =

⎧⎪⎨
⎪⎩

1
3
(x + y) for 0< x< 1, 0< y< 2

0 elsewhere

find the variance of W = 3X + 4Y − 5.

52. Prove Theorem 15.

53. Express var(X + Y), var(X − Y), and cov(X + Y, X −
Y) in terms of the variances and covariance of X
and Y.

54. If var(X1) = 5, var(X2) = 4, var(X3) = 7, cov(X1,
X2) = 3, cov(X1, X3) = −2, and X2 and X3 are indepen-
dent, find the covariance of Y1 = X1 − 2X2 + 3X3 and
Y2 = −2X1 + 3X2 + 4X3.

55. With reference to Exercise 49, find cov(Y, Z).

56. This question has been intentionally omitted for this
edition.

57. This question has been intentionally omitted for this
edition.

58. This question has been intentionally omitted for this
edition.

59. This question has been intentionally omitted for this
edition.

60. (a) Show that the conditional distribution function of
the continuous random variable X, given a<X F b, is
given by

F(x|a<X F b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for x F a
F(x)− F(a)
F(b)− F(a)

for a< x F b

1 for x>b

(b) Differentiate the result of part (a) with respect to
x to find the conditional probability density of X given
a<X F b, and show that

E[u(X)|a<X F b] =

∫ b

a
u(x)f (x)dx∫ b

a
f (x)dx
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9 The Theory in Practice
Empirical distributions, those arising from data, can be described by their shape. We
will discuss descriptive measures, calculated from data, that extend the methodology
of describing data. These descriptive measures are based on the ideas of moments,
given in Section 3.

The analog of the first moment, μ′
1 = μ, is the sample mean, x, defined as

x =
n∑

i=1

xi/n

where i = 1, 2, . . . , n and n is the number of observations.
The usefulness of the sample mean as a description of data can be envisioned

by imagining that the histogram of a data distribution has been cut out of a piece
of cardboard and balanced by inserting a fulcrum along the horizontal axis. This
balance point corresponds to the mean of the data. Thus, the mean can be thought
of as the centroid of the data and, as such, it describes its location.

The mean is an excellent measure of location for symmetric or nearly symmetric
distributions. But it can be misleading when used to measure the location of highly
skewed data. To give an example, suppose, in a small company, the annual salaries
of its 10 employees (rounded to the nearest $1,000) are 25, 18, 36, 28, 16, 20, 29, 32,
41, and 150. The mean of these observations is $39,500. One of the salaries, namely
$150,000, is much higher than the others (it’s what the owner pays himself) and only
one other employee earns as much as $39,500. Suppose the owner, in a recruiting
ad, claimed that “Our company pays an average salary of $39,500.” He would be
technically correct, but very misleading.

Other descriptive measures for the location of data should be used in cases like
the one just described. The median describes the center of the data as the middle
point of the observations. If the data are ranked from, say, smallest to largest, the
median becomes observation number n/2 if n is an even integer, and it is defined as

the mean value of observations
(n − 1)

2
and

(n + 1)
2

if n is an odd integer. The median

of the 10 observations given in the preceding example is $28,000, and it is a much
better description of what an employee of this company can expect to earn. You may
very well have heard the term “median income” for, say, the incomes of American
families. The median is used instead of the mean here because it is well known that
the distribution of family incomes in the United States is highly skewed—the great
majority of families earn low to moderate incomes, but a relatively few have very
high incomes.

The dispersion of data also is important in its description. Give the location
of data, one reasonably wants to know how closely the observations are grouped
around this value. A reasonable measure of dispersion can be based on the square
root of the second moment about the mean, σ . The sample standard deviation, s, is
calculated analogously to the second moment, as follows:

s =

√√√√√√
n∑

i=1

(x − x)2

n − 1

Since this formula requires first the calculation of the mean, then subtraction of the
mean from each observation before squaring and adding, it is much easier to use the
following calculating formula for s:
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s =

√√√√√√√n
n∑

i=1

x2
i −
⎛
⎝ n∑

i=1

xi

⎞
⎠

2

n(n − 1)

Note that in both formulas we divide by n − 1 instead of n. Using either formula for
the calculation of s requires tedious calculation, but every statistical computer pro-
gram in common use will calculate both the sample mean and the sample standard
deviation once the data have been inputted.

EXAMPLE 21

The following are the lengths (in feet) of 10 steel beams rolled in a steel mill and cut
to a nominal length of 12 feet:

11.8 12.1 12.5 11.7 11.9 12.0 12.2 11.5 11.9 12.2

Calculate the mean length and its standard deviation. Is the mean a reasonable mea-
sure of the location of the data? Why or why not?

Solution
The mean is given by the sum of the observations, 11.8 + 12.1 + . . . 12.2 = 119.8,
divided by 10, or x = 11.98 feet. To calculate the standard deviation, we first cal-
culate the sum of the squares of the observations, (11.8)2 + (12.1)2 + . . .+ (12.2)2 =
1, 435.94. Then substituting into the formula for s, we obtain s2 = (10)(1435.94)−
(119.8)2/(10)(9) = 0.082 foot. Taking the square root, we obtain s = 0.29. The mean,
11.98 feet, seems to be a reasonable measure of location inasmuch as the data seem
to be approximately symmetrically distributed.

The standard deviation is not the only measure of the dispersion, or variability
of data. The sample range sometimes is used for this purpose. To calculate the range,
we find the largest and the smallest observations, xl and xs, defining the range to be

r = xl − xs

This measure of dispersion is used only for small samples; for larger and larger sam-
ple sizes, the range becomes a poorer and poorer measure of dispersion.

Applied Exercises SECS. 1–2

61. This question has been intentionally omitted for this
edition.

62. The probability that Ms. Brown will sell a piece of
property at a profit of $3,000 is 3

20 , the probability that
she will sell it at a profit of $1,500 is 7

20 , the probability
that she will break even is 7

20 , and the probability that she
will lose $1,500 is 3

20 . What is her expected profit?

63. A game of chance is considered fair, or equitable, if
each player’s expectation is equal to zero. If someone

pays us $10 each time that we roll a 3 or a 4 with a bal-
anced die, how much should we pay that person when we
roll a 1, 2, 5, or 6 to make the game equitable?

64. The manager of a bakery knows that the number of
chocolate cakes he can sell on any given day is a ran-
dom variable having the probability distribution f (x) = 1

6
for x = 0, 1, 2, 3, 4, and 5. He also knows that there is a
profit of $1.00 for each cake that he sells and a loss (due
to spoilage) of $0.40 for each cake that he does not sell.
Assuming that each cake can be sold only on the day it is
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made, find the baker’s expected profit for a day on which
he bakes
(a) one of the cakes;
(b) two of the cakes;
(c) three of the cakes;
(d) four of the cakes;
(e) five of the cakes.

How many should he bake in order to maximize his
expected profit?

65. If a contractor’s profit on a construction job can be
looked upon as a continuous random variable having the
probability density

f (x) =

⎧⎪⎨
⎪⎩

1
18
(x + 1) for −1< x< 5

0 elsewhere

where the units are in $1,000, what is her expected profit?

66. This question has been intentionally omitted for this
edition.

67. This question has been intentionally omitted for this
edition.

68. This question has been intentionally omitted for this
edition.

69. Mr. Adams and Ms. Smith are betting on repeated
flips of a coin. At the start of the game Mr. Adams has
a dollars and Ms. Smith has b dollars, at each flip the
loser pays the winner one dollar, and the game contin-
ues until either player is “ruined.” Making use of the
fact that in an equitable game each player’s mathematical
expectation is zero, find the probability that Mr. Adams
will win Ms. Smith’s b dollars before he loses his a
dollars.

SECS. 3–5
70. With reference to Example 1, find the variance of the
number of television sets with white cords.

71. The amount of time it takes a person to be served at a
given restaurant is a random variable with the probabil-
ity density

f (x) =

⎧⎪⎨
⎪⎩

1
4

e− x
4 for x> 0

0 elsewhere

Find the mean and the variance of this random variable.

72. This question has been intentionally omitted for this
edition.

73. This question has been intentionally omitted for this
edition.

74. The following are some applications of the Markov
inequality of Exercise 29:
(a) The scores that high school juniors get on the verbal
part of the PSAT/NMSQT test may be looked upon as
values of a random variable with the mean μ = 41. Find
an upper bound to the probability that one of the students
will get a score of 65 or more.
(b) The weight of certain animals may be looked upon
as a random variable with a mean of 212 grams. If none
of the animals weighs less than 165 grams, find an upper
bound to the probability that such an animal will weigh at
least 250 grams.

75. The number of marriage licenses issued in a certain
city during the month of June may be looked upon as a
random variable with μ = 124 and σ = 7.5. Accord-
ing to Chebyshev’s theorem, with what probability can
we assert that between 64 and 184 marriage licenses will
be issued there during the month of June?

76. A study of the nutritional value of a certain kind of
bread shows that the amount of thiamine (vitamin B1)
in a slice may be looked upon as a random variable with
μ = 0.260 milligram and σ = 0.005 milligram. Accord-
ing to Chebyshev’s theorem, between what values must
be the thiamine content of
(a) at least 35

36 of all slices of this bread;

(b) at least 143
144 of all slices of this bread?

77. With reference to Exercise 71, what can we assert
about the amount of time it takes a person to be served at
the given restaurant if we use Chebyshev’s theorem with
k = 1.5? What is the corresponding probability rounded
to four decimals?

SECS. 6–9
78. A quarter is bent so that the probabilities of heads
and tails are 0.40 and 0.60. If it is tossed twice, what is
the covariance of Z, the number of heads obtained on the
first toss, and W, the total number of heads obtained in
the two tosses of the coin?

79. The inside diameter of a cylindrical tube is a random
variable with a mean of 3 inches and a standard devia-
tion of 0.02 inch, the thickness of the tube is a random
variable with a mean of 0.3 inch and a standard deviation
of 0.005 inch, and the two random variables are indepen-
dent. Find the mean and the standard deviation of the
outside diameter of the tube.

80. The length of certain bricks is a random variable
with a mean of 8 inches and a standard deviation of
0.1 inch, and the thickness of the mortar between two
bricks is a random variable with a mean of 0.5 inch
and a standard deviation of 0.03 inch. What is the
mean and the standard deviation of the length of a
wall made of 50 of these bricks laid side by side, if we
can assume that all the random variables involved are
independent?
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81. If heads is a success when we flip a coin, getting a six
is a success when we roll a die, and getting an ace is a suc-
cess when we draw a card from an ordinary deck of 52
playing cards, find the mean and the standard deviation
of the total number of successes when we
(a) flip a balanced coin, roll a balanced die, and then draw
a card from a well-shuffled deck;
(b) flip a balanced coin three times, roll a balanced die
twice, and then draw a card from a well-shuffled deck.

82. If we alternately flip a balanced coin and a coin that
is loaded so that the probability of getting heads is 0.45,
what are the mean and the standard deviation of the num-
ber of heads that we obtain in 10 flips of these coins?

83. This question has been intentionally omitted for this
edition.

84. This question has been intentionally omitted for this
edition.

85. The amount of time (in minutes) that an executive of
a certain firm talks on the telephone is a random variable
having the probability density

f (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x
4

for 0< x F 2

4
x3 for x> 2

0 elsewhere

With reference to part (b) of Exercise 60, find the
expected length of one of these telephone conversations
that has lasted at least 1 minute.

Answers to Odd-Numbered Exercises

1 (a) g1 = 0, g2 = 1, g3 = 4, and g4 = 9; (b) f (0), f (−1)+
f (1), f (−2)+ f (2), and f (3); (c) 0 · f (0)+ 1 · {f (−1)+ f (1)}
+ 4 · {f (−2)+ f (2)}+ 9 · f (3) = (−2)2 · f (−2)+ (−1)2 · f (−1)
+ 02 · f (0)+ 12 · f (1)+ 22 · f (2)+ 32 · f (3) =

∑
x

g(x) · f (x).

3 Replace
∫

by
∑

in the proof of Theorem 3.

5 (a) E(x) =
∫ q

−q

∫ q

−q
xf (x, y) dy dx;

(b) E(x) =
∫ q

−q
xg(x)dx.

7 E(Y) = 37
12 .

9 (a) 2.4 and 6.24; (b) 88.96.

11 − 11
6 .

13 1
2 .

15 1
12 .

19 μ = 4
3 ,μ′

2 = 2, and σ 2 = 2
9 .

25 μ3 = μ′
3 −μμ′

2 + 2μ3 and μ4 = μ′
4 − 4μμ′

3 + 6μ2μ′
2 −

3μ4.
27 (a) 3.2; (b) 2.6.
31 (a) k = √

20; (b) k = 10.

33 Mx(t) = 2et

3−et , μ′
1 = 3

2 , μ′
2 = 3, σ 2 = 3

4 .

35 μ = 4, σ 2 = 4.
43 −0.14.

45 1
72 .

49 (a) μY = −7, σ 2
Y = 155; (b) μZ = 19, σ 2

Z = 36.

51 805
162 .

53 var(X)+ var(Y)+ 2cov(X, Y), var(X)+ var(Y)− 2cov
(X, Y), var(X)− var(Y).
55 −56.
57 3.
59 5

12 .
61 (a) 98; (b) 29,997.
63 $5.
65 $3,000.
67 6 million liters.
69 a

a+b .

71 μ = 4, σ 2 = 16.
73 μ = 1, σ 2 = 1.

75 At least 63
64 .

77 0.9179.
79 μ = 3.6, σ = 0.0224.
81 (a) 0.74, 0.68; (b) 1.91, 1.05.
83 0.8.
85 2.95 min.
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Special Probability
Distributions

1 Introduction
2 The Discrete Uniform Distribution
3 The Bernoulli Distribution
4 The Binomial Distribution
5 The Negative Binomial and Geometric

Distributions

6 The Hypergeometric Distribution
7 The Poisson Distribution
8 The Multinomial Distribution
9 The Multivariate Hypergeometric

Distribution
10 The Theory in Practice

1 Introduction In this chapter we shall study some of the probability distributions that figure most
prominently in statistical theory and applications. We shall also study their
parameters, that is, the quantities that are constants for particular distributions but
that can take on different values for different members of families of distributions of
the same kind. The most common parameters are the lower moments, mainly μ and
σ 2, and there are essentially two ways in which they can be obtained: We can eval-
uate the necessary sums directly or we can work with moment-generating functions.
Although it would seem logical to use in each case whichever method is simplest, we
shall sometimes use both. In some instances this will be done because the results are
needed later; in others it will merely serve to provide the reader with experience in
the application of the respective mathematical techniques. Also, to keep the size of
this chapter within bounds, many of the details are left as exercises.

2 The Discrete Uniform Distribution
If a random variable can take on k different values with equal probability, we say that
it has a discrete uniform distribution; symbolically, we have the following definition.

DEFINITION 1. DISCRETE UNIFORM DISTRIBUTION. A random variable X has a discrete
uniform distribution and it is referred to as a discrete uniform random variable
if and only if its probability distribution is given by

f (x) = 1
k

for x = x1, x2, . . . xk

where xi Z xj when i Z j.

From Chapter 5 of John E. Freund’s Mathematical Statistics with Applications,
Eighth Edition. Irwin Miller, Marylees Miller. Copyright © 2014 by Pearson Education, Inc.
All rights reserved.

145



Special Probability Distributions

In the special case where xi = i, the discrete uniform distribution becomes

f (x) = 1
k

for x = 1, 2, . . . , k, and in this form it applies, for example, to the number

of points we roll with a balanced die. The mean and the variance of this discrete
uniform distribution and its moment-generating function are treated in Exercises 1
and 2.

3 The Bernoulli Distribution
If an experiment has two possible outcomes, “success” and “failure,” and their prob-
abilities are, respectively, θ and 1 − θ , then the number of successes, 0 or 1, has a
Bernoulli distribution; symbolically, we have the following definition.

DEFINITION 2. BERNOULLI DISTRIBUTION. A random variable X has a Bernoulli dis-
tribution and it is referred to as a Bernoulli random variable if and only if its
probability distribution is given by

f (x; θ) = θx(1 − θ)1−x for x = 0, 1

Thus, f (0; θ) = 1 − θ and f (1; θ) = θ are combined into a single formula. Observe
that we used the notation f (x; θ) to indicate explicitly that the Bernoulli distribution
has the one parameter θ .

In connection with the Bernoulli distribution, a success may be getting heads
with a balanced coin, it may be catching pneumonia, it may be passing (or failing) an
examination, and it may be losing a race. This inconsistency is a carryover from the
days when probability theory was applied only to games of chance (and one player’s
failure was the other’s success). Also for this reason, we refer to an experiment to
which the Bernoulli distribution applies as a Bernoulli trial, or simply a trial, and to
sequences of such experiments as repeated trials.

4 The Binomial Distribution
Repeated trials play a very important role in probability and statistics, especially
when the number of trials is fixed, the parameter θ (the probability of a success) is
the same for each trial, and the trials are all independent. As we shall see, several
random variables arise in connection with repeated trials. The one we shall study
here concerns the total number of successes; others will be given in Section 5.

The theory that we shall discuss in this section has many applications; for
instance, it applies if we want to know the probability of getting 5 heads in 12 flips
of a coin, the probability that 7 of 10 persons will recover from a tropical disease, or
the probability that 35 of 80 persons will respond to a mail-order solicitation. How-
ever, this is the case only if each of the 10 persons has the same chance of recovering
from the disease and their recoveries are independent (say, they are treated by dif-
ferent doctors in different hospitals), and if the probability of getting a reply to the
mail-order solicitation is the same for each of the 80 persons and there is indepen-
dence (say, no two of them belong to the same household).

To derive a formula for the probability of getting “x successes in n trials” under
the stated conditions, observe that the probability of getting x successes and n − x
failures in a specific order is θx(1 − θ)n−x. There is one factor θ for each success,
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one factor 1 − θ for each failure, and the x factors θ and n − x factors 1 − θ are all
multiplied together by virtue of the assumption of independence. Since this prob-
ability applies to any sequence of n trials in which there are x successes and n − x
failures, we have only to count how many sequences of this kind there are and then
multiply θx(1 − θ)n−x by that number. Clearly, the number of ways in which we can

select the x trials on which there is to be a success is

(
n
x

)
, and it follows that the

desired probability for “x successes in n trials” is

(
n
x

)
θx(1 − θ)n−x.

DEFINITION 3. BINOMIAL DISTRIBUTION. A random variable X has a binomial dis-
tribution and it is referred to as a binomial random variable if and only if its
probability distribution is given by

b(x; n, θ) =
(

n
x

)
θx(1 − θ)n−x for x = 0, 1, 2, . . . n

Thus, the number of successes in n trials is a random variable having a bino-
mial distribution with the parameters n and θ . The name “binomial distribution”
derives from the fact that the values of b(x; n, θ) for x = 0, 1, 2, . . . , n are the succes-
sive terms of the binomial expansion of [(1 − θ)+ θ ]n; this shows also that the sum
of the probabilities equals 1, as it should.

EXAMPLE 1

Find the probability of getting five heads and seven tails in 12 flips of a balanced coin.

Solution
Substituting x = 5, n = 12, and θ = 1

2 into the formula for the binomial distribution,
we get

b
(

5; 12,
1
2

)
=
(

12
5

)(
1
2

)5 (
1 − 1

2

)12−5

and, looking up the value of

(
12
5

)
in Table VII of “Statistical Tables”, we find that

the result is 792
(

1
2

)12
, or approximately 0.19.

EXAMPLE 2

Find the probability that 7 of 10 persons will recover from a tropical disease if we can
assume independence and the probability is 0.80 that any one of them will recover
from the disease.
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Solution
Substituting x = 7, n = 10, and θ = 0.80 into the formula for the binomial distribu-
tion, we get

b(7; 10, 0.80) =
(

10
7

)
(0.80)7(1 − 0.80)10−7

and, looking up the value of

(
10
7

)
in Table VII of “Statistical Tables”, we find that

the result is 120(0.80)7(0.20)3, or approximately 0.20.

If we tried to calculate the third probability asked for on the previous page, the
one concerning the responses to the mail-order solicitation, by substituting x = 35,
n = 80, and, say, θ = 0.15, into the formula for the binomial distribution, we would
find that this requires a prohibitive amount of work. In actual practice, binomial
probabilities are rarely calculated directly, for they are tabulated extensively for var-
ious values of θ and n, and there exists an abundance of computer software yielding
binomial probabilities as well as the corresponding cumulative probabilities

B(x; n, θ) =
x∑

k=0

b(k; n, θ)

upon simple commands. An example of such a printout (with somewhat different
notation) is shown in Figure 1.

In the past, the National Bureau of Standards table and the book by H. G.
Romig have been widely used; they are listed among the references at the end of
this chapter. Also, Table I of “Statistical Tables” gives the values of b(x; n, θ) to four
decimal places for n = 1 to n = 20 and θ = 0.05, 0.10, 0.15, . . . , 0.45, 0.50. To use this
table when θ is greater than 0.50, we refer to the following identity.

Figure 1. Computer printout of binomial probabilities for n = 10 and θ = 0.63.

148



Special Probability Distributions

THEOREM 1.

b(x; n, θ) = b(n − x; n, 1 − θ)

which the reader will be asked to prove in part (a) of Exercise 5. For instance, to find
b(11; 18, 0.70), we look up b(7; 18, 0.30) and get 0.1376. Also, there are several ways
in which binomial probabilities can be approximated when n is large; one of these
will be mentioned in Section 7.

Let us now find formulas for the mean and the variance of the binomial
distribution.

THEOREM 2. The mean and the variance of the binomial distribution are

μ = nθ and σ 2 = nθ(1 − θ)

Proof

μ =
n∑

x=0

x ·
(

n
x

)
θx(1 − θ)n−x

=
n∑

x=1

n!
(x − 1)!(n − x)!

θx(1 − θ)n−x

where we omitted the term corresponding to x = 0, which is 0, and can-
celed the x against the first factor of x! = x(x − 1)! in the denominator of(

n
x

)
. Then, factoring out the factor n in n! = n(n − 1)! and one factor θ ,

we get

μ = nθ ·
n∑

x=1

(
n − 1
x − 1

)
θx−1(1 − θ)n−x

and, letting y = x − 1 and m = n − 1, this becomes

μ = nθ ·
m∑

y=0

(
m
y

)
θy(1 − θ)m−y = nθ

since the last summation is the sum of all the values of a binomial distri-
bution with the parameters m and θ , and hence equal to 1.

To find expressions for μ′
2 and σ 2, let us make use of the fact that

E(X2) = E[X(X − 1)] + E(X) and first evaluate E[X(X − 1)]. Duplicat-
ing for all practical purposes the steps used before, we thus get

E[X(X − 1)] =
n∑

x=0

x(x − 1)

(
n
x

)
θx(1 − θ)n−x

=
n∑

x=2

n!
(x − 2)!(n − x)!

θx(1 − θ)n−x

= n(n − 1)θ2 ·
n∑

x=2

(
n − 2
x − 2

)
θx−2(1 − θ)n−x
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and, letting y = x − 2 and m = n − 2, this becomes

E[X(X − 1)] = n(n − 1)θ2 ·
m∑

y=0

(
m
y

)
θy(1 − θ)m−y

= n(n − 1)θ2

Therefore,

μ′
2 = E[X(X − 1)] + E(X) = n(n − 1)θ2 + nθ

and, finally,

σ 2 = μ′
2 −μ2

= n(n − 1)θ2 + nθ − n2θ2

= nθ(1 − θ)

An alternative proof of this theorem, requiring much less algebraic detail, is sug-
gested in Exercise 6.

It should not have come as a surprise that the mean of the binomial distribution
is given by the product nθ . After all, if a balanced coin is flipped 200 times, we expect
(in the sense of a mathematical expectation) 200 · 1

2 = 100 heads and 100 tails; sim-
ilarly, if a balanced die is rolled 240 times, we expect 240 · 1

6 = 40 sixes, and if the
probability is 0.80 that a person shopping at a department store will make a pur-
chase, we would expect 400(0.80) = 320 of 400 persons shopping at the department
store to make a purchase.

The formula for the variance of the binomial distribution, being a measure of
variation, has many important applications; but, to emphasize its significance, let

us consider the random variable Y = X
n

, where X is a random variable having a

binomial distribution with the parameters n and θ . This random variable is the pro-
portion of successes in n trials, and in Exercise 6 the reader will be asked to prove
the following result.

THEOREM 3. If X has a binomial distribution with the parameters n and θ

and Y = X
n

, then

E(Y) = θ and σ 2
Y = θ(1 − θ)

n

Now, if we apply Chebyshev’s theorem with kσ = c, we can assert that for any
positive constant c the probability is at least

1 − θ(1 − θ)
nc2

that the proportion of successes in n trials falls between � − c and � + c. Hence, when
n → q, the probability approaches 1 that the proportion of successes will differ from
� by less than any arbitrary constant c. This result is called a law of large numbers,
and it should be observed that it applies to the proportion of successes, not to their
actual number. It is a fallacy to suppose that when n is large the number of successes
must necessarily be close to nθ .
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Figure 2. Computer simulation of 100 flips of a balanced coin.

An easy illustration of this law of large numbers can be obtained through a
computer simulation of the repeated flipping of a balanced coin. This is shown in
Figure 2, where the 1’s and 0’s denote heads and tails.

Reading across successive rows, we find that among the first five simulated flips
there are 3 heads, among the first ten there are 6 heads, among the first fifteen there
are 8 heads, among the first twenty there are 12 heads, among the first twenty-five
there are 14 heads, . . ., and among all hundred there are 51 heads. The corresponding
proportions, plotted in Figure 3, are 3

5 = 0.60, 6
10 = 0.60, 8

15 = 0.53, 12
20 = 0.60,

14
25 = 0.56, . . ., and 51

100 = 0.51. Observe that the proportion of heads fluctuates but
comes closer and closer to 0.50, the probability of heads for each flip of the coin.

Since the moment-generating function of the binomial distribution is easy to
obtain, let us find it and use it to verify the results of Theorem 2.

1.000

0.500

5 10 15 20 25

Number of simulated flips of a coin
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30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Figure 3. Graph illustrating the law of large numbers.
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THEOREM 4. The moment-generating function of the binomial distribution
is given by

MX(t) = [1 + θ(et − 1)]n

If we differentiate MX(t) twice with respect to t, we get

M′
X(t) = nθet[1 + θ(et − 1)]n−1

M′′
X(t) = nθet[1 + θ(et − 1)]n−1 + n(n − 1)θ2e2t[1 + θ(et − 1)]n−2

= nθet(1 − θ + nθet)[1 + θ(et − 1)]n−2

and, upon substituting t = 0, we get μ′
1 = nθ and μ′

2 = nθ(1 − θ + nθ). Thus, μ = nθ
and σ 2 = μ′

2 −μ2 = nθ(1 − θ + nθ)− (nθ)2 = nθ(1 − θ), which agrees with the
formulas given in Theorem 2.

From the work of this section it may seem easier to find the moments of the
binomial distribution with the moment-generating function than to evaluate them
directly, but it should be apparent that the differentiation becomes fairly involved
if we want to determine, say, μ′

3 or μ′
4. Actually, there exists yet an easier way of

determining the moments of the binomial distribution; it is based on its factorial
moment-generating function, which is explained in Exercise 12.

Exercises

1. If X has the discrete uniform distribution f (x) = 1
k

for

x = 1, 2, . . . , k, show that

(a) its mean is μ = k + 1
2

;

(b) its variance is σ 2 = k2 − 1
12

.

2. If X has the discrete uniform distribution f (x) = 1
k

for

x = 1, 2, . . . , k, show that its moment-generating function
is given by

MX(t) = et(1 − ekt)

k(1 − et)

Also find the mean of this distribution by evaluating
lim
t→0

M′
X(t), and compare the result with that obtained in

Exercise 1.

3. We did not study the Bernoulli distribution in any
detail in Section 3, because it can be looked upon as
a binomial distribution with n = 1. Show that for the
Bernoulli distribution, μ′

r = θ for r = 1, 2, 3, . . ., by

(a) evaluating the sum
1∑

x=0

xr · f (x; θ);

(b) letting n = 1 in the moment-generating function of
the binomial distribution and examining its Maclaurin’s
series.

4. This question has been intentionally omitted for this
edition.

5. Verify that
(a) b(x; n, θ) = b(n − x; n, 1 − θ).
Also show that if B(x; n, θ) =

x∑
k=0

b(k; n, θ) for x =
0, 1, 2, . . . , n, then
(b) b(x; n, θ) = B(x; n, θ)− B(x − 1; n, θ);
(c) b(x; n, θ) = B(n − x; n, 1 − θ)− B(n − x − 1; n, 1 − θ);
(d) B(x; n, θ) = 1 − B(n − x − 1; n, 1 − θ).
6. An alternative proof of Theorem 2 may be based on
the fact that if X1, X2, . . ., and Xn are independent ran-
dom variables having the same Bernoulli distribution
with the parameter θ , then Y = X1 + X2 + · · · + Xn is
a random variable having the binomial distribution with
the parameters n and θ .

Verify directly (that is, without making use of the fact
that the Bernoulli distribution is a special case of the
binomial distribution) that the mean and the variance of
the Bernoulli distribution are μ = θ and σ 2 = θ(1 − θ).
7. Prove Theorem 3.

8. When calculating all the values of a binomial distribu-
tion, the work can usually be simplified by first calculating
b(0; n, θ) and then using the recursion formula

b(x + 1; n, θ) = θ(n − x)
(x + 1)(1 − θ) · b(x; n, θ)
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Verify this formula and use it to calculate the values of
the binomial distribution with n = 7 and θ = 0.25.

9. Use the recursion formula of Exercise 8 to show that
for θ = 1

2 the binomial distribution has

(a) a maximum at x = n
2

when n is even;

(b) maxima at x = n − 1
2

and x = n + 1
2

when n is odd.

10. If X is a binomial random variable, for what value of
θ is the probability b(x; n, θ) a maximum?

11. In the proof of Theorem 2 we determined the quan-
tity E[X(X − 1)], called the second factorial moment. In
general, the rth factorial moment of X is given by

μ′
(r) = E[X(X − 1)(X − 2) · . . . · (X − r + 1)]

Express μ′
2,μ′

3, and μ′
4 in terms of factorial moments.

12. The factorial moment-generating function of a dis-
crete random variable X is given by

FX(t) = E(tX) =
∑

x

tx · f (x)

Show that the rth derivative of FX(t) with respect to t
at t = 1 is μ′

(r), the rth factorial moment defined in
Exercise 11.

13. With reference to Exercise 12, find the factorial
moment-generating function of
(a) the Bernoulli distribution and show that μ′

(1) = θ and
μ′
(r) = 0 for r> 1;

(b) the binomial distribution and use it to find μ and σ 2.

14. This question has been intentionally omitted for this
edition.

15. This question has been intentionally omitted for this
edition.

5 The Negative Binomial and Geometric Distributions
In connection with repeated Bernoulli trials, we are sometimes interested in the
number of the trial on which the kth success occurs. For instance, we may be inter-
ested in the probability that the tenth child exposed to a contagious disease will be
the third to catch it, the probability that the fifth person to hear a rumor will be the
first one to believe it, or the probability that a burglar will be caught for the second
time on his or her eighth job.

If the kth success is to occur on the xth trial, there must be k − 1 successes on
the first x − 1 trials, and the probability for this is

b(k − 1; x − 1, θ) =
(

x − 1
k − 1

)
θk−1(1 − θ)x−k

The probability of a success on the xth trial is θ , and the probability that the kth
success occurs on the xth trial is, therefore,

θ · b(k − 1; x − 1, θ) =
(

x − 1
k − 1

)
θk(1 − θ)x−k

DEFINITION 4. NEGATIVE BINOMIAL DISTRIBUTION. A random variable X has a
negative binomial distribution and it is referred to as a negative binomial ran-
dom variable if and only if

b∗(x; k, θ) =
(

x − 1
k − 1

)
θk(1 − θ)x−k for x = k, k + 1, k + 2, . . . .

Thus, the number of the trial on which the kth success occurs is a random vari-
able having a negative binomial distribution with the parameters k and θ . The name
“negative binomial distribution” derives from the fact that the values of b∗(x; k, θ)
for x = k, k + 1, k + 2, . . . are the successive terms of the binomial expansion of
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(
1
θ

− 1 − θ
θ

)−k

.† In the literature of statistics, negative binomial distributions are

also referred to as binomial waiting-time distributions or as Pascal distributions.

EXAMPLE 3

If the probability is 0.40 that a child exposed to a certain contagious disease will
catch it, what is the probability that the tenth child exposed to the disease will be the
third to catch it?

Solution
Substituting x = 10, k = 3, and θ = 0.40 into the formula for the negative binomial
distribution, we get

b∗(10; 3, 0.40) =
(

9
2

)
(0.40)3(0.60)7

= 0.0645

When a table of binomial probabilities is available, the determination of nega-
tive binomial probabilities can generally be simplified by making use of the following
identity.

THEOREM 5.

b∗(x; k, θ) = k
x

· b(k; x, θ)

The reader will be asked to verify this theorem in Exercise 18.

EXAMPLE 4

Use Theorem 5 and Table I of “Statistical Tables” to rework Example 3.

Solution
Substituting x = 10, k = 3, and θ = 0.40 into the formula of Theorem 5, we get

b∗(10; 3, 0.40) = 3
10

· b(3; 10, 0.40)

= 3
10
(0.2150)

= 0.0645

Moments of the negative binomial distribution may be obtained by proceeding
as in the proof of Theorem 2; for the mean and the variance we obtain the following
theorem.

THEOREM 6. The mean and the variance of the negative binomial distribu-
tion are

μ = k
θ

and σ 2 = k
θ

(
1
θ

− 1
)

as the reader will be asked to verify in Exercise 19.

†Binomial expansions with negative exponents are explained in Feller, W., An Introduction to Probability Theory
and Its Applications, Vol. I, 3rd ed. New York: John Wiley & Sons, Inc., 1968.
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Since the negative binomial distribution with k = 1 has many important appli-
cations, it is given a special name; it is called the geometric distribution.

DEFINITION 5. GEOMETRIC DISTRIBUTION. A random variable X has a geometric dis-
tribution and it is referred to as a geometric random variable if and only if its
probability distribution is given by

g(x; θ) = θ(1 − θ)x−1 for x = 1, 2, 3, . . .

EXAMPLE 5

If the probability is 0.75 that an applicant for a driver’s license will pass the road test
on any given try, what is the probability that an applicant will finally pass the test on
the fourth try?

Solution
Substituting x = 4 and θ = 0.75 into the formula for the geometric distribution,
we get

g(4; 0.75) = 0.75(1 − 0.75)4−1

= 0.75(0.25)3

= 0.0117

Of course, this result is based on the assumption that the trials are all independent,
and there may be some question here about its validity.

6 The Hypergeometric Distribution
To obtain a formula analogous to that of the binomial distribution that applies to
sampling without replacement, in which case the trials are not independent, let us
consider a set of N elements of which M are looked upon as successes and the other
N − M as failures. As in connection with the binomial distribution, we are interested
in the probability of getting x successes in n trials, but now we are choosing, without
replacement, n of the N elements contained in the set.

There are

(
M
x

)
ways of choosing x of the M successes and

(
N − M
n − x

)
ways of

choosing n − x of the N − M failures, and, hence,

(
M
x

)(
N − M
n − x

)
ways of choosing

x successes and n − x failures. Since there are

(
N
n

)
ways of choosing n of the N

elements in the set, and we shall assume that they are all equally likely (which is what
we mean when we say that the selection is random), the probability of “x successes

in n trials” is

(
M
x

)(
N − M
n − x

)/(
N
n

)
.
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DEFINITION 6. HYPERGEOMETRIC DISTRIBUTION. A random variable X has a hyperge-
ometric distribution and it is referred to as a hypergeometric random variable if
and only if its probability distribution is given by

h(x; n, N, M) =

(
M
x

)(
N − M
n − x

)
(

N
n

) for x = 0, 1, 2, . . . , n
x … M and n − x … N − M

Thus, for sampling without replacement, the number of successes in n trials is a ran-
dom variable having a hypergeometric distribution with the parameters n, N, and M.

EXAMPLE 6

As part of an air-pollution survey, an inspector decides to examine the exhaust of
6 of a company’s 24 trucks. If 4 of the company’s trucks emit excessive amounts of
pollutants, what is the probability that none of them will be included in the inspec-
tor’s sample?

Solution
Substituting x = 0, n = 6, N = 24, and M = 4 into the formula for the hypergeomet-
ric distribution, we get

h(0; 6, 24, 4) =

(
4
0

)(
20
6

)
(

24
6

)

= 0.2880

The method by which we find the mean and the variance of the hypergeometric
distribution is very similar to that employed in the proof of Theorem 2.

THEOREM 7. The mean and the variance of the hypergeometric distribu-
tion are

μ = nM
N

and σ 2 = nM(N − M)(N − n)
N2(N − 1)

Proof To determine the mean, let us directly evaluate the sum

μ =
n∑

x=0

x ·

(
M
x

)(
N − Mn − x

)
(

N
n

)

=
n∑

x=1

M!
(x − 1)!(M − x)!

·

(
N − M
n − x

)
(

N
n

)

156



Special Probability Distributions

where we omitted the term corresponding to x = 0, which is 0, and canceled

the x against the first factor of x! = x(x − 1)! in the denominator of

(
M
x

)
.

Then, factoring out M
/(

N
n

)
, we get

μ = M(
N
n

) ·
n∑

x=1

(
M − 1
x − 1

)(
N − M
n − x

)

and, letting y = x − 1 and m = n − 1, this becomes

μ = M(
N
n

) ·
m∑

y=0

(
M − 1

y

)(
N − M
m − y

)

Finally, using
k∑

r=0

(
m
r

)(
n

k − r

)
=
(

m + n
k

)
, we get

μ = M(
N
n

) ·
(

N − 1
m

)
= M(

N
n

) ·
(

N − 1
n − 1

)
= nM

N

To obtain the formula for σ 2, we proceed as in the proof of Theorem 2
by first evaluating E[X(X − 1)] and then making use of the fact that
E(X2) = E[X(X − 1)] + E(X). Leaving it to the reader to show that

E[X(X − 1)] = M(M − 1)n(n − 1)
N(N − 1)

in Exercise 27, we thus get

σ 2 = M(M − 1)n(n − 1)
N(N − 1)

+ nM
N

−
(

nM
N

)2

= nM(N − M)(N − n)
N2(N − 1)

The moment-generating function of the hypergeometric distribution is fairly
complicated. Details of this may be found in the book The Advanced Theory of
Statistics by M. G. Kendall and A. Stuart.

When N is large and n is relatively small compared to N (the usual rule of thumb
is that n should not exceed 5 percent of N), there is not much difference between
sampling with replacement and sampling without replacement, and the formula for

the binomial distribution with the parameters n and θ = M
N

may be used to approx-

imate hypergeometric probabilities.
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EXAMPLE 7

Among the 120 applicants for a job, only 80 are actually qualified. If 5 of the appli-
cants are randomly selected for an in-depth interview, find the probability that only
2 of the 5 will be qualified for the job by using

(a) the formula for the hypergeometric distribution;

(b) the formula for the binomial distribution with θ = 80
120 as an approximation.

Solution

(a) Substituting x = 2, n = 5, N = 120, and M = 80 into the formula for the
hypergeometric distribution, we get

h(2; 5, 120, 80) =

(
80
2

)(
40
3

)
(

120
5

)

= 0.164

rounded to three decimals;

(b) substituting x = 2, n = 5, and θ = 80
120 = 2

3 into the formula for the binomial
distribution, we get

b
(

2; 5,
2
3

)
=
(

5
2

)(
2
3

)2 (
1 − 2

3

)3

= 0.165

rounded to three decimals. As can be seen from these results, the approxima-
tion is very close.

7 The Poisson Distribution
When n is large, the calculation of binomial probabilities with the formula of Defi-
nition 3 will usually involve a prohibitive amount of work. For instance, to calculate
the probability that 18 of 3,000 persons watching a parade on a very hot summer

day will suffer from heat exhaustion, we first have to determine

(
3,000

18

)
, and if the

probability is 0.005 that any one of the 3,000 persons watching the parade will suffer
from heat exhaustion, we also have to calculate the value of (0.005)18(0.995)2,982.

In this section we shall present a probability distribution that can be used to
approximate binomial probabilities of this kind. Specifically, we shall investigate the
limiting form of the binomial distribution when n →q, θ → 0, while nθ remains con-

stant. Letting this constant be λ, that is, nθ = λ and, hence, θ = λ

n
, we can write
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b(x; n, θ) =
(

n
x

)(
λ

n

)x (
1 − λ

n

)n−x

= n(n − 1)(n − 2) · . . . · (n − x + 1)
x!

(
λ

n

)x (
1 − λ

n

)n−x

Then, if we divide one of the x factors n in
(
λ

n

)x

into each factor of the product

n(n − 1)(n − 2) · . . . · (n − x + 1) and write

(
1 − λ

n

)n−x

as

[(
1 − λ

n

)−n/λ
]−λ (

1 − λ

n

)−x

we obtain

1
(

1 − 1
n

) (
1 − 2

n

)
· . . . ·

(
1 − x−1

n

)
x!

(λ)x

[(
1 − λ

n

)−n/λ
]−λ (

1 − λ

n

)−x

Finally, if we let n →q while x and λ remain fixed, we find that

1
(

1 − 1
n

)(
1 − 2

n

)
· . . . ·

(
1 − x − 1

n

)
→ 1

(
1 − λ

n

)−x

→ 1

(
1 − λ

n

)−n/λ

→ e

and, hence, that the limiting distribution becomes

p(x; λ) = λxe−λ

x!
for x = 0, 1, 2, . . .

DEFINITION 7. POISSON DISTRIBUTION. A random variable has a Poisson distribu-
tion and it is referred to as a Poisson random variable if and only if its probability
distribution is given by

p(x; λ) = λxe−λ

x!
for x = 0, 1, 2, . . .

Thus, in the limit when n →q, θ → 0, and nθ = λ remains constant, the number
of successes is a random variable having a Poisson distribution with the parame-
ter λ. This distribution is named after the French mathematician Simeon Poisson
(1781–1840). In general, the Poisson distribution will provide a good approximation
to binomial probabilities when n G 20 and θ F 0.05. When n G 100 and nθ < 10, the
approximation will generally be excellent.

To get some idea about the closeness of the Poisson approximation to the bino-
mial distribution, consider the computer printout of Figure 4, which shows, one above
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the other, the binomial distribution with n = 150 and θ = 0.05 and the Poisson
distribution with λ = 150(0.05) = 7.5.

EXAMPLE 8

Use Figure 4 to determine the value of x (from 5 to 15) for which the error is greatest
when we use the Poisson distribution with λ = 7.5 to approximate the binomial
distribution with n = 150 and θ = 0.05.

Solution
Calculating the differences corresponding to x = 5, x = 6, . . ., x = 15, we get 0.0006,
−0.0017, −0.0034, −0.0037, −0.0027, −0.0011, 0.0003, 0.0011, 0.0013, 0.0011, and
0.0008. Thus, the maximum error (numerically) is −0.0037, and it corresponds to
x = 8.

The examples that follow illustrate the Poisson approximation to the binomial
distribution.

EXAMPLE 9

If 2 percent of the books bound at a certain bindery have defective bindings, use
the Poisson approximation to the binomial distribution to determine the probability
that 5 of 400 books bound by this bindery will have defective bindings.

Solution
Substituting x = 5, λ = 400(0.02) = 8, and e−8 = 0.00034 (from Table VIII of
“Statistical Tables”) into the formula of Definition 7, we get

p(5; 8) = 85 · e−8

5!
= (32,768)(0.00034)

120
= 0.093

In actual practice, Poisson probabilities are seldom obtained by direct substi-
tution into the formula of Definition 7. Sometimes we refer to tables of Poisson
probabilities, such as Table II of “Statistical Tables”, or more extensive tables in
handbooks of statistical tables, but more often than not, nowadays, we refer to suit-
able computer software. The use of tables or computers is of special importance
when we are concerned with probabilities relating to several values of x.

EXAMPLE 10

Records show that the probability is 0.00005 that a car will have a flat tire while
crossing a certain bridge. Use the Poisson distribution to approximate the binomial
probabilities that, among 10,000 cars crossing this bridge,

(a) exactly two will have a flat tire;

(b) at most two will have a flat tire.

Solution

(a) Referring to Table II of “Statistical Tables”, we find that for x = 2 and
λ = 10, 000(0.00005) = 0.5, the Poisson probability is 0.0758.

(b) Referring to Table II of “Statistical Tables”, we find that for x = 0, 1, and 2,
and λ = 0.5, the Poisson probabilities are 0.6065, 0.3033, and 0.0758. Thus, the

160



Special Probability Distributions

Figure 4. Computer printout of the binomial distribution with n = 150 and θ = 0.05 and
the Poisson distribution with λ = 7.5.
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probability that at most 2 of 10,000 cars crossing the bridge will have a flat
tire is

0.6065 + 0.3033 + 0.0758 = 0.9856

EXAMPLE 11

Use Figure 5 to rework the preceding example.

Solution

(a) Reading off the value for K = 2 in the P(X = K) column, we get 0.0758.

(b) Here we could add the values for K = 0, K = 1, and K = 2 in the P(X = K)
column, or we could read the value for K = 2 in the P(X LESS OR = K)
column, getting 0.9856.

Having derived the Poisson distribution as a limiting form of the binomial dis-
tribution, we can obtain formulas for its mean and its variance by applying the same
limiting conditions (n →q, θ → 0, and nθ = λ remains constant) to the mean and
the variance of the binomial distribution. For the mean we get μ = nθ = λ and for
the variance we get σ 2 = nθ(1 − θ) = λ(1 − θ), which approaches λ when θ→0.

THEOREM 8. The mean and the variance of the Poisson distribution are
given by

μ = λ and σ 2 = λ

These results can also be obtained by directly evaluating the necessary summa-
tions (see Exercise 33) or by working with the moment-generating function given in
the following theorem.

THEOREM 9. The moment-generating function of the Poisson distribution
is given by

MX(t) = eλ(e
t−1)

Proof By Definition 7 and the definition of moment-generating function—
The moment generating function of a random variable X, where it exists,
is given by MX(t) = E(etX) = ∑

x
etX · f (x) when X is discrete, and

Figure 5. Computer printout of the Poisson distribution with λ = 0.5.

162



Special Probability Distributions

MX(t) = E(etX) = ∫q
−q etx · f (x)dx when X is continuous—we get

MX(t) =
q∑

x=0

ext · λ
xe−λ

x!
= e−λ ·

q∑
x=0

(λet)x

x!

where
q∑

x=0

(λet)x

x!
can be recognized as the Maclaurin’s series of ez with

z = λet. Thus,

MX(t) = e−λ · eλet = eλ(e
t−1)

Then, if we differentiate MX(t) twice with respect to t, we get

M′
X(t) = λeteλ(e

t−1)

M′′
X(t) = λeteλ(e

t−1) + λ2e2teλ(e
t−1)

so that μ′
1 = M′

X(0) = λ and μ′
2 = M′′

X(0) = λ+ λ2. Thus, μ = λ and σ 2 = μ′
2 −μ2 =

(λ+ λ2)− λ2 = λ, which agrees with Theorem 8.
Although the Poisson distribution has been derived as a limiting form of the

binomial distribution, it has many applications that have no direct connection with
binomial distributions. For example, the Poisson distribution can serve as a model
for the number of successes that occur during a given time interval or in a specified
region when (1) the numbers of successes occurring in nonoverlapping time intervals
or regions are independent, (2) the probability of a single success occurring in a very
short time interval or in a very small region is proportional to the length of the
time interval or the size of the region, and (3) the probability of more than one
success occurring in such a short time interval or falling in such a small region is
negligible. Hence, a Poisson distribution might describe the number of telephone
calls per hour received by an office, the number of typing errors per page, or the
number of bacteria in a given culture when the average number of successes, λ, for
the given time interval or specified region is known.

EXAMPLE 12

The average number of trucks arriving on any one day at a truck depot in a certain
city is known to be 12. What is the probability that on a given day fewer than 9 trucks
will arrive at this depot?

Solution
Let X be the number of trucks arriving on a given day. Then, using Table II of “Sta-
tistical Tables” with λ = 12, we get

P(X < 9) =
8∑

x=0

p(x; 12) = 0.1550

If, in a situation where the preceding conditions apply, successes occur at a mean
rate of α per unit time or per unit region, then the number of successes in an interval
of t units of time or t units of the specified region is a Poisson random variable with
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the mean λ = αt (see Exercise 31). Therefore, the number of successes, X, in a time
interval of length t units or a region of size t units has the Poisson distribution

p(x;αt) = e−αt(αt)x

x!
for x = 0, 1, 2, . . .

EXAMPLE 13

A certain kind of sheet metal has, on the average, five defects per 10 square feet. If
we assume a Poisson distribution, what is the probability that a 15-square-foot sheet
of the metal will have at least six defects?

Solution
Let X denote the number of defects in a 15-square-foot sheet of the metal. Then,
since the unit of area is 10 square feet, we have

λ = αt = (5)(1.5) = 7.5

and
P(X G 6) = 1 − P(X F 5) = 1 − 0.2414 = 0.7586

according to the computer printout shown in Figure 4.

Exercises
16. The negative binomial distribution is sometimes
defined in a different way as the distribution of the num-
ber of failures that precede the kth success. If the kth
success occurs on the xth trial, it must be preceded by
x − k failures. Thus, find the distribution of Y = X − k,
where X has the distribution of Definition 4.

17. With reference to Exercise 16, find expressions for μY
and σ 2

Y .

18. Prove Theorem 5.

19. Prove Theorem 6 by first determining E(X) and
E[X(X + 1)].

20. Show that the moment-generating function of the
geometric distribution is given by

MX(t) = θet

1 − et(1 − θ)

21. Use the moment-generating function derived in Exer-

cise 20 to show that for the geometric distribution, μ = 1
θ

and σ 2 = 1 − θ
θ2 .

22. Differentiating with respect to θ the expressions on
both sides of the equation

q∑
x=1

θ(1 − θ)x−1 = 1

show that the mean of the geometric distribution is given

by μ = 1
θ

. Then, differentiating again with respect to θ ,

show that μ′
2 = 2 − θ

θ2 and hence that σ 2 = 1 − θ
θ2 .

23. If X is a random variable having a geometric distribu-
tion, show that

P(X = x + n|X >n) = P(X = x)

24. If the probability is f (x) that a product fails the xth
time it is being used, that is, on the xth trial, then its fail-
ure rate at the xth trial is the probability that it will fail on
the xth trial given that it has not failed on the first x − 1
trials; symbolically, it is given by

Z(x) = f (x)
1 − F(x − 1)

where F(x) is the value of the corresponding distribution
function at x. Show that if X is a geometric random vari-
able, its failure rate is constant and equal to θ .

25. A variation of the binomial distribution arises when
the n trials are all independent, but the probability of a
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success on the ith trial is θi, and these probabilities are
not all equal. If X is the number of successes obtained
under these conditions in n trials, show that

(a) μX = nθ , where θ = 1
n

·
n∑

i=1

θi;

(b) σ 2
X = nθ(1 − θ)− nσ 2

θ , where θ is as defined in part

(a) and σ 2
θ = 1

n
·

n∑
i=1

(θi − θ)2.

26. When calculating all the values of a hypergeomet-
ric distribution, the work can often be simplified by
first calculating h(0; n, N, M) and then using the recur-
sion formula

h(x + 1; n, N, M) = (n − x)(M − x)
(x + 1)(N − M − n + x + 1)

· h(x; n, N, M)

Verify this formula and use it to calculate the values of
the hypergeometric distribution with n = 4, N = 9, and
M = 5.

27. Verify the expression given for E[X(X − 1)] in the
proof of Theorem 7.

28. Show that if we let θ = M
N

in Theorem 7, the mean

and the variance of the hypergeometric distribution can

be written as μ = nθ and σ 2 = nθ(1 − θ) · N − n
N − 1

. How do

these results tie in with the discussion in the theorem?

29. When calculating all the values of a Poisson distribu-
tion, the work can often be simplified by first calculating
p(0; λ) and then using the recursion formula

p(x + 1; λ) = λ

x + 1
· p(x; λ)

Verify this formula and use it and e−2 = 0.1353 to ver-
ify the values given in Table II of “Statistical Tables” for
λ = 2.

30. Approximate the binomial probability b(3; 100, 0.10)
by using
(a) the formula for the binomial distribution and loga-
rithms;
(b) Table II of “Statistical Tables.”

31. Suppose that f (x, t) is the probability of getting x suc-
cesses during a time interval of length t when (i) the
probability of a success during a very small time interval
from t to t +�t is α ·�t, (ii) the probability of more than
one success during such a time interval is negligible, and
(iii) the probability of a success during such a time inter-
val does not depend on what happened prior to time t.
(a) Show that under these conditions

f (x, t +�t) = f (x, t)[1 −α ·�t] + f (x − 1, t)α ·�t

and hence that

d[f (x, t)]
dt

= α[f (x − 1, t)− f (x, t)]

(b) Show by direct substitution that a solution of this
infinite system of differential equations (there is one for
each value of x) is given by the Poisson distribution with
λ = αt.

32. Use repeated integration by parts to show that

x∑
y=0

λye−λ

y!
= 1

x!
·
∫ q

λ

txe−t dt

This result is important because values of the dis-
tribution function of a Poisson random variable may
thus be obtained by referring to a table of incomplete
gamma functions.

33. Derive the formulas for the mean and the variance
of the Poisson distribution by first evaluating E(X) and
E[X(X − 1)].

34. Show that if the limiting conditions n →q, θ → 0,
while nθ remains constant, are applied to the moment-
generating function of the binomial distribution, we
get the moment-generating function of the Poisson
distribution.

[Hint: Make use of the fact that lim
n→q

(
1 + z

n

)n

= ez.]

35. This question has been intentionally omitted for this
edition.

36. Differentiating with respect to λ the expressions on
both sides of the equation

μr =
q∑

x=0

(x − λ)r · λ
xe−λ

x!

derive the following recursion formula for the moments
about the mean of the Poisson distribution:

μr+1 = λ

[
rμr−1 + dμr

dλ

]

for r = 1, 2, 3, . . .. Also, use this recursion formula and the
fact that μ0 = 1 and μ1 = 0 to find μ2,μ3, and μ4, and
verify the formula given for α3 in Exercise 35.

37. Use Theorem 9 to find the moment-generating func-
tion of Y = X − λ, where X is a random variable having
the Poisson distribution with the parameter λ, and use it
to verify that σ 2

Y = λ.
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8 The Multinomial Distribution
An immediate generalization of the binomial distribution arises when each trial has
more than two possible outcomes, the probabilities of the respective outcomes are
the same for each trial, and the trials are all independent. This would be the case,
for instance, when persons interviewed by an opinion poll are asked whether they
are for a candidate, against her, or undecided or when samples of manufactured
products are rated excellent, above average, average, or inferior.

To treat this kind of problem in general, let us consider the case where there
are n independent trials permitting k mutually exclusive outcomes whose respective

probabilities are θ1, θ2, . . . , θk

⎛
⎝with

k∑
i=1

θi = 1

⎞
⎠. Referring to the outcomes as being

of the first kind, the second kind, . . ., and the kth kind, we shall be interested in the
probability of getting x1 outcomes of the first kind, x2 outcomes of the second kind,

. . ., and xk outcomes of the kth kind

⎛
⎝with

k∑
i=1

xi = n

⎞
⎠.

Proceeding as in the derivation of the formula for the binomial distribution,
we first find that the probability of getting x1 outcomes of the first kind, x2 out-
comes of the second kind, . . ., and xk outcomes of the kth kind in a specific order
is θx1

1 · θx2
2 · . . . · θxk

k . To get the corresponding probability for that many outcomes of
each kind in any order, we shall have to multiply the probability for any specific
order by

(
n

x1, x2, . . . , xk

)
= n!

x1! · x2! · . . . · xk!

DEFINITION 8. MULTINOMIAL DISTRIBUTION. The random variables X1, X2, . . . , Xn
have a multinomial distribution and they are referred to as multinomial random
variables if and only if their joint probability distribution is given by

f (x1, x2, . . . , xk; n, θ1, θ2, . . . , θk) =
(

n
x1, x2, . . . , xk

)
· θx1

1 · θx2
2 · . . . · θxk

k

for xi = 0, 1, . . . n for each i, where
k∑

i=1
xi = n and

k∑
i=1
θi = 1.

Thus, the numbers of outcomes of the different kinds are random variables hav-
ing the multinomial distribution with the parameters n, θ1, θ2, . . ., and θk. The name
“multinomial” derives from the fact that for various values of the xi, the probabilities
equal corresponding terms of the multinomial expansion of (θ1 + θ2 + · · · + θk)

n.

EXAMPLE 14

A certain city has 3 newspapers, A, B, and C. Newspaper A has 50 percent of the
readers in that city. Newspaper B, has 30 percent of the readers, and newspaper C
has the remaining 20 percent. Find the probability that, among 8 randomly-chosen
readers in that city, 5 will read newspaper A, 2 will read newspaper B, and 1 will read
newspaper C. (For the purpose of this example, assume that no one reads more than
one newspaper.)
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Solution
Substituting x1 = 5, x2 = 2, x3 = 1, θ1 = 0.50, θ2 = 0.30, θ3 = 0.20, and n = 8 into
the formula of Definition 8, we get

f (5, 2, 1; 8, 0.50, 0.30, 0.20) = 8!
5! · 2! · 1!

(0.50)5(0.30)2(0.20)

= 0.0945

9 The Multivariate Hypergeometric Distribution
Just as the hypergeometric distribution takes the place of the binomial distribution
for sampling without replacement, there also exists a multivariate distribution anal-
ogous to the multinomial distribution that applies to sampling without replacement.
To derive its formula, let us consider a set of N elements, of which M1 are elements
of the first kind, M2 are elements of the second kind, . . ., and Mk are elements of the

kth kind, such that
k∑

i=1

Mi = N. As in connection with the multinomial distribution,

we are interested in the probability of getting x1 elements (outcomes) of the first
kind, x2 elements of the second kind, . . ., and xk elements of the kth kind, but now
we are choosing, without replacement, n of the N elements of the set.

There are

(
M1
x1

)
ways of choosing x1 of the M1 elements of the first kind,

(
M2
x2

)

ways of choosing x2 of the M2 elements of the second kind, . . ., and

(
Mk
xk

)
ways of

choosing xk of the Mk elements of the kth kind, and, hence,

(
M1
x1

)(
M2
x2

)
· . . . ·

(
Mk
xk

)

ways of choosing the required
k∑

i=1

xi = n elements. Since there are

(
N
n

)
ways of

choosing n of the N elements in the set and we assume that they are all equally
likely (which is what we mean when we say that the selection is random), it follows

that the desired probability is given by

(
M1
x1

)(
M2
x2

)
· . . . ·

(
Mk
xk

)/(
N
n

)
.

DEFINITION 9. MULTIVARIATE HYPERGEOMETRIC DISTRIBUTION. The random variables
X1, X2, . . . , Xk have a multivariate hypergeometric distribution and they are
referred to as multivariate hypergeometric random variables if and only if their
joint probability distribution is given by

f (x1, x2, . . . , xk; n, M1, M2, . . . , Mk) =

(
M1
x1

)(
M2
x2

)
· . . . ·

(
Mk
xk

)
(

N
n

)

for xi = 0, 1, . . . n and xi … Mi for each i, where
k∑

i=1
xi = n and

k∑
i=1

Mi = N.
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Thus, the joint distribution of the random variables under consideration, that is, the
distribution of the numbers of outcomes of the different kinds, is a multivariate
hypergeometric distribution with the parameters n, M1, M2, . . ., and Mk.

EXAMPLE 15

A panel of prospective jurors includes six married men, three single men, seven
married women, and four single women. If the selection is random, what is the prob-
ability that a jury will consist of four married men, one single man, five married
women, and two single women?

Solution
Substituting x1 = 4, x2 = 1, x3 = 5, x4 = 2, M1 = 6, M2 = 3, M3 = 7, M4 = 4,
N = 20, and n = 12 into the formula of Definition 9, we get

f (4, 1, 5, 2; 12, 6, 3, 7, 4) =

(
6
4

)(
3
1

)(
7
5

)(
4
2

)
(

20
12

)

= 0.0450

Exercises
38. If X1, X2, . . . , Xk have the multinomial distribution of
Definition 8, show that the mean of the marginal distribu-
tion of Xi is nθi for i = 1, 2, . . . , k.

39. If X1, X2, . . . , Xk have the multinomial distribution of
Definition 8, show that the covariance of Xi and Xj is
−nθiθj for i = 1, 2, . . . , k, j = 1, 2, . . . , k, and i Z j.

10 The Theory in Practice
In this section we shall discuss an important application of the binomial distribution,
namely sampling inspection.

In sampling inspection, a specified sample of a lot of manufactured product is
inspected under controlled, supervised conditions. If the number of defectives found
in the sample exceeds a given acceptance number, the lot is rejected. (A rejected lot
may be subjected to closer inspection, but it is rarely scrapped.) A sampling plan
consists of a specification of the number of items to be included in the sample taken
from each lot, and a statement about the maximum number of defectives allowed
before rejection takes place.

The probability that a lot will be accepted by a given sampling plan, of course,
will depend upon p, the actual proportion of defectives in the lot. Since the value of
p is unknown, we calculate the probability of accepting a lot for several different val-
ues of p. Suppose a sampling plan requires samples of size n from each lot, and that
the lot size is large with respect to n. Suppose, further, that the acceptance number is
c; that is, the lot will be accepted if c defectives or fewer are found in the sample. The
probability of acceptance, the probability of finding c or fewer defectives in a sample
of size n, is given by the binomial distribution to a close approximation. (Since sam-
pling inspection is done without replacement, the assumption of equal probabilities
from trial to trial, underlying the binomial distribution, is violated. But if the sample
size is small relative to the lot size, this assumption is nearly satisfied.) Thus, for large
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lots, the probability of accepting a lot having the proportion of defectives p is closely
approximated by the following definition.

DEFINITION 10. PROBABILITY OF ACCEPTANCE. If n is the size of the sample taken from
each large lot and c is the acceptance number, the probability of acceptance is
closely approximated by

L(p) =
c∑

k=0

b(k; n, p) = B(c; n, p)

where p is the actual proportion of defectives in the lot.

This equation simply states that the probability of c or fewer defectives in the
sample is given by the probability of 0 defectives, plus the probability of 1 defec-
tive, . . . , up to the probability of c defectives, with each probability being approxi-
mated by the binomial distribution having the parameters n and θ = p. Definition 10
is closely related to the power function.

It can be seen from this definition that, for a given sampling plan (sample size,
n, and acceptance number, c), the probability of acceptance depends upon p, the
actual (unknown) proportion of defectives in the lot. Thus a curve can be drawn that
gives the probability of accepting a lot as a function of the lot proportion defective,
p. This curve, called the operating characteristic curve, or OC curve, defines the
characteristics of the sampling plan.

To illustrate the construction of an OC curve, let us consider the sampling plan
having n = 20 and c = 3. That is, samples of size 20 are drawn from each lot, and a
lot is accepted if the sample contains 3 or fewer defectives. Referring to the line in
Table I of “Statistical Tables” corresponding to n = 20 and x = 3, the probabilities
that a random variable having the binomial distribution b(x; 20, p) will assume a
value less than or equal to 3 for various values of p are as follows:

p 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

L(p) 0.9841 0.8670 0.6477 0.4114 0.2252 0.1071 0.0444 0.0160 0.0049

A graph of L(p) versus p is shown in Figure 6.
Inspection of the OC curve given in Figure 6 shows that the probability of accep-

tance is quite high (greater than 0.9) for small values of p, say values less than about
0.10. Also, the probability of acceptance is low (less than 0.10) for values of p greater
than about 0.30. If the actual proportion of defectives in the lot lies between 0.10 and
0.30, however, it is somewhat of a tossup whether the lot will be accepted or rejected.

An “ideal” OC curve would be like the one shown in Figure 7. In this figure,
there is no “gray area”; that is, it is certain that a lot with a given small value of p
or less will be accepted, and it is certain that a lot with a value of p greater than the
given value will be rejected. By comparison, the OC curve of Figure 6 seems to do
a poor job of discriminating between “good” and “bad” lots. In such cases, a better
OC curve can be obtained by increasing the sample size, n.

The OC curve of a sampling plan never can be like the ideal curve of Figure 7
with finite sample sizes, as there always will be some statistical error associated with
sampling. However, sampling plans can be evaluated by choosing two values of p
considered to be important and calculating the probabilities of lot acceptance at
these values. First, a number, p0, is chosen so that a lot containing a proportion
of defectives less than or equal to p0 is desired to be accepted. This value of p is
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Figure 6. OC curve.

called the acceptable quality level, or AQL. Then, a second value of p, p1, is chosen
so that we wish to reject a lot containing a proportion of defectives greater than
p1. This value of p is called the lot tolerance percentage defective, or LTPD. We
evaluate a sampling plan by finding the probability that a “good” lot (a lot with
p … p0) will be rejected and the probability that a “bad” lot (one with p Ú p1) will be
accepted.

The probability that a “good” lot will be rejected is called the producer’s risk,
and the probability that a “bad” lot will be accepted is called the consumer’s risk.
The producer’s risk expresses the probability that a “good” lot (one with p < p0) will
erroneously be rejected by the sampling plan. It is the risk that the producer takes
as a consequence of sampling variability. The consumer’s risk is the probability that
the consumer erroneously will receive a “bad” lot (one with p > p1). These risks are
analogous to the type I and type II errors, α and β (If the true value of the parameter
θ is θ0 and the statistician incorrectly concludes that θ = θ1, he is committing an error
referred to as a type I error. On the other hand, if the true value of the parameter θ

1

L(p)

0 p

1

Figure 7. “Ideal” OC curve.
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is θ1 and the statistician incorrectly concludes that θ = θ0, he is committing a type II
error.)

Suppose an AQL of 0.05 is chosen (p0 = 0.05). Then, it can be seen from
Figure 6 that the given sampling plan has a producer’s risk of about 0.03, since
the probability of acceptance of a lot with an actual proportion defective of 0.05
is approximately 0.97. Similarly, if an LTPD of 0.20 is chosen, the consumer’s risk
is about 0.41. This plan obviously has an unacceptably high consumer’s risk—over
40 percent of the lots received by the consumer will have 20 percent defectives or
greater. To produce a plan with better characteristics, it will be necessary to increase
the sample size, n, to decrease the acceptance number, c, or both. The following
example shows what happens to these characteristics when c is decreased to 1, while
n remains fixed at 20.

EXAMPLE 16

Find the producer’s and consumer’s risks corresponding to an AQL of 0.05 and an
LTPD of 0.20 for the sampling plan defined by n = 20 and c = 1.

Solution
First, we calculate L(p) for various values of p. Referring to Table I of “Statistical
Tables” with n = 20 and x = 1, we obtain the following table:

p 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

L(p) 0.7358 0.3917 0.1756 0.0692 0.0243 0.0076 0.0021 0.0005 0.0001

A graph of this OC curve is shown in Figure 8. From this graph, we observe
that the producer’s risk is 1 − 0.7358 = 0.2642, and the consumer’s risk is 0.0692.
Note that the work of constructing OC curves can be shortened considerably using
computer software such as Excel or MINITAB.
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Figure 8. OC curve for Example 16.
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Reduction of the acceptance number from 3 to 1 obviously has improved the
consumer’s risk, but now the producer’s risk seems unacceptably high. Evidently, a
larger sample size is needed.

The preceding example has been somewhat artificial. It would be quite unusual
to specify an LTPD as high as 0.20 (20 percent defectives), and higher sample sizes
than 20 usually are used for acceptance sampling. In practice, OC curves have been
calculated for sampling plans having many different combinations of n and c. Choice
then is made of the sampling plan whose OC curve has as nearly as possible the
desired characteristics, AQL, LTPD, consumer’s risk, and producer’s risk for sample
sizes in an acceptable range.

Applied Exercises SECS. 1–4

40. A multiple-choice test consists of eight questions and
three answers to each question (of which only one is cor-
rect). If a student answers each question by rolling a bal-
anced die and checking the first answer if he gets a 1 or 2,
the second answer if he gets a 3 or 4, and the third answer
if he gets a 5 or 6, what is the probability that he will get
exactly four correct answers?

41. An automobile safety engineer claims that 1 in 10
automobile accidents is due to driver fatigue. Using the
formula for the binomial distribution and rounding to
four decimals, what is the probability that at least 3 of
5 automobile accidents are due to driver fatigue?

42. In a certain city, incompatibility is given as the legal
reason in 70 percent of all divorce cases. Find the prob-
ability that five of the next six divorce cases filed in this
city will claim incompatibility as the reason, using
(a) the formula for the binomial distribution;
(b) Table I of “Statistical Tables.”

43. If 40 percent of the mice used in an experiment will
become very aggressive within 1 minute after having been
administered an experimental drug, find the probability
that exactly 6 of 15 mice that have been administered the
drug will become very aggressive within 1 minute, using
(a) the formula for the binomial distribution;
(b) Table I of “Statistical Tables.”

44. A social scientist claims that only 50 percent of all
high school seniors capable of doing college work actually
go to college. Assuming that this claim is true, use Table I
of “Statistical Tables” to find the probabilities that among
18 high school seniors capable of doing college work
(a) exactly 10 will go to college;
(b) at least 10 will go to college;
(c) at most 8 will go to college.

45. Suppose that the probability is 0.63 that a car stolen
in a certain Western city will be recovered. Use the com-
puter printout of Figure 1 to find the probability that
at least 8 of 10 cars stolen in this city will be recov-
ered, using
(a) the values in the P(X = K) column;
(b) the values in the P(X LESS OR = K) column.

46. With reference to Exercise 45 and the computer
printout of Figure 1, find the probability that among 10
cars stolen in the given city anywhere from 3 to 5 will be
recovered, using
(a) the values in the P(X = K) column;
(b) the values in the P(X LESS OR = K) column.

47. With reference to Exercise 43, suppose that the per-
centage had been 42 instead of 40. Use a suitable table
or a computer printout of the binomial distribution with
n=15 and θ=0.42 to rework both parts of that exercise.

48. With reference to Exercise 44, suppose that the per-
centage had been 51 instead of 50. Use a suitable table or
a computer printout of the binomial distribution with n=
18 and θ=0.51 to rework the three parts of that exercise.

49. In planning the operation of a new school, one school
board member claims that four out of five newly hired
teachers will stay with the school for more than a year,
while another school board member claims that it would
be correct to say three out of five. In the past, the two
board members have been about equally reliable in their
predictions, so in the absence of any other information
we would assign their judgments equal weight. If one
or the other has to be right, what probabilities would
we assign to their claims if it were found that 11 of 12
newly hired teachers stayed with the school for more than
a year?

50. (a) To reduce the standard deviation of the binomial
distribution by half, what change must be made in the
number of trials?
(b) If n is multiplied by the factor k in the binomial dis-
tribution having the parameters n and θ , what statement
can be made about the standard deviation of the resulting
distribution?

51. A manufacturer claims that at most 5 percent of the
time a given product will sustain fewer than 1,000 hours
of operation before requiring service. Twenty products
were selected at random from the production line and
tested. It was found that three of them required service
before 1,000 hours of operation. Comment on the manu-
facturer’s claim.
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52. (a) Use a computer program to calculate the proba-
bility of rolling between 14 and 18 “sevens” in 100 rolls of
a pair of dice.
(b) Would it surprise you if more than 18 “sevens” were
rolled? Why?

53. (a) Use a computer program to calculate the proba-
bility that more than 12 of 80 business telephone calls last
longer than five minutes if it is assumed that 10 percent of
such calls last that long.
(b) Can this result be used as evidence that the assump-
tion is reasonable? Why?

54. Use Chebyshev’s theorem and Theorem 3 to verify
that the probability is at least 35

36 that
(a) in 900 flips of a balanced coin the proportion of heads
will be between 0.40 and 0.60;
(b) in 10,000 flips of a balanced coin the proportion of
heads will be between 0.47 and 0.53;
(c) in 1,000,000 flips of a balanced coin the proportion of
heads will be between 0.497 and 0.503.

Note that this serves to illustrate the law of large num-
bers.

55. You can get a feeling for the law of large numbers
given Section 4 by flipping coins. Flip a coin 100 times
and plot the accumulated proportion of heads after each
five flips.

56. Record the first 200 numbers encountered in a news-
paper, beginning with page 1 and proceeding in any con-
venient, systematic fashion. Include also numbers appear-
ing in advertisements. For each of these numbers, note
the leftmost digit, and record the proportions of 1’s, 2’s,
3’s, . . . , and 9’s. (Note that 0 cannot be a leftmost digit. In
the decimal number 0.0074, the leftmost digit is 7.) The
results may seem quite surprising, but the law of large
numbers tells you that you must be estimating correctly.

SECS. 5–7
57. If the probabilities of having a male or female child
are both 0.50, find the probabilities that
(a) a family’s fourth child is their first son;
(b) a family’s seventh child is their second daughter;
(c) a family’s tenth child is their fourth or fifth son.

58. If the probability is 0.75 that a person will believe a
rumor about the transgressions of a certain politician, find
the probabilities that
(a) the eighth person to hear the rumor will be the fifth to
believe it;
(b) the fifteenth person to hear the rumor will be the
tenth to believe it.

59. When taping a television commercial, the probability
is 0.30 that a certain actor will get his lines straight on any
one take. What is the probability that he will get his lines
straight for the first time on the sixth take?

60. An expert sharpshooter misses a target 5 percent of
the time. Find the probability that she will miss the target
for the second time on the fifteenth shot using
(a) the formula for the negative binomial distribution;
(b) Theorem 5 and Table I of “Statistical Tables.”

61. Adapt the formula of Theorem 5 so that it can be used
to express geometric probabilities in terms of binomial
probabilities, and use the formula and Table I of “Statis-
tical Tables” to
(a) verify the result of Example 5;
(b) rework Exercise 59.

62. In a “torture test” a light switch is turned on and off
until it fails. If the probability is 0.001 that the switch will
fail any time it is turned on or off, what is the probability
that the switch will not fail during the first 800 times that it
is turned on or off? Assume that the conditions underly-
ing the geometric distribution are met and use logarithms.

63. A quality control engineer inspects a random sample
of two hand-held calculators from each incoming lot of
size 18 and accepts the lot if they are both in good work-
ing condition; otherwise, the entire lot is inspected with
the cost charged to the vendor. What are the probabilities
that such a lot will be accepted without further inspection
if it contains
(a) 4 calculators that are not in good working condition;
(b) 8 calculators that are not in good working condition;
(c) 12 calculators that are not in good working condition?

64. Among the 16 applicants for a job, 10 have college
degrees. If 3 of the applicants are randomly chosen for
interviews, what are the probabilities that
(a) none has a college degree;
(b) 1 has a college degree;
(c) 2 have college degrees;
(d) all 3 have college degrees?

65. Find the mean and the variance of the hypergeometric
distribution with n = 3, N = 16, and M = 10, using
(a) the results of Exercise 64;
(b) the formulas of Theorem 7.

66. What is the probability that an IRS auditor will catch
only 2 income tax returns with illegitimate deductions if
she randomly selects 5 returns from among 15 returns, of
which 9 contain illegitimate deductions?

67. Check in each case whether the condition for the
binomial approximation to the hypergeometric distribu-
tion is satisfied:
(a) N = 200 and n = 12;
(b) N = 500 and n = 20;
(c) N = 640 and n = 30.

68. A shipment of 80 burglar alarms contains 4 that are
defective. If 3 from the shipment are randomly selected
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and shipped to a customer, find the probability that the
customer will get exactly one bad unit using
(a) the formula of the hypergeometric distribution;
(b) the binomial distribution as an approximation.

69. Among the 300 employees of a company, 240 are
union members, whereas the others are not. If 6 of the
employees are chosen by lot to serve on a committee that
administers the pension fund, find the probability that 4
of the 6 will be union members using
(a) the formula for the hypergeometric distribution;
(b) the binomial distribution as an approximation.

70. A panel of 300 persons chosen for jury duty includes
30 under 25 years of age. Since the jury of 12 persons cho-
sen from this panel to judge a narcotics violation does
not include anyone under 25 years of age, the youthful
defendant’s attorney complains that this jury is not really
representative. Indeed, he argues, if the selection were
random, the probability of having one of the 12 jurors
under 25 years of age should be many times the probabil-
ity of having none of them under 25 years of age. Actually,
what is the ratio of these two probabilities?

71. Check in each case whether the values of n and θ

satisfy the rule of thumb for a good approximation, an
excellent approximation, or neither when we want to use
the Poisson distribution to approximate binomial proba-
bilities.
(a) n = 125 and θ = 0.10;
(b) n = 25 and θ = 0.04;
(c) n = 120 and θ = 0.05;
(d) n = 40 and θ = 0.06.

72. It is known from experience that 1.4 percent of the
calls received by a switchboard are wrong numbers. Use
the Poisson approximation to the binomial distribution to
determine the probability that among 150 calls received
by the switchboard 2 are wrong numbers.

73. With reference to Example 8, determine the value of
x (from 5 to 15) for which the percentage error is great-
est when we use the Poisson distribution with λ = 7.5 to
approximate the binomial distribution with n = 150 and
θ = 0.05.

74. In a given city, 4 percent of all licensed drivers will
be involved in at least one car accident in any given year.
Use the Poisson approximation to the binomial distribu-
tion to determine the probability that among 150 licensed
drivers randomly chosen in this city
(a) only 5 will be involved in at least one accident in any
given year;
(b) at most 3 will be involved in at least one accident in
any given year.

75. Records show that the probability is 0.0012 that a per-
son will get food poisoning spending a day at a certain
state fair. Use the Poisson approximation to the binomial

distribution to find the probability that among 1,000 per-
sons attending the fair at most 2 will get food poisoning.

76. With reference to Example 13 and the computer
printout of Figure 4, find the probability that a 15-square-
foot sheet of the metal will have anywhere from 8 to 12
defects, using
(a) the values in the P(X = K) column;
(b) the values in the P(X LESS OR = K) column.

77. The number of complaints that a dry-cleaning estab-
lishment receives per day is a random variable having a
Poisson distribution with λ = 3.3. Use the formula for
the Poisson distribution to find the probability that it will
receive only two complaints on any given day.

78. The number of monthly breakdowns of a super com-
puter is a random variable having a Poisson distribution
with λ = 1.8. Use the formula for the Poisson distribution
to find the probabilities that this computer will function
(a) without a breakdown;
(b) with only one breakdown.

79. Use Table II of “Statistical Tables” to verify the
results of Exercise 78.

80. In the inspection of a fabric produced in continuous
rolls, the number of imperfections per yard is a random
variable having the Poisson distribution with λ = 0.25.
Find the probability that 2 yards of the fabric will have at
most one imperfection using
(a) Table II of “Statistical Tables”;
(b) the computer printout of Figure 5.

81. In a certain desert region the number of persons who
become seriously ill each year from eating a certain poi-
sonous plant is a random variable having a Poisson distri-
bution with λ = 5.2. Use Table II of “Statistical Tables”
to find the probabilities of
(a) 3 such illnesses in a given year;
(b) at least 10 such illnesses in a given year;
(c) anywhere from 4 to 6 such illnesses in a given year.

82. (a) Use a computer program to calculate the exact
probability of obtaining one or more defectives in a sam-
ple of size 100 taken from a lot of 1,000 manufactured
products assumed to contain six defectives.
(b) Approximate this probability using the appropriate
binomial distribution.
(c) Approximate this probability using the appropriate
Poisson distribution and compare the results of parts (a),
(b), and (c).

SECS. 8–9
83. The probabilities are 0.40, 0.50, and 0.10 that, in city
driving, a certain kind of compact car will average less
than 28 miles per gallon, from 28 to 32 miles per gallon,
or more than 32 miles per gallon. Find the probability
that among 10 such cars tested, 3 will average less than
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28 miles per gallon, 6 will average from 28 to 32 miles per
gallon, and 1 will average more than 32 miles per gallon.

84. Suppose that the probabilities are 0.60, 0.20, 0.10, and
0.10 that a state income tax return will be filled out cor-
rectly, that it will contain only errors favoring the tax-
payer, that it will contain only errors favoring the state,
or that it will contain both kinds of errors. What is the
probability that among 12 such income tax returns ran-
domly chosen for audit, 5 will be filled out correctly, 4
will contain only errors favoring the taxpayer, 2 will con-
tain only errors favoring the state, and 1 will contain both
kinds of errors?

85. According to the Mendelian theory of heredity, if
plants with round yellow seeds are crossbred with plants
with wrinkled green seeds, the probabilities of getting a
plant that produces round yellow seeds, wrinkled yellow
seeds, round green seeds, or wrinkled green seeds are,
respectively, 9

16 , 3
16 , 3

16 , and 1
16 . What is the probability

that among nine plants thus obtained there will be four
that produce round yellow seeds, two that produce wrin-
kled yellow seeds, three that produce round green seeds,
and none that produce wrinkled green seeds?

86. Among 25 silver dollars struck in 1903 there are 15
from the Philadelphia mint, 7 from the New Orleans mint,
and 3 from the San Francisco mint. If 5 of these sil-
ver dollars are picked at random, find the probabilities
of getting
(a) 4 from the Philadelphia mint and 1 from the New
Orleans mint;
(b) 3 from the Philadelphia mint and 1 from each of the
other 2 mints.

87. If 18 defective glass bricks include 10 that have cracks
but no discoloration, 5 that have discoloration but no
cracks, and 3 that have cracks and discoloration, what
is the probability that among 6 of the bricks (chosen at
random for further checks) 3 will have cracks but no dis-
coloration, 1 will have discoloration but no cracks, and 2
will have cracks and discoloration?

SEC. 10
88. A sampling inspection program has a 0.10 probability
of rejecting a lot when the true proportion of defectivesis

0.01, and a 0.95 probability of rejecting the lot when the
true proportion of defectives is 0.03. If 0.01 is the AQL
and 0.03 is the LTPD, what are the producer’s and con-
sumer’s risks?

89. The producer’s risk in a sampling program is 0.05 and
the consumer’s risk is 0.10; the AQL is 0.03 and the LTPD
is 0.07.
(a) What is the probability of accepting a lot whose true
proportion of defectives is 0.03?
(b) What is the probability of accepting a lot whose true
proportion of defectives is 0.07?

90. Suppose the acceptance number in Example 16 is
changed from 1 to 2. Keeping the producer’s risk at 0.05
and the consumer’s risk at 0.10, what are the new values
of the AQL and the LTPD?

91. From Figure 6,
(a) find the producer’s risk if the AQL is 0.10;
(b) find the LTPD corresponding to a consumer’s risk of
0.05.

92. Sketch the OC curve for a sampling plan having a
sample size of 15 and an acceptance number of 1.

93. Sketch the OC curve for a sampling plan having a
sample size of 25 and an acceptance number of 2.

94. Sketch the OC curve for a sampling plan having a
sample size of 10 and an acceptance number of 0.

95. Find the AQL and the LTPD of the sampling plan in
Exercise 93 if both the producer’s and consumer’s risks
are 0.10.

96. If the AQL is 0.1 and the LTPD is 0.25 in the sam-
pling plan given in Exercise 92, find the producer’s and
consumer’s risks.

97. (a) In Exercise 92 change the acceptance number
from 1 to 0 and sketch the OC curve.
(b) How do the producer’s and consumer’s risks change
if the AQL is 0.05 and the LTPD is 0.3 in both sampling
plans?
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Answers to Odd-Numbered Exercises

11 μ′
2 = μ′

(2)+μ′
(1), μ

′
3 = μ′

(3)+ 3μ′
(2)+μ′

(1), and μ′
4 =

μ′
(4)+ 6μ′

(3)+ 7μ′
(2)+μ′

(1).

13 (a) Fx(t) = 1 − θ + θ t; (b) Fx(t) = [1 + θ(t − 1)]n.

15 (a) α3 = 0 when θ = 1
2 ; (b) α3→0 when n→q.

17 μY = k
(

1
θ

− 1
)

; σ 2
Y = k

θ

(
1
θ

− 1
)

.

37 MY(t) = eλ(e
t−t−1); σ 2

Y = M′
Y(0) = λ.

41 0.0086.
43 (a) 0.2066; (b) 0.2066.
45 (a) 0.2205; (b) 0.2206.
47 0.2041.
49 0.9222.
51 0.0754.
53 (a) 0.0538.
57 (a) 0.0625; (b) 0.0469; (c) 0.2051.
59 0.0504.
61 (a) 0.0117; (b) 0.0504.
63 (a) 0.5948; (b) 0.2941; (c) 0.0980.

65 (a) μ = 15
8 and σ 2 = 39

64 ; (b) μ = 15
8 and σ 2 = 39

64 .

67 (a) The condition is not satisfied. (b) The condition is sat-
isfied. (c) The condition is satisfied.
69 (a) 0.2478; (b) 0.2458.
71 (a) Neither rule of thumb is satisfied. (b) The rule of
thumb for good approximation is satisfied. (c) The rule of
thumb for excellent approximation is satisfied. (d) Neither
rule of thumb is satisfied.
73 x = 15.
75 0.8795.
77 0.2008.
79 (a) 0.1653; (b) 0.2975.
81 (a) 0.1293; (b) 0.0397; (c) 0.4944.
83 0.0841.
85 0.0292.
87 0.0970.
89 (a) 0.95; (b) 0.10.
91 (a) 0.17; (b) 0.35.
95 AQL = 0.07, LTPD = 0.33.
97 (b) Plan 1 (c = 0): producer’s risk = 0.0861 and con-
sumer’s risk = 0.1493; Plan 2 (c = 1): producer’s risk =
0.4013 and consumer’s risk = 0.0282.
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Special Probability
Densities

1 Introduction
2 The Uniform Distribution
3 The Gamma, Exponential, and Chi-Square

Distributions
4 The Beta Distribution

5 The Normal Distribution
6 The Normal Approximation to the Binomial

Distribution
7 The Bivariate Normal Distribution
8 The Theory in Practice

1 Introduction In this chapter we shall study some of the probability densities that figure most
prominently in statistical theory and in applications. In addition to the ones given
in the text, several others are introduced in the exercises following Section 4. We
shall derive parameters and moment-generating functions, again leaving some of
the details as exercises.

2 The Uniform Distribution

DEFINITION 1. UNIFORM DISTRIBUTION. A random variable X has a uniform distri-
bution and it is referred to as a continuous uniform random variable if and only
if its probability density is given by

u(x;α,β) =

⎧⎪⎨
⎪⎩

1
β −α for α < x<β

0 elsewhere

The parameters α and β of this probability density are real constants, with α <
β, and may be pictured as in Figure 1. In Exercise 2 the reader will be asked to
verify the following theorem.

THEOREM 1. The mean and the variance of the uniform distribution are
given by

μ = α+β
2

and σ 2 = 1
12
(β −α)2

From Chapter 6 of John E. Freund’s Mathematical Statistics with Applications,
Eighth Edition. Irwin Miller, Marylees Miller. Copyright © 2014 by Pearson Education, Inc.
All rights reserved.
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a

x
b

1
b � a

u(x; a, b)

Figure 1. The uniform distribution.

Although the uniform distribution has some direct applications, its main value
is that, due to its simplicity, it lends itself readily to the task of illustrating various
aspects of statistical theory.

3 The Gamma, Exponential, and Chi-Square Distributions
Let’s start with random variables having probability densities of the form

f (x) =
{

kxα−1e−x/β for x> 0
0 elsewhere

where α > 0, β > 0, and k must be such that the total area under the curve is equal
to 1. To evaluate k, we first make the substitution y = x

β
, which yields

∫ q

0
kxα−1e−x/βdx = kβα

∫ q

0
yα−1e−ydy

The integral thus obtained depends on α alone, and it defines the well-known gamma
function

�(α) =
∫ q

0
yα−1e−ydy for α > 0

which is treated in detail in most advanced calculus texts. Integrating by parts, which
is left to the reader in Exercise 7, we find that the gamma function satisfies the recur-
sion formula

�(α) = (α− 1) ·�(α− 1)
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for α > 1, and since

�(1) =
∫ q

0
e−ydy = 1

it follows by repeated application of the recursion formula that �(α) = (α− 1)! when
α is a positive integer. Also, an important special value is �

(
1
2

)
= √

π , as the reader
will be asked to verify in Exercise 9.

Returning now to the problem of evaluating k, we equate the integral we obtained
to 1, getting ∫ q

0
kxα−1e−x/βdx = kβα�(α) = 1

and hence

k = 1
βα�(α)

This leads to the following definition of the gamma distribution.

DEFINITION 2. GAMMA DISTRIBUTION. A random variable X has a gamma distribu-
tion and it is referred to as a gamma random variable if and only if its probability
density is given by

g(x;α,β) =

⎧⎪⎨
⎪⎩

1
βα�(α)

xα−1e−x/β for x> 0

0 elsewhere

where �> 0 and �> 0.

When α is not a positive integer, the value of �(α) will have to be looked up in a
special table. To give the reader some idea about the shape of the graphs of gamma
densities, those for several special values of α and β are shown in Figure 2.

Some special cases of the gamma distribution play important roles in statistics;
for instance, for α = 1 and β = θ , we obtain the following definition.

4
1

1
2

1
2

3
4

a �      ,  b � 1

a � 2,  b �

1
5

a � 11,  b �

1
2

1

1 2 3 4 5 60

f (x)

x

Figure 2. Graphs of gamma distributions.

179



Special Probability Densities

DEFINITION 3. EXPONENTIAL DISTRIBUTION. A random variable X has an exponen-
tial distribution and it is referred to as an exponential random variable if and
only if its probability density is given by

g(x; θ) =

⎧⎪⎨
⎪⎩

1
θ

e−x/θ for x> 0

0 elsewhere

where �> 0.

This density is pictured in Figure 3.
Let us consider there is the probability of getting x successes during a time inter-

val of length t when (i) the probability of a success during a very small time interval
from t to t +�t is α ·�t, (ii) the probability of more than one success during such
a time interval is negligible, and (iii) the probability of a success during such a time
interval does not depend on what happened prior to time t. The number of successes
is a value of the discrete random variable X having the Poisson distribution with
λ = αt. Let us determine the probability density of the continuous random variable
Y, the waiting time until the first success. Clearly,

F(y) = P(Y F y) = 1 − P(Y> y)

= 1 − P(0 successes in a time interval of length y)

= 1 − p(0;αy)

= 1 − e−αy(αy)0

0!

= 1 − e−αy for y> 0

x

g (x ; u)

1

u

0

Figure 3. Exponential distribution.
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and F(y) = 0 for y F 0. Having thus found the distribution function of Y, we find
that differentiation with respect to y yields

f (y) =
{
αe−αy for y> 0
0 elsewhere

which is the exponential distribution with θ = 1
α

.

The exponential distribution applies not only to the occurrence of the first suc-
cess in a Poisson process but, by virtue of condition (see Exercise 16), it applies also
to the waiting times between successes.

EXAMPLE 1

At a certain location on highway I-10, the number of cars exceeding the speed limit
by more than 10 miles per hour in half an hour is a random variable having a Poisson
distribution with λ = 8.4. What is the probability of a waiting time of less than 5
minutes between cars exceeding the speed limit by more than 10 miles per hour?

Solution
Using half an hour as the unit of time, we have α = λ = 8.4. Therefore, the waiting
time is a random variable having an exponential distribution with θ = 1

8.4 , and since
5 minutes is 1

6 of the unit of time, we find that the desired probability is

∫ 1/6

0
8.4e−8.4xdx = −e−8.4x

∣∣∣∣
1/6

0
= −e−1.4 + 1

which is approximately 0.75.

Another special case of the gamma distribution arises when α = ν

2
and β = 2,

where ν is the lowercase Greek letter nu.

DEFINITION 4. CHI-SQUARE DISTRIBUTION. A random variable X has a chi-square
distribution and it is referred to as a chi-square random variable if and only if its
probability density is given by

f (x, v) =

⎧⎪⎨
⎪⎩

1
2ν/2�(ν/2)

x
ν−2

2 e− x
2 for x> 0

0 elsewhere

The parameter ν is referred to as the number of degrees of freedom, or simply the
degrees of freedom. The chi-square distribution plays a very important role in sam-
pling theory.

To derive formulas for the mean and the variance of the gamma distribution,
and hence the exponential and chi-square distributions, let us first prove the follow-
ing theorem.
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THEOREM 2. The rth moment about the origin of the gamma distribution is
given by

μ′
r = βr�(α+ r)

�(α)

Proof By using the definition of the rth moment about the origin,

μ′
r =

∫ q

0
xr · 1

βα�(α)
xα−1e−x/βdx = βr

�(α)
·
∫ q

0
yα+r−1e−ydy

where we let y = x
β

. Since the integral on the right is �(r +α) according

to the definition of gamma function, this completes the proof.

Using this theorem, let us now derive the following results about the gamma
distribution.

THEOREM 3. The mean and the variance of the gamma distribution are
given by

μ = αβ and σ 2 = αβ2

Proof From Theorem 2 with r = 1 and r = 2, we get

μ′
1 = β�(α+ 1)

�(α)
= αβ

and

μ′
2 = β2�(α+ 2)

�(α)
= α(α+ 1)β2

so μ = αβ and σ 2 = α(α+ 1)β2 − (αβ)2 = αβ2.

Substituting into these formulas α = 1 and β = θ for the exponential distribu-
tion and α = ν

2
and β = 2 for the chi-square distribution, we obtain the following

corollaries.

COROLLARY 1. The mean and the variance of the exponential distribution
are given by

μ = θ and σ 2 = θ2

COROLLARY 2. The mean and the variance of the chi-square distribution are
given by

μ = ν and σ 2 = 2ν

For future reference, let us give here also the moment-generating function of the
gamma distribution.

THEOREM 4. The moment-generating function of the gamma distribution is
given by

MX(t) = (1 −βt)−α
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The reader will be asked to prove this result and use it to find some of the lower
moments in Exercises 12 and 13.

4 The Beta Distribution
The uniform density f (x) = 1 for 0< x< 1 and f (x) = 0 elsewhere is a special case
of the beta distribution, which is defined in the following way.

DEFINITION 5. BETA DISTRIBUTION. A random variable X has a beta distribution
and it is referred to as a beta random variable if and only if its probability density
is given by

f (x;α,β) =

⎧⎪⎨
⎪⎩

�(α+β)
�(α) ·�(β)xα−1(1 − x)β−1 for 0< x< 1

0 elsewhere

where �> 0 and �> 0.

In recent years, the beta distribution has found important applications in Bayesian
inference, where parameters are looked upon as random variables, and there is a
need for a fairly “flexible” probability density for the parameter θ of the binomial
distribution, which takes on nonzero values only on the interval from 0 to 1. By “flex-
ible” we mean that the probability density can take on a great variety of different
shapes, as the reader will be asked to verify for the beta distribution in Exercise 27.

We shall not prove here that the total area under the curve of the beta distribu-
tion, like that of any probability density, is equal to 1, but in the proof of the theorem
that follows, we shall make use of the fact that

∫ 1

0

�(α+β)
�(α) ·�(β)xα−1(1 − x)β−1dx = 1

and hence that

∫ 1

0
xα−1(1 − x)β−1dx = �(α) ·�(β)

�(α+β)

This integral defines the beta function, whose values are denoted B(α,β); in other

words, B(α,β) = �(α) ·�(β)
�(α+β) . Detailed discussion of the beta function may be found

in any textbook on advanced calculus.

THEOREM 5. The mean and the variance of the beta distribution are
given by

μ = α

α+β and σ 2 = αβ

(α+β)2(α+β + 1)
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Proof By definition,

μ = �(α+β)
�(α) ·�(β) ·

∫ 1

0
x · xα−1(1 − x)β−1dx

= �(α+β)
�(α) ·�(β) · �(α+ 1) ·�(β)

�(α+β + 1)

= α

α+β

where we recognized the integral as B(α+ 1,β) and made use of the fact
that �(α+ 1) = α ·�(α) and �(α+β + 1) = (α+β) ·�(α+β). Similar
steps, which will be left to the reader in Exercise 28, yield

μ′
2 = (α+ 1)α

(α+β + 1)(α+β)
and it follows that

σ 2 = (α+ 1)α
(α+β + 1)(α+β) −

(
α

α+β
)2

= αβ

(α+β)2(α+β + 1)

Exercises
1. Show that if a random variable has a uniform den-
sity with the parameters α and β, the probability
that it will take on a value less than α+ p(β −α) is
equal to p.

2. Prove Theorem 1.

3. If a random variable X has a uniform density with the
parameters α and β, find its distribution function.

4. Show that if a random variable has a uniform density
with the parameters α and β, the rth moment about the
mean equals
(a) 0 when r is odd;

(b)
1

r + 1

(
β −α

2

)r

when r is even.

5. Use the results of Exercise 4 to find α3 and α4 for the
uniform density with the parameters α and β.

6. A random variable is said to have a Cauchy distribu-
tion if its density is given by

f (x) =
β

π

(x −α)2 +β2 for −q< x<q

Show that for this distribution μ′
1 and μ′

2 do not exist.

7. Use integration by parts to show that �(α) = (α− 1) ·
�(α− 1) for α > 1.

8. Perform a suitable change of variable to show that the
integral defining the gamma function can be written as

�(α) = 21−α ·
∫ q

0
z2α−1e− 1

2 z2
dz for α > 0

9. Using the form of the gamma function of Exercise 8,
we can write

�

(
1
2

)
=

√
2
∫ q

0
e− 1

2 z2
dz

and hence

[
�

(
1
2

)]2

= 2
{∫ q

0
e− 1

2 x2
dx
}{∫ q

0
e− 1

2 y2
dy
}

= 2
∫ q

0

∫ q

0
e− 1

2 (x
2+y2) dx dy

Change to polar coordinates to evaluate this double inte-
gral, and thus show that �( 1

2 ) = √
π .

10. Find the probabilities that the value of a random vari-
able will exceed 4 if it has a gamma distribution with
(a) α = 2 and β = 3;
(b) α = 3 and β = 4.
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11. Show that a gamma distribution with α > 1 has a rel-
ative maximum at x = β(α− 1). What happens when
0<α< 1 and when α = 1?

12. Prove Theorem 4, making the substitution y =
x
(

1
β

− t
)

in the integral defining MX(t).

13. Expand the moment-generating function of the
gamma distribution as a binomial series, and read off the
values of μ′

1, μ′
2, μ′

3, and μ′
4.

14. Use the results of Exercise 13 to find α3 and α4 for the
gamma distribution.

15. Show that if a random variable has an exponential
density with the parameter θ , the probability that it will
take on a value less than −θ · ln(1 − p) is equal to p for 0 F
p< 1.

16. If X has an exponential distribution, show that

P[(X Ú t + T)|(x Ú T)] = P(X Ú t)

17. This question has been intentionally omitted for this
edition.

18. With reference to Exercise 17, using the fact that the
moments of Y about the origin are the corresponding
moments of X about the mean, find α3 and α4 for the
exponential distribution with the parameter θ .

19. Show that if ν > 2, the chi-square distribution has a
relative maximum at x = ν− 2. What happens when
ν = 2 or 0<ν < 2?

20. A random variable X has a Rayleigh distribution if
and only if its probability density is given by

f (x) =
{

2αxe−αx2
for x> 0

0 elsewhere

where α > 0. Show that for this distribution

(a) μ = 1
2

√
π

α
;

(b) σ 2 = 1
α

(
1 − π

4

)
.

21. A random variable X has a Pareto distribution if and
only if its probability density is given by

f (x) =

⎧⎪⎨
⎪⎩

α

xα+1
for x> 1

0 elsewhere

where α > 0. Show that μ′
r exists only if r<α.

22. With reference to Exercise 21, show that for the
Pareto distribution

μ = α

α− 1
provided α > 1.

23. A random variable X has a Weibull distribution if and
only if its probability density is given by

f (x) =
{

kxβ−1e−αxβ for x> 0
0 elsewhere

where α > 0 and β > 0.
(a) Express k in terms of α and β.

(b) Show that μ = α−1/β�

(
1 + 1

β

)
.

Note that Weibull distributions with β = 1 are exponen-
tial distributions.

24. If the random variable T is the time to failure of a
commercial product and the values of its probability den-
sity and distribution function at time t are f (t) and F(t),

then its failure rate at time t is given by
f (t)

1 − F(t)
. Thus, the

failure rate at time t is the probability density of failure at
time t given that failure does not occur prior to time t.
(a) Show that if T has an exponential distribution, the
failure rate is constant.
(b) Show that if T has a Weibull distribution (see Exer-
cise 23), the failure rate is given by αβtβ−1.

25. Verify that the integral of the beta density from −q
to q equals 1 for
(a) α = 2 and β = 4;
(b) α = 3 and β = 3.

26. Show that if α > 1 and β > 1, the beta density has a
relative maximum at

x = α− 1
α+β − 2

.

27. Sketch the graphs of the beta densities having
(a) α = 2 and β = 2;
(b) α = 1

2 and β = 1;

(c) α = 2 and β = 1
2 ;

(d) α = 2 and β = 5.
[Hint: To evaluate �( 3

2 ) and �( 5
2 ), make use of the recur-

sion formula �(α) = (α− 1) ·�(α− 1) and the result of
Exercise 9.]

28. Verify the expression given for μ′
2 in the proof of The-

orem 5.

29. Show that the parameters of the beta distribution can
be expressed as follows in terms of the mean and the vari-
ance of this distribution:

(a) α = μ

[
μ(1 −μ)
σ 2 − 1

]
;

(b) β = (1 −μ)
[
μ(1 −μ)
σ 2 − 1

]
.

30. Karl Pearson, one of the founders of modern statis-
tics, showed that the differential equation

1
f (x)

· d[f (x)]
dx

= d − x
a + bx + cx2
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yields (for appropriate values of the constants a, b, c,
and d) most of the important distributions of statistics.
Verify that the differential equation gives
(a) the gamma distribution when a = c = 0, b> 0, and
d>−b;

(b) the exponential distribution when a = c = d = 0 and
b> 0;
(c) the beta distribution when a = 0, b = −c, d−1

b < 1,
and d

b >−1.

5 The Normal Distribution
The normal distribution, which we shall study in this section, is in many ways the
cornerstone of modern statistical theory. It was investigated first in the eighteenth
century when scientists observed an astonishing degree of regularity in errors of
measurement. They found that the patterns (distributions) that they observed could
be closely approximated by continuous curves, which they referred to as “normal
curves of errors” and attributed to the laws of chance. The mathematical properties
of such normal curves were first studied by Abraham de Moivre (1667–1745), Pierre
Laplace (1749–1827), and Karl Gauss (1777–1855).

DEFINITION 6. NORMAL DISTRIBUTION. A random variable X has a normal distribu-
tion and it is referred to as a normal random variable if and only if its probability
density is given by

n(x;μ, σ) = 1

σ
√

2π
e
− 1

2

(
x−μ
σ

)2

for −q< x<q

where �> 0.

The graph of a normal distribution, shaped like the cross section of a bell, is shown
in Figure 4.

The notation used here shows explicitly that the two parameters of the normal
distribution are μ and σ . It remains to be shown, however, that the parameter μ is,
in fact, E(X) and that the parameter σ is, in fact, the square root of var(X), where
X is a random variable having the normal distribution with these two parameters.

First, though, let us show that the formula of Definition 6 can serve as a prob-
ability density. Since the values of n(x;μ, σ) are evidently positive as long as σ > 0,

m
x

Figure 4. Graph of normal distribution.
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we must show that the total area under the curve is equal to 1. Integrating from −q
to q and making the substitution z = x −μ

σ
, we get

∫ q

−q

1

σ
√

2π
e
− 1

2

(
x−μ
σ

)2

dx = 1√
2π

∫ q

−q
e− 1

2 z2
dz = 2√

2π

∫ q

0
e− 1

2 z2
dz

Then, since the integral on the right equals
�
(

1
2

)
√

2
=

√
π√
2

according to Exercise 9, it

follows that the total area under the curve is equal to
2√
2π

·
√
π√
2

= 1.

Next let us prove the following theorem.

THEOREM 6. The moment-generating function of the normal distribution is
given by

MX(t) = eμt+ 1
2σ

2t2

Proof By definition,

MX(t) =
∫ q

−q
ext · 1

σ
√

2π
e
− 1

2

(
x−μ
σ

)2

dx

= 1

σ
√

2π
·
∫ q

−q
e− 1

2σ2 [−2xtσ 2+(x−μ)2]dx

and if we complete the square, that is, use the identity

−2xtσ 2 + (x −μ)2 = [x − (μ+ tσ 2)]2 − 2μtσ 2 − t2σ 4

we get

MX(t) = eμt+ 1
2 t2σ 2

⎧⎪⎨
⎪⎩

1

σ
√

2π
·
∫ q

−q
e
− 1

2

[
x−(μ+tσ2)

σ

]2

dx

⎫⎪⎬
⎪⎭

Since the quantity inside the braces is the integral from −q to q of a
normal density with the parameters μ+ tσ 2 and σ , and hence is equal to
1, it follows that

MX(t) = eμt+ 1
2σ

2t2

We are now ready to verify that the parameters μ and σ in Definition 6 are,
indeed, the mean and the standard deviation of the normal distribution. Twice dif-
ferentiating MX(t) with respect to t, we get

M′
X(t) = (μ+ σ 2t) · MX(t)

and

M′′
X(t) = [(μ+ σ 2t)2 + σ 2] · MX(t)

so that M′
X(0) = μ and M′′

X(0) = μ2 + σ 2. Thus, E(X) = μ and var(X) = (μ2 +
σ 2)−μ2 = σ 2.

Since the normal distribution plays a basic role in statistics and its density cannot
be integrated directly, its areas have been tabulated for the special case where μ = 0
and σ = 1.
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DEFINITION 7. STANDARD NORMAL DISTRIBUTION. The normal distribution with
� = 0 and � = 1 is referred to as the standard normal distribution.

The entries in standard normal distribution table, represented by the shaded
area of Figure 5, are the values of∫ z

0

1√
2π

e− 1
2 x2

dx

that is, the probabilities that a random variable having the standard normal distribu-
tion will take on a value on the interval from 0 to z, for z = 0.00, 0.01, 0.02, . . . , 3.08,
and 3.09 and also z = 4.0, z = 5.0, and z = 6.0. By virtue of the symmetry of the
normal distribution about its mean, it is unnecessary to extend the table to negative
values of z.

EXAMPLE 2

Find the probabilities that a random variable having the standard normal distribu-
tion will take on a value

(a) less than 1.72;

(b) less than −0.88;

(c) between 1.30 and 1.75;

(d) between −0.25 and 0.45.

Solution

(a) We look up the entry corresponding to z = 1.72 in the standard normal distri-
bution table, add 0.5000 (see Figure 6), and get 0.4573 + 0.5000 = 0.9573.

(b) We look up the entry corresponding to z = 0.88 in the table, subtract it from
0.5000 (see Figure 6), and get 0.5000 − 0.3106 = 0.1894.

(c) We look up the entries corresponding to z = 1.75 and z = 1.30 in the table,
subtract the second from the first (see Figure 6), and get 0.4599 − 0.4032 =
0.0567.

(d) We look up the entries corresponding to z = 0.25 and z = 0.45 in the table,
add them (see Figure 6), and get 0.0987 + 0.1736 = 0.2723.

0 z

Figure 5. Tabulated areas under the standard normal distribution.
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z

0 1.75

0.0567

0.4032

0.5000 0.4573

1.30

0 1.72

z

z

0�0.25

0.0987
0.1736

0.3106

0.1894

0.45

0�0.88

z

Figure 6. Diagrams for Example 2.

Occasionally, we are required to find a value of z corresponding to a specified
probability that falls between values listed in the table. In that case, for convenience,
we always choose the z value corresponding to the tabular value that comes closest
to the specified probability. However, if the given probability falls midway between
tabular values, we shall choose for z the value falling midway between the corre-
sponding values of z.

EXAMPLE 3

With reference to the standard normal distribution table, find the values of z that
correspond to entries of

(a) 0.3512;

(b) 0.2533.

Solution

(a) Since 0.3512 falls between 0.3508 and 0.3531, corresponding to z = 1.04 and
z = 1.05, and since 0.3512 is closer to 0.3508 than 0.3531, we choose z = 1.04.

(b) Since 0.2533 falls midway between 0.2517 and 0.2549, corresponding to z =
0.68 and z = 0.69, we choose z = 0.685.

To determine probabilities relating to random variables having normal distri-
butions other than the standard normal distribution, we make use of the follow-
ing theorem.

THEOREM 7. If X has a normal distribution with the mean μ and the stan-
dard deviation σ , then

Z = X −μ
σ

has the standard normal distribution.
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Proof Since the relationship between the values of X and Z is linear, Z

must take on a value between z1 = x1 −μ
σ

and z2 = x2 −μ
σ

when X takes

on a value between x1 and x2. Hence, we can write

P(x1<X < x2) = 1√
2πσ

∫ x2

x1

e
− 1

2

(
x−μ
σ

)2

dx

= 1√
2π

∫ z2

z1

e− 1
2 z2

dz

=
∫ z2

z1

n(z; 0, 1)dz

= P(z1<Z< z2)

where Z is seen to be a random variable having the standard normal
distribution.

Thus, to use the standard normal distribution table in connection with any ran-
dom variable having a normal distribution, we simply perform the change of scale

z = x −μ
σ

.

EXAMPLE 4

Suppose that the amount of cosmic radiation to which a person is exposed when fly-
ing by jet across the United States is a random variable having a normal distribution
with a mean of 4.35 mrem and a standard deviation of 0.59 mrem. What is the prob-
ability that a person will be exposed to more than 5.20 mrem of cosmic radiation on
such a flight?

Solution
Looking up the entry corresponding to z = 5.20 − 4.35

0.59
= 1.44 in the table and

subtracting it from 0.5000 (see Figure 7), we get 0.5000 − 0.4251 = 0.0749.

Probabilities relating to random variables having the normal distribution and
several other continuous distributions can be found directly with the aid of computer

4.35 5.20

0.0749

0.4251

x

z � 0 z � 1.44

Figure 7. Diagram for Example 4.
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programs especially written for statistical applications. The following example illus-
trates such calculations using MINITAB statistical software.

EXAMPLE 5

Use a computer program to find the probability that a random variable having

(a) the chi-square distribution with 25 degrees of freedom will assume a value
greater than 30;

(b) the normal distribution with the mean 18.7 and the standard deviation 9.1 will
assume a value between 10.6 and 24.8.

Solution
Using MINITAB software, we select the option “cumulative distribution” to obtain
the following:

(a) MTB>CDF C1;
SUBC>Chisquare 25

3Ø.ØØØØ Ø.7757

Thus, the required probability is 1.0000 − 0.7757 = 0.2243.

(b) MTB>CDF C2; and MTB>CDF C3;
SUBC>Normal 18.7 9.1. SUBC>Normal 18.7 9.1.

1Ø.6ØØØ Ø.1867 24.8ØØ Ø.7487

Thus, the required probability is 0.7487 − 0.1867 = 0.5620.

6 The Normal Approximation to the Binomial Distribution
The normal distribution is sometimes introduced as a continuous distribution that
provides a close approximation to the binomial distribution when n, the number of
trials, is very large and θ , the probability of a success on an individual trial, is close
to 1

2 . Figure 8 shows the histograms of binomial distributions with θ = 1
2 and n = 2,

n � 2 n � 5

n � 10 n � 25

Figure 8. Binomial distributions with θ = 1
2 .
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5, 10, and 25, and it can be seen that with increasing n these distributions approach
the symmetrical bell-shaped pattern of the normal distribution.

To provide a theoretical foundation for this argument, let us first prove the fol-
lowing theorem.

THEOREM 8. If X is a random variable having a binomial distribution with
the parameters n and θ , then the moment-generating function of

Z = X − nθ√
nθ(1 − θ)

approaches that of the standard normal distribution when n→q.

Proof Making use of theorems relating to moment-generating functions
of the binomial distribution, we can write

MZ(t) = M X−μ
σ

(t) = e−μt/σ · [1 + θ(et/σ − 1)]n

where μ = nθ and σ = √
nθ(1 − θ). Then, taking logarithms and substi-

tuting the Maclaurin’s series of et/σ , we get

ln M X−μ
σ

(t) = −μt
σ

+ n · ln[1 + θ(et/σ − 1)]

= −μt
σ

+ n · ln

⎡
⎣1 + θ

{
t
σ

+ 1
2

(
t
σ

)2

+ 1
6

(
t
σ

)3

+ · · ·
}⎤⎦

and, using the infinite series ln(1 + x) = x − 1
2 x2 + 1

3 x3 − · · · , which con-
verges for |x|< 1, to expand this logarithm, it follows that

ln M X−μ
σ

(t) = −μt
σ

+ nθ

[
t
σ

+ 1
2

(
t
σ

)2

+ 1
6

(
t
σ

)3

+ · · ·
]

−nθ2

2

[
t
σ

+ 1
2

(
t
σ

)2

+ 1
6

(
t
σ

)3

+ · · ·
]2

+nθ3

3

[
t
σ

+ 1
2

(
t
σ

)2

+ 1
6

(
t
σ

)3

+ · · ·
]3

− · · ·

Collecting powers of t, we obtain

ln M X−μ
σ

(t) =
(

−μ
σ

+ nθ
σ

)
t +
(

nθ
2σ 2 − nθ2

2σ 2

)
t2

+
(

nθ
6σ 3 − nθ2

2σ 3 + nθ3

3σ 3

)
t3 + · · ·

= 1
σ 2

(
nθ − nθ2

2

)
t2 + n

σ 3

(
θ − 3θ2 + 2θ3

6

)
t3 + · · ·
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since μ = nθ . Then, substituting σ = √
nθ(1 − θ), we find that

ln M X−μ
σ

(t) = 1
2

t2 + n
σ 3

(
θ − 3θ2 + 2θ3

6

)
t3 + · · ·

For r> 2 the coefficient of tr is a constant times
n
σ r , which approaches 0

when n→q. It follows that

lim
n→q

ln M X−μ
σ

(t) = 1
2

t2

and since the limit of a logarithm equals the logarithm of the limit (pro-
vided the two limits exist), we conclude that

lim
n→q

M X−μ
σ

(t) = e
1
2 t2

which is the moment-generating function of Theorem 6 with μ = 0 and
σ = 1.

This completes the proof of Theorem 8, but have we shown that when n→q
the distribution of Z, the standardized binomial random variable, approaches the
standard normal distribution? Not quite. To this end, we must refer to two theorems
that we shall state here without proof:

1. There is a one-to-one correspondence between moment-generating functions
and probability distributions (densities) when the former exist.

2. If the moment-generating function of one random variable approaches that of
another random variable, then the distribution (density) of the first random
variable approaches that of the second random variable under the same limit-
ing conditions.

Strictly speaking, our results apply only when n→q, but the normal distribution
is often used to approximate binomial probabilities even when n is fairly small. A
good rule of thumb is to use this approximation only when nθ and n(1 − θ) are both
greater than 5.

EXAMPLE 6

Use the normal approximation to the binomial distribution to determine the proba-
bility of getting 6 heads and 10 tails in 16 flips of a balanced coin.

Solution
To find this approximation, we must use the continuity correction according to which
each nonnegative integer k is represented by the interval from k − 1

2 to k + 1
2 . With

reference to Figure 9, we must thus determine the area under the curve between

5.5 and 6.5, and since μ = 16 · 1
2 = 8 and σ =

√
16 · 1

2 · 1
2 = 2, we must find the

area between

z = 5.5 − 8
2

= −1.25 and z = 6.5 − 8
2

= −0.75

The entries in the standard normal distribution table corresponding to z = 1.25 and
z = 0.75 are 0.3944 and 0.2734, and we find that the normal approximation to the
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5.5 6.5 8

Number
of heads

0.2734

0.1210

z � �1.25 z � �0.75

Figure 9. Diagram for Example 6.

probability of “6 heads and 10 tails” is 0.3944 − 0.2734 = 0.1210. Since the corre-
sponding value in the binomial probabilities table of “Statistical Tables” is 0.1222,
we find that the error of the approximation is −0.0012 and that the percentage error

is
0.0012
0.1222

· 100 = 0.98% in absolute value.

The normal approximation to the binomial distribution used to be applied quite
extensively, particularly in approximating probabilities associated with large sets of
values of binomial random variables. Nowadays, most of this work is done with
computers, as illustrated in Example 5, and we have mentioned the relationship
between the binomial and normal distributions primarily because of its theoretical
applications.

Exercises
31. Show that the normal distribution has
(a) a relative maximum at x = μ;
(b) inflection points at x = μ− σ and x = μ+ σ .

32. Show that the differential equation of Exercise 30
with b = c = 0 and a> 0 yields a normal distribution.

33. This question has been intentionally omitted for this
edition.

34. If X is a random variable having a normal distribu-
tion with the mean μ and the standard deviation σ , find
the moment-generating function of Y = X − c, where c is
a constant, and use it to rework Exercise 33.

35. This question has been intentionally omitted for this
edition.

36. This question has been intentionally omitted for this
edition.

37. If X is a random variable having the standard normal
distribution and Y = X2, show that cov(X, Y) = 0 even
though X and Y are evidently not independent.

38. Use the Maclaurin’s series expansion of the moment-
generating function of the standard normal distribution
to show that
(a) μr = 0 when r is odd;

(b) μr = r!

2r/2
(

r
2

)
!

when r is even.

39. If we let KX(t) = ln MX−μ(t), the coefficient of
tr

r!
in the Maclaurin’s series of KX(t) is called the rth cumu-
lant, and it is denoted by κr. Equating coefficients of like
powers, show that
(a) κ2 = μ2;
(b) κ3 = μ3;
(c) κ4 = μ4 − 3μ2

2.
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40. With reference to Exercise 39, show that for normal
distributions κ2 =σ 2 and all other cumulants are zero.

41. Show that if X is a random variable having the Pois-
son distribution with the parameter λ and λ→q, then the
moment-generating function of

Z = X − λ√
λ

that is, that of a standardized Poisson random variable,
approaches the moment-generating function of the stan-
dard normal distribution.

42. Show that when α→q and β remains constant, the
moment-generating function of a standardized gamma
random variable approaches the moment-generating
function of the standard normal distribution.

7 The Bivariate Normal Distribution
Among multivariate densities, of special importance is the multivariate normal dis-
tribution, which is a generalization of the normal distribution in one variable. As it
is best (indeed, virtually necessary) to present this distribution in matrix notation,
we shall give here only the bivariate case; discussions of the general case are listed
among the references at the end of this chapter.

DEFINITION 8. BIVARIATE NORMAL DISTRIBUTION. A pair of random variables X and
Y have a bivariate normal distribution and they are referred to as jointly nor-
mally distributed random variables if and only if their joint probability density is
given by

f (x, y) = e
− 1

2(1−ρ)2

[(
x−μ1
σ1

)2−2ρ
(

x−μ1
σ1

)(
y−μ2
σ2

)
+
(

y−μ2
σ2

)2
]

2πσ1σ2
√

1 − ρ2

for −q< x<q and −q< y<q, where �1> 0, �2> 0, and −1< �< 1.

To study this joint distribution, let us first show that the parameters μ1, μ2, σ1,
and σ2 are, respectively, the means and the standard deviations of the two random
variables X and Y. To begin with, we integrate on y from −q to q, getting

g(x) = e
− 1

2(1−ρ2)

(
x−μ1
σ1

)2

2πσ1σ2
√

1 − ρ2

∫ q

−q
e
− 1

2(1−ρ2)

[(
y−μ2
σ2

)2−2ρ
(

x−μ1
σ1

)(
y−μ2
σ2

)]
dy

for the marginal density of X. Then, temporarily making the substitution u = x −μ1

σ1
to simplify the notation and changing the variable of integration by letting v =
y −μ2

σ2
, we obtain

g(x) = e
− 1

2(1−ρ2)
μ2

2πσ1
√

1 − ρ2

∫ q

−q
e
− 1

2(1−ρ2)
(v2−2ρuv)

dv

After completing the square by letting

v2 − 2ρuv = (v − ρu)2 − ρ2u2

and collecting terms, this becomes

g(x) = e− 1
2 u2

σ1
√

2π

⎧⎪⎪⎨
⎪⎪⎩

1√
2π
√

1 − ρ2

∫ q

−q
e
− 1

2

(
v−ρu√

1−ρ2

)2

dv

⎫⎪⎪⎬
⎪⎪⎭
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Finally, identifying the quantity in parentheses as the integral of a normal density
from −q to q, and hence equaling 1, we get

g(x) = e− 1
2 u2

σ1
√

2π
= 1

σ1
√

2π
e
− 1

2

(
x−μ1
σ1

)2

for −q< x<q. It follows by inspection that the marginal density of X is a normal
distribution with the mean μ1 and the standard deviation σ1 and, by symmetry, that
the marginal density of Y is a normal distribution with the mean μ2 and the standard
deviation σ2.

As far as the parameter ρ is concerned, where ρ is the lowercase Greek letter
rho, it is called the correlation coefficient, and the necessary integration will show
that cov(X, Y) = ρσ1σ2. Thus, the parameter ρ measures how the two random vari-
ables X and Y vary together.

When we deal with a pair of random variables having a bivariate normal distri-
bution, their conditional densities are also of importance; let us prove the follow-
ing theorem.

THEOREM 9. If X and Y have a bivariate normal distribution, the condi-
tional density of Y given X = x is a normal distribution with the mean

μY|x = μ2 + ρ σ2

σ1
(x −μ1)

and the variance

σ 2
Y|x = σ 2

2 (1 − ρ2)

and the conditional density of X given Y = y is a normal distribution with
the mean

μX|y = μ1 + ρ σ1

σ2
(y −μ2)

and the variance

σ 2
X|y = σ 2

1 (1 − ρ2)

Proof Writing w(y|x) = f (x, y)
g(x)

in accordance with the definition of con-

ditional density and letting u = x −μ1

σ1
and v = y −μ2

σ2
to simplify the

notation, we get

w(y|x) =

1

2πσ1σ2
√

1 − ρ2
e
− 1

2(1−ρ2)
[u2−2ρuv+v2]

1√
2πσ1

e− 1
2 u2

= 1√
2πσ2

√
1 − ρ2

e
− 1

2(1−ρ2)
[v2−2ρuv+ρ2u2]

= 1√
2πσ2

√
1 − ρ2

e
− 1

2

[
v−ρu√

1−ρ2

]2
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Then, expressing this result in terms of the original variables, we obtain

w(y|x) = 1

σ2
√

2π
√

1 − ρ2
e

− 1
2

⎡
⎢⎣ y−

{
μ2+ρ σ2

σ1
(x−μ1)

}

σ2

√
1−ρ2

⎤
⎥⎦

2

for −q< y<q, and it can be seen by inspection that this is a normal
density with the mean μY|x = μ2 + ρ σ2

σ1
(x −μ1) and the variance σ 2

Y|x =
σ 2

2 (1 − ρ2). The corresponding results for the conditional density of X
given Y = y follow by symmetry.

The bivariate normal distribution has many important properties, some statisti-
cal and some purely mathematical. Among the former, there is the following prop-
erty, which the reader will be asked to prove in Exercise 43.

THEOREM 10. If two random variables have a bivariate normal distribution,
they are independent if and only if ρ = 0.

In this connection, if ρ = 0, the random variables are said to be uncorrelated.
Also, we have shown that for two random variables having a bivariate normal

distribution the two marginal densities are normal, but the converse is not necessar-
ily true. In other words, the marginal distributions may both be normal without the
joint distribution being a bivariate normal distribution. For instance, if the bivariate
density of X and Y is given by

f ∗(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

2f (x, y) inside squares 2 and 4 of Figure 10
0 inside squares 1 and 3 of Figure 10
f (x, y) elsewhere

where f (x, y) is the value of the bivariate normal density with μ1 = 0,μ2 = 0, and
ρ = 0 at (x, y), it is easy to see that the marginal densities of X and Y are normal
even though their joint density is not a bivariate normal distribution.

2 1

3 4

x

y

Figure 10. Sample space for the bivariate density given by f∗(x, y).
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Figure 11. Bivariate normal surface.

Many interesting properties of the bivariate normal density are obtained by
studying the bivariate normal surface, pictured in Figure 11, whose equation is z =
f (x, y), where f (x, y) is the value of the bivariate normal density at (x, y). As the
reader will be asked to verify in some of the exercises that follow, the bivariate nor-
mal surface has a maximum at (μ1,μ2), any plane parallel to the z-axis intersects the
surface in a curve having the shape of a normal distribution, and any plane parallel
to the xy-plane that intersects the surface intersects it in an ellipse called a contour
of constant probability density. When ρ = 0 and σ1 = σ2, the contours of constant
probability density are circles, and it is customary to refer to the corresponding joint
density as a circular normal distribution.

Exercises

43. To prove Theorem 10, show that if X and Y have a
bivariate normal distribution, then
(a) their independence implies that ρ = 0;
(b) ρ = 0 implies that they are independent.

44. Show that any plane perpendicular to the xy-plane
intersects the bivariate normal surface in a curve having
the shape of a normal distribution.

45. If the exponent of e of a bivariate normal density is

−1
102

[(x + 2)2 − 2.8(x + 2)(y − 1)+ 4(y − 1)2]

find
(a) μ1,μ2, σ1, σ2, and ρ;
(b) μY|x and σ 2

Y|x.

46. If the exponent of e of a bivariate normal density is

−1
54
(x2 + 4y2 + 2xy + 2x + 8y + 4)

find σ1, σ2, and ρ, given that μ1 = 0 and μ2 = −1.

47. If X and Y have the bivariate normal distribution with
μ1 = 2,μ2 = 5, σ1 = 3, σ2 = 6, and ρ = 2

3 , find μY|1
and σY|1.

48. If X and Y have a bivariate normal distribution and
U = X + Y and V = X − Y, find an expression for the
correlation coefficient of U and V.

49. If X and Y have a bivariate normal distribution, it can
be shown that their joint moment-generating function is
given by

MX,Y(t1, t2) = E(et1X + t2Y)

= et1μ1 + t2μ2 + 1
2 (σ

2
1 t21 + 2ρσ1σ2t1t2 + σ 2

2 t22)

Verify that
(a) the first partial derivative of this function with respect
to t1 at t1 = 0 and t2 = 0 is μ1;
(b) the second partial derivative with respect to t1 at t1 =0
and t2 = 0 is σ 2

1 +μ2
1;

(c) the second partial derivative with respect to t1 and t2
at t1 = 0 and t2 = 0 is ρσ1σ2 +μ1μ2.

8 The Theory in Practice
In many of the applications of statistics it is assumed that the data are approxi-
mately normally distributed. Thus, it is important to make sure that the assumption
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of normality can, at least reasonably, be supported by the data. Since the normal dis-
tribution is symmetric and bell-shaped, examination of the histogram picturing the
frequency distribution of the data is useful in checking the assumption of normal-
ity. If the histogram is not symmetric, or if it is symmetric but not bell-shaped, the
assumption that the data set comes from a normal distribution cannot be supported.
Of course, this method is subjective; data that appear to have symmetric, bell-shaped
histograms may not be normally distributed.

Another somewhat less subjective method for checking data is the normal-scores
plot. This plot makes use of ordinary graph paper. It is based on the calculation
of normal scores, zp. If n observations are ordered from smallest to largest, they
divide the area under the normal curve into n + 1 equal parts, each having the area
1/(n + 1). The normal score for the first of these areas is the value of z such that the
area under the standard normal curve to the left of z is 1/(n + 1), or −z1/(n+1). Thus,
the normal scores for n = 4 observations are −z0.20 = −0.84, −z0.40 = −0.25, z0.40 =
0.25, and z20 = 0.84. The ordered observations then are plotted against the corre-
sponding normal scores on ordinary graph paper.

EXAMPLE 7

Find the normal scores and the coordinates for making a normal-scores plot of the
following six observations:

3, 2, 7, 4, 3, 5

Solution
Since n = 6, there are 6 normal scores, as follows: −z0.14 = −1.08, −z0.29 = −0.55,
−z0.43 = −0.18, z0.43 = 0.18, z0.29 = 0.55, and z0.14 = 1.08. When the observa-
tions are ordered and tabulated together with the normal scores, the following table
results:

Observation: 2 3 3 4 5 7
Normal score: −1.08 −0.55 −0.18 0.18 0.55 1.08

The coordinates for a normal-scores plot make use of a cumulative percentage
distribution of the data. The cumulative percentage distribution is as follows:

Class Boundary Cumulative Percentage Normal Score

4395 5 −1.64
4595 17 −0.95
4795 37 −0.33
4995 69 0.50
5195 87 1.13
5395 97 1.88

A graph of the class boundaries versus the normal scores is shown in Figure 12. It can
be seen from this graph that the points lie in an almost perfect straight line, strongly
suggesting that the underlying data are very close to being normally distributed.

In modern practice, use of MINITAB or other statistical software eases the com-
putation considerably. In addition, MINITAB offers three tests for normality that
are less subjective than mere examination of a normal-scores plot.

Sometimes a normal-scores plot showing a curve can be changed to a straight
line by means of an appropriate transformation. The procedure involves identifying
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�2.0 �1.0

5395

Class
boundary

Normal score

0 1.0 2.0

5195

4995

4795

4595

4395

Figure 12. Normal-scores plot.

the type of transformation needed, making the transformation, and then checking
the transformed data by means of a normal-scores plot to see if they can be assumed
to have a normal distribution.

When data appear not to be normally distributed because of too many large
values, the following transformations are good candidates to try:

logarithmic transformation u = log(x)

square-root transformation u = √
x

reciprocal transformation u = 1
x

When data exhibit too many small values, the following transformations may
produce approximately normal data:

power transformation u = xa, where a> 1

exponential transformation u = ax, where a> 1

On rare occasions, it helps to make a linear transformation of the form u = a +
bx first, and then to use one of the indicated transformations. This strategy becomes
necessary when some of the data have negative values and logarithmic, square-root,
or certain power transformations are to be tried. However, making a linear transfor-
mation alone cannot be effective. If x is a value of a normally distributed random
variable, then the random variable having the values a + bx also has the normal
distribution. Thus, a linear transformation alone cannot transform nonnormally dis-
tributed data into normality.

EXAMPLE 8

Make a normal-scores plot of the following data. If the plot does not appear to show
normality, make an appropriate transformation, and check the transformed data for
normality.

54.9 8.3 5.2 32.4 15.5
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Solution
The normal scores are −0.95, −0.44, 0, 0.44, and 0.95. A normal-scores plot of these
data (Figure 13[a]) shows sharp curvature. Since two of the five values are very large
compared with the other three values, a logarithmic transformation (base 10) was
used to transform the data to

1.74 0.92 0.72 1.51 1.19

A normal-scores plot of these transformed data (Figure 13[b]) shows a nearly
straight line, indicating that the transformed data are approximately normally dis-
tributed.

If lack of normality seems to result from one or a small number of aberrant
observations called outliers, a single large observation, a single small observation, or
both, it is not likely that the data can be transformed to normality. It is difficult to
give a hard-and-fast rule for identifying outliers. For example, it may be inappropri-
ate to define an outlier as an observation whose value is more than three standard
deviations from the mean, since such an observation can occur with a reasonable
probability in a large number of observations taken from a normal distribution.
Ordinarily, an observation that clearly does not lie on the straight line defined by
the other observations in a normal-scores plot can be considered an outlier. In the
presence of suspected outliers, it is customary to examine normal-scores plots of the
data after the outlier or outliers have been omitted.

Outlying observations may result from several causes, such as an error in record-
ing data, an error of observation, or an unusual event such as a particle of dust
settling on a material during thin-film deposition. There is always a great temptation
to drop outliers from a data set entirely on the basis that they do not seem to belong
to the main body of data. But an outlier can be as informative about the process
from which the data were taken as the remainder of the data. Outliers which occur
infrequently, but regularly in successive data sets, give evidence that should not be
ignored. For example, a hole with an unusually large diameter might result from a
drill not having been inserted properly into the chuck. Perhaps the condition was
corrected after one or two holes were drilled, and the operator failed to discard the
parts with the “bad” hole, thus producing one or two outliers. While outliers some-
times are separated from the other data for the purpose of performing a preliminary

�1.0

60

Original data

(a)

0 1.0

50

40

30

20

10

�1.0

Transformed data

(b)

0 1.0

0.5

1.0

1.5

Figure 13. Normal-scores plot for Example 8.

201



Special Probability Densities
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Figure 14. Normal-scores plots.

analysis, they should be discarded only after a good reason for their existence has
been found.

Normal scores and normal-score plots can be obtained with a variety of statis-
tical software. To illustrate the procedure using MINITAB, 20 numbers are entered
with the following command and data-entry instructions

SET C1:
0 215 31 7 15 80 17 41 51 3 58 158 0 11 42 11 17 32 64 100
END

Then the command NSCORES C1 PUT IN C2 is given to find the normal scores and
place them in the second column. A normal-scores plot, generated by the command
PLOT C1 VS C2, is shown in Figure 14(a). The points in this graph clearly do not
follow a straight line. Several power transformations were tried in an attempt to
transform the data to normality. The cube-root transformation u = X1/3, made by
giving the command RAISE C1 TO THE POWER .3333 PUT IN C3, seemed to work
best. Then, a normal-scores plot of the transformed data was generated with the
command PLOT C3 VS C2, as shown in Figure 14(b). It appears from this graph that
the cube roots of the original data are approximately normally distributed.

Applied Exercises SECS. 1–4

50. In certain experiments, the error made in determining
the density of a substance is a random variable having a
uniform density with α = −0.015 and β = 0.015. Find the
probabilities that such an error will
(a) be between −0.002 and 0.003;
(b) exceed 0.005 in absolute value.

51. A point D is chosen on the line AB, whose midpoint
is C and whose length is a. If X, the distance from D to
A, is a random variable having the uniform density with
α = 0 and β = a, what is the probability that AD, BD,
and AC will form a triangle?
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52. In a certain city, the daily consumption of electric
power in millions of kilowatt-hours can be treated as a
random variable having a gamma distribution with α = 3
and β = 2. If the power plant of this city has a daily
capacity of 12 million kilowatt-hours, what is the prob-
ability that this power supply will be inadequate on any
given day?

53. If a company employs n salespersons, its gross sales in
thousands of dollars may be regarded as a random vari-
able having a gamma distribution with α = 80

√
n and

β = 2. If the sales cost is $8,000 per salesperson, how
many salespersons should the company employ to maxi-
mize the expected profit?

54. The amount of time that a watch will run without hav-
ing to be reset is a random variable having an exponential
distribution with θ = 120 days. Find the probabilities that
such a watch will
(a) have to be reset in less than 24 days;
(b) not have to be reset in at least 180 days.

55. The mileage (in thousands of miles) that car owners
get with a certain kind of radial tire is a random variable
having an exponential distribution with θ = 40. Find the
probabilities that one of these tires will last
(a) at least 20,000 miles;
(b) at most 30,000 miles.

56. The number of bad checks that a bank receives during
a 5-hour business day is a Poisson random variable with
λ = 2. What is the probability that it will not receive a bad
check on any one day during the first 2 hours of business?

57. The number of planes arriving per day at a small pri-
vate airport is a random variable having a Poisson dis-
tribution with λ = 28.8. What is the probability that the
time between two such arrivals is at least 1 hour?

58. If the annual proportion of erroneous income tax
returns filed with the IRS can be looked upon as a ran-
dom variable having a beta distribution with α = 2 and
β = 9, what is the probability that in any given year there
will be fewer than 10 percent erroneous returns?

59. A certain kind of appliance requires repairs on the
average once every 2 years. Assuming that the times
between repairs are exponentially distributed, what is the
probability that such an appliance will work at least 3
years without requiring repairs?

60. If the annual proportion of new restaurants that fail
in a given city may be looked upon as a random vari-
able having a beta distribution with α = 1 and β = 4,
find
(a) the mean of this distribution, that is, the annual pro-
portion of new restaurants that can be expected to fail in
the given city;
(b) the probability that at least 25 percent of all new
restaurants will fail in the given city in any one year.

61. Suppose that the service life in hours of a semicon-
ductor is a random variable having a Weibull distribution
(see Exercise 23) with α = 0.025 and β = 0.500.
(a) How long can such a semiconductor be expected
to last?
(b) What is the probability that such a semiconductor will
still be in operating condition after 4,000 hours?

SECS. 5–7
62. If Z is a random variable having the standard normal
distribution, find
(a) P(Z< 1.33);
(b) P(Z G −0.79);
(c) P(0.55<Z< 1.22);
(d) P(−1.90 … Z … 0.44).

63. If Z is a random variable having the standard nor-
mal distribution, find the probabilities that it will take on
a value
(a) greater than 1.14;
(b) greater than −0.36;
(c) between −0.46 and −0.09;
(d) between −0.58 and 1.12.

64. If Z is a random variable having the standard normal
distribution, find the respective values z1, z2, z3, and z4
such that
(a) P(0<Z< z1) = 0.4306;
(b) P(Z G z2) = 0.7704;
(c) P(Z> z3) = 0.2912;
(d) P(−z4 F Z< z4) = 0.9700.

65. Find z if the standard-normal-curve area
(a) between 0 and z is 0.4726;
(b) to the left of z is 0.9868;
(c) to the right of z is 0.1314;
(d) between −z and z is 0.8502.

66. If X is a random variable having a normal distribu-
tion, what are the probabilities of getting a value
(a) within one standard deviation of the mean;
(b) within two standard deviations of the mean;
(c) within three standard deviations of the mean;
(d) within four standard deviations of the mean?

67. If zα is defined by

∫ q

zα
n(z; 0, 1) dz = α

find its values for
(a) α = 0.05;
(b) α = 0.025;
(c) α = 0.01;
(d) α = 0.005.
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68. (a) Use a computer program to find the probability
that a random variable having the normal distribution
with the mean −1.786 and the standard deviation 1.0416
will assume a value between −2.159 and 0.5670.
(b) Interpolate in the standard normal distribution table
to find this probability and compare your result with the
more exact value found in part (a).

69. (a) Use a computer program to find the probability
that a random variable having the normal distribution
with mean 5.853 and the standard deviation 1.361 will
assume a value greater than 8.625.
(b) Interpolate in the standard normal distribution table
to find this probability and compare your result with the
more exact value found in part (a).

70. Suppose that during periods of meditation the reduc-
tion of a person’s oxygen consumption is a random vari-
able having a normal distribution with μ = 37.6 cc per
minute and σ = 4.6 cc per minute. Find the probabilities
that during a period of meditation a person’s oxygen con-
sumption will be reduced by
(a) at least 44.5 cc per minute;
(b) at most 35.0 cc per minute;
(c) anywhere from 30.0 to 40.0 cc per minute.

71. In a photographic process, the developing time of
prints may be looked upon as a random variable hav-
ing the normal distribution with μ = 15.40 seconds and
σ = 0.48 second. Find the probabilities that the time it
takes to develop one of the prints will be
(a) at least 16.00 seconds;
(b) at most 14.20 seconds;
(c) anywhere from 15.00 to 15.80 seconds.

72. A random variable has a normal distribution with
σ = 10. If the probability that the random variable will
take on a value less than 82.5 is 0.8212, what is the proba-
bility that it will take on a value greater than 58.3?

73. Suppose that the actual amount of instant coffee that
a filling machine puts into “6-ounce” jars is a random vari-
able having a normal distribution with σ = 0.05 ounce. If
only 3 percent of the jars are to contain less than 6 ounces
of coffee, what must be the mean fill of these jars?

74. Check in each case whether the normal approxima-
tion to the binomial distribution may be used according
to the rule of thumb in Section 6.
(a) n = 16 and θ = 0.20;
(b) n = 65 and θ = 0.10;
(c) n = 120 and θ = 0.98.

75. Suppose that we want to use the normal approxi-
mation to the binomial distribution to determine b(1;
150, 0.05).
(a) Based on the rule of thumb in Section 6, would we be
justified in using the approximation?
(b) Make the approximation and round to four decimals.

(c) If a computer printout shows that b(1; 150, 0.05) =
0.0036 rounded to four decimals, what is the percentage
error of the approximation obtained in part (b)?

This serves to illustrate that the rule of thumb is just
that and no more; making approximations like this also
requires a good deal of professional judgment.

76. Use the normal approximation to the binomial distri-
bution to determine (to four decimals) the probability of
getting 7 heads and 7 tails in 14 flips of a balanced coin.
Also refer to the binomial probabilities table of “Statisti-
cal Tables” to find the error of this approximation.

77. With reference to Exercise 75, show that the Poisson
distribution would have yielded a better approximation.

78. If 23 percent of all patients with high blood pressure
have bad side effects from a certain kind of medicine,
use the normal approximation to find the probability that
among 120 patients with high blood pressure treated with
this medicine more than 32 will have bad side effects.

79. If the probability is 0.20 that a certain bank will
refuse a loan application, use the normal approximation
to determine (to three decimals) the probability that the
bank will refuse at most 40 of 225 loan applications.

80. To illustrate the law of large numbers, use the normal
approximation to the binomial distribution to determine
the probabilities that the proportion of heads will be any-
where from 0.49 to 0.51 when a balanced coin is flipped
(a) 100 times;
(b) 1,000 times;
(c) 10,000 times.

SEC. 8
81. Check the following data for normality by finding nor-
mal scores and making a normal-scores plot:

3.9 4.6 4.5 1.6 4.2

82. Check the following data for normality by finding nor-
mal scores and making a normal-scores plot:

36 22 3 13 31 45

83. This question has been intentionally omitted for this
edition.

84. The weights (in pounds) of seven shipments of
bolts are

37 45 11 51 13 48 61

Make a normal-scores plot of these weights. Can they be
regarded as having come from a normal distribution?

85. This question has been intentionally omitted for this
edition.

86. Use a computer program to make a normal-scores
plot for the data on the time to make coke in successive
runs of a coke oven (given in hours).
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7.8 9.2 6.4 8.2 7.6 5.9 7.4 7.1 6.7 8.5
10.1 8.6 7.7 5.9 9.3 6.4 6.8 7.9 7.2 10.2
6.9 7.4 7.8 6.6 8.1 9.5 6.4 7.6 8.4 9.2

Also test these data for normality using the three tests
given by MINITAB.

87. Eighty pilots were tested in a flight simulator and
the time for each to take corrective action for a given
emergency was measured in seconds, with the following
results:

11.1 5.2 3.6 7.6 12.4 6.8 3.8 5.7 9.0 6.0 4.9 12.6
7.4 5.3 14.2 8.0 12.6 13.7 3.8 10.6 6.8 5.4 9.7 6.7

14.1 5.3 11.1 13.4 7.0 8.9 6.2 8.3 7.7 4.5 7.6 5.0
9.4 3.5 7.9 11.0 8.6 10.5 5.7 7.0 5.6 9.1 5.1 4.5
6.2 6.8 4.3 8.5 3.6 6.1 5.8 10.0 6.4 4.0 5.4 7.0
4.1 8.1 5.8 11.8 6.1 9.1 3.3 12.5 8.5 10.8 6.5 7.9
6.8 10.1 4.9 5.4 9.6 8.2 4.2 3.4

Use a computer to make a normal-scores plot of these
data, and test for normality.
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Answers to Odd-Numbered Exercises

3 F(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 for x …α
x −α
β −α for α < x<β

1 for x Úβ

5 α3 = 0 and α4 = 9
5 .

11 For 0<α< 1 the function → q when x → 0; for α = 1
the function has an absolute maximum at x = 0.
13 μ′

1 = αβ,μ′
2 = α(α+ 1)β2,μ′

3 = α(α+ 1)(α+ 2)β3, and
μ′

4 = α(α+ 1)(α+ 2)(α+ 3)β4.

17 MY(t) = e−θ t

1 − θ t
.

19 For 0< v< 2 the function → q when x → 0, for v = 2
the function has an absolute maximum at x = 0.
23 (a) k = αβ.
33 μ3 = 0 and μ4 = 3σ 4.
45 (a) μ1 = −2, μ2 = 1, σ1 = 10, σ2 = 5, and ρ = 0.7.

47 μY|1 = 11
3 , σY|1 = √

20 = 4.47.

51 1
2 .

53 n = 100.
55 (a) 0.6065; (b) 0.5276.
57 0.1827.
59 0.2231.
61 (a) 3200 hours; (b) 0.2060.
63 (a) 0.1271; (b) 0.6406; (c) 0.1413; (d) 0.5876.
65 (a) 1.92; (b) 2.22; (c) 1.12; (d) ;1.44.
67 (a) 1.645; (b) 1.96; (c) 2.33; (d) 2.575.
69 (a) 0.0208.
71 (a) 0.1056; (b) 0.0062; (c) 0.5934.
73 6.094 ounces.
75 (a) yes; (b) 0.0078; (c) 117%.
77 0.0041.
79 0.227.
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Functions of
Random Variables

1 Introduction
2 Distribution Function Technique
3 Transformation Technique: One Variable

4 Transformation Technique: Several Variables
5 Moment-Generating Function Technique
6 The Theory in Application

1 Introduction In this chapter we shall concern ourselves with the problem of finding the probability
distributions or densities of functions of one or more random variables. That is, given
a set of random variables X1, X2, . . . , Xn and their joint probability distribution or
density, we shall be interested in finding the probability distribution or density of
some random variable Y = u(X1, X2, . . . , Xn). This means that the values of Y are
related to those of the X’s by means of the equation

y = u(x1, x2, . . . , xn)

Several methods are available for solving this kind of problem. The ones we shall
discuss in the next four sections are called the distribution function technique, the
transformation technique, and the moment-generating function technique. Although
all three methods can be used in some situations, in most problems one technique
will be preferable (easier to use than the others). This is true, for example, in some
instances where the function in question is linear in the random variables X1, X2, . . . ,
Xn, and the moment-generating function technique yields the simplest derivations.

2 Distribution Function Technique
A straightforward method of obtaining the probability density of a function of
continuous random variables consists of first finding its distribution function and
then its probability density by differentiation. Thus, if X1, X2, . . . , Xn are continu-
ous random variables with a given joint probability density, the probability density
of Y = u(X1, X2, . . . , Xn) is obtained by first determining an expression for the
probability

F(y) = P(Y F y) = P[u(X1, X2, . . . , Xn) F y]

and then differentiating to get

f (y) = dF(y)
dy

From Chapter 7 of John E. Freund’s Mathematical Statistics with Applications,
Eighth Edition. Irwin Miller, Marylees Miller. Copyright © 2014 by Pearson Education, Inc.
All rights reserved.
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EXAMPLE 1

If the probability density of X is given by

f (x) =
⎧⎨
⎩

6x(1 − x) for 0< x< 1

0 elsewhere

find the probability density of Y = X3.

Solution
Letting G(y) denote the value of the distribution function of Y at y, we can write

G(y) = P(Y F y)

= P(X3 F y)

= P(X F y1/3)

=
∫ y1/3

0
6x(1 − x)dx

= 3y2/3 − 2y

and hence

g(y) = 2(y−1/3 − 1)

for 0< y< 1; elsewhere, g(y) = 0. In Exercise 15 the reader will be asked to verify
this result by a different technique.

EXAMPLE 2

If Y = |X|, show that

g(y) =
⎧⎨
⎩

f (y)+ f (−y) for y> 0

0 elsewhere

where f (x) is the value of the probability density of X at x and g(y) is the value of
the probability density of Y at y. Also, use this result to find the probability density
of Y = |X| when X has the standard normal distribution.

Solution
For y> 0 we have

G(y) = P(Y F y)

= P(|X| F y)

= P(−y F X F y)

= F(y)− F(−y)

and, upon differentiation,
g(y) = f (y)+ f (−y)
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Also, since |x| cannot be negative, g(y) = 0 for y< 0. Arbitrarily letting g(0) = 0, we
can thus write

g(y) =
{

f (y)+ f (−y) for y> 0

0 elsewhere

If X has the standard normal distribution and Y = |X|, it follows that

g(y) = n(y; 0, 1)+ n(−y; 0, 1)

= 2n(y; 0, 1)

for y> 0 and g(y) = 0 elsewhere. An important application of this result may be
found in Example 9.

EXAMPLE 3

If the joint density of X1 and X2 is given by

f (x1, x2) =
⎧⎨
⎩

6e−3x1−2x2 for x1> 0, x2> 0

0 elsewhere

find the probability density of Y = X1 + X2.

Solution
Integrating the joint density over the shaded region of Figure 1, we get

F(y) =
∫ y

0

∫ y−x2

0
6e−3x1−2x2dx1 dx2

= 1 + 2e−3y − 3e−2y

x1 � x2 � y

x2

x1

Figure 1. Diagram for Example 3.
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and, differentiating with respect to y, we obtain

f (y) = 6(e−2y − e−3y)

for y> 0; elsewhere, f (y) = 0.

Exercises
1. If X has an exponential distribution with the param-
eter θ , use the distribution function technique to
find the probability density of the random variable
Y = ln X.

2. If the probability density of X is given by

f (x) =
⎧⎨
⎩

2xe−x2
for x> 0

0 elsewhere

and Y = X2, find
(a) the distribution function of Y;
(b) the probability density of Y.

3. If X has the uniform density with the parameters α = 0
and β = 1, use the distribution function technique to find
the probability density of the random variable Y = √

X.

4. If the joint probability density of X and Y is given by

f (x, y) =

⎧⎪⎨
⎪⎩

4xye−(x2+y2) for x> 0, y> 0

0 elsewhere

and Z =
√

X2 + Y2, find
(a) the distribution function of Z;
(b) the probability density of Z.

2

1

x2

x1
21

2

1

x2

x1
21

2

1

x2

x1
21

2

1

x2

x1
21

y � x1 � x2 � 2

y � x1 � x2 � 0

1 � y � x1 � x2 � 2

0 � y � x1 � x2 � 1

Figure 2. Diagram for Exercise 6.
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5. If X1 and X2 are independent random variables having
exponential densities with the parameters θ1 and θ2, use
the distribution function technique to find the probability
density of Y = X1 + X2 when

(a) θ1 Z θ2;
(b) θ1 = θ2.

(Example 3 is a special case of this with θ1 = 1
3 and

θ2 = 1
2 .)

6. Let X1 and X2 be independent random variables hav-
ing the uniform density with α = 0 and β = 1. Referring
to Figure 2, find expressions for the distribution function
of Y = X1 + X2 for

(a) y F 0;
(b) 0< y< 1;
(c) 1< y< 2;

(d) y G 2.
Also find the probability density of Y.

7. With reference to the two random variables of Exer-
cise 5, show that if θ1 = θ2 = 1, the random variable

Z = X1

X1 + X2

has the uniform density with α = 0 and β = 1.

8. If the joint density of X and Y is given by

f (x, y) =
⎧⎨
⎩e−(x+y) for x> 0, y> 0

0 elsewhere

and Z = X + Y
2

, find the probability density of Z by the

distribution function technique.

3 Transformation Technique: One Variable
Let us show how the probability distribution or density of a function of a random
variable can be determined without first getting its distribution function. In the
discrete case there is no real problem as long as the relationship between the val-
ues of X and Y = u(X) is one-to-one; all we have to do is make the appropriate
substitution.

EXAMPLE 4

If X is the number of heads obtained in four tosses of a balanced coin, find the

probability distribution of Y = 1
1 + X

.

Solution
Using the formula for the binomial distribution with n = 4 and θ = 1

2 , we find that
the probability distribution of X is given by

x 0 1 2 3 4

f (x)
1

16
4

16
6

16
4

16
1

16

Then, using the relationship y = 1
1 + x

to substitute values of Y for values of X, we

find that the probability distribution of Y is given by

y 1
1
2

1
3

1
4

1
5

g(y)
1
16

4
16

6
16

4
16

1
16
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If we had wanted to make the substitution directly in the formula for the binomial

distribution with n = 4 and θ = 1
2 , we could have substituted x = 1

y
− 1 for x in

f (x) =
(

4
x

)(
1
2

)4

for x = 0, 1, 2, 3, 4

getting

g(y) = f
(

1
y

− 1
)

=
(

4
1
y − 1

)(
1
2

)4

for y = 1,
1
2

,
1
3

,
1
4

,
1
5

Note that in the preceding example the probabilities remained unchanged; the
only difference is that in the result they are associated with the various values of Y
instead of the corresponding values of X. That is all there is to the transformation
(or change-of-variable) technique in the discrete case as long as the relationship is
one-to-one. If the relationship is not one-to-one, we may proceed as in the follow-
ing example.

EXAMPLE 5

With reference to Example 4, find the probability distribution of the random vari-
able Z = (X − 2)2.

Solution
Calculating the probabilities h(z) associated with the various values of Z, we get

h(0) = f (2) = 6
16

h(1) = f (1)+ f (3) = 4
16

+ 4
16

= 8
16

h(4) = f (0)+ f (4) = 1
16

+ 1
16

= 2
16

and hence

z 0 1 4

h(z)
3
8

4
8

1
8

To perform a transformation of variable in the continuous case, we shall assume
that the function given by y = u(x) is differentiable and either increasing or decreas-
ing for all values within the range of X for which f (x) Z 0, so the inverse function,
given by x = w(y), exists for all the corresponding values of y and is differentiable
except where u′(x) = 0.† Under these conditions, we can prove the following
theorem.

†To avoid points where u′(x) might be 0, we generally do not include the endpoints of the intervals for which
probability densities are nonzero. This is the practice that we follow throughout this chapter.
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THEOREM 1. Let f (x) be the value of the probability density of the con-
tinuous random variable X at x. If the function given by y = u(x) is
differentiable and either increasing or decreasing for all values within the
range of X for which f (x) Z 0, then, for these values of x, the equation
y = u(x) can be uniquely solved for x to give x = w(y), and for the corre-
sponding values of y the probability density of Y = u(X) is given by

g(y) = f [w(y)] · |w′(y)| provided u′(x)Z 0

Elsewhere, g(y) = 0.

Proof First, let us prove the case where the function given by y = u(x) is
increasing. As can be seen from Figure 3, X must take on a value between
w(a) and w(b) when Y takes on a value between a and b. Hence,

P(a<Y<b) = P[w(a)<X <w(b)]

=
∫ w(b)

w(a)
f (x)dx

=
∫ b

a
f [w(y)]w′(y)dy

where we performed the change of variable y = u(x), or equivalently
x = w(y), in the integral. The integrand gives the probability density of Y
as long as w′(y) exists, and we can write

g(y) = f [w(y)]w′(y)

When the function given by y = u(x) is decreasing, it can be seen from
Figure 3 that X must take on a value between w(b) and w(a) when Y
takes on a value between a and b. Hence,

P(a<Y<b) = P[w(b)<X <w(a)]

=
∫ w(a)

w(b)
f (x)dx

=
∫ a

b
f [w(y)]w′(y)dy

= −
∫ b

a
f [w(y)]w′(y)dy

where we performed the same change of variable as before, and it fol-
lows that

g(y) = −f [w(y)]w′(y)

Since w′(y) = dx
dy

= 1
dy
dx

is positive when the function given by y = u(x) is

increasing, and −w′(y) is positive when the function given by y = u(x) is
decreasing, we can combine the two cases by writing

g(y) = f [w(y)] · |w′(y)|
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y = u(x)

y

Increasing function

b

a

w(a) w(b)
x

y = u(x)

y

Decreasing function

a

b

w(b) w(a)
x

Figure 3. Diagrams for proof of Theorem 1.

EXAMPLE 6

If X has the exponential distribution given by

f (x) =
⎧⎨
⎩e−x for x> 0

0 elsewhere

find the probability density of the random variable Y = √
X.

Solution
The equation y = √

x, relating the values of X and Y, has the unique inverse x = y2,

which yields w′(y) = dx
dy

= 2y. Therefore,

g(y) = e−y2 |2y| = 2ye−y2

for y> 0 in accordance with Theorem 1. Since the probability of getting a value of Y
less than or equal to 0, like the probability of getting a value of X less than or equal
to 0, is zero, it follows that the probability density of Y is given by
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g(y) =
{

2ye−y2
for y> 0

0 elsewhere

0.1

1

f (x) � e�x

x

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 3 54

0.35 0.1

1

g(y) � 2ye�y2

y

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 3 54

0.35

Figure 4. Diagrams for Example 6.

The two diagrams of Figure 4 illustrate what happened in this example when we
transformed from X to Y. As in the discrete case (for instance, Example 4), the prob-
abilities remain the same, but they pertain to different values (intervals of values) of
the respective random variables. In the diagram on the left, the 0.35 probability per-
tains to the event that X will take on a value on the interval from 1 to 4, and in the
diagram on the right, the 0.35 probability pertains to the event that Y will take on a
value on the interval from 1 to 2.

EXAMPLE 7

If the double arrow of Figure 5 is spun so that the random variable � has the uni-
form density

f (θ) =
{

1
π

for − π
2 <θ <

π
2

0 elsewhere

determine the probability density of X, the abscissa of the point on the x-axis to
which the arrow will point.

x � a · tan u

u

a

x0

Figure 5. Diagram for Example 7.
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Solution
As is apparent from the diagram, the relationship between x and θ is given by x =
a · tan θ , so that

dθ
dx

= a
a2 + x2

and it follows that

g(x) = 1
π

·
∣∣∣∣ a
a2 + x2

∣∣∣∣
= 1
π

· a
a2 + x2 for −q< x<q

according to Theorem 1.

EXAMPLE 8

If F(x) is the value of the distribution function of the continuous random variable X
at x, find the probability density of Y = F(X).

Solution
As can be seen from Figure 6, the value of Y corresponding to any particular value
of X is given by the area under the curve, that is, the area under the graph of the
density of X to the left of x. Differentiating y = F(x) with respect to x, we get

dy
dx

= F ′(x) = f (x)

and hence
dx
dy

= 1
dy
dx

= 1
f (x)

provided f (x)Z 0. It follows from Theorem 1 that

g(y) = f (x) ·
∣∣∣∣ 1
f (x)

∣∣∣∣ = 1

for 0< y< 1, and we can say that y has the uniform density with α = 0 and β = 1.

x

y � F (x)

Figure 6. Diagram for Example 8.
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The transformation that we performed in this example is called the probability
integral transformation. Not only is the result of theoretical importance, but it facili-
tates the simulation of observed values of continuous random variables. A reference
to how this is done, especially in connection with the normal distribution, is given in
the end of the chapter.

When the conditions underlying Theorem 1 are not met, we can be in serious
difficulties, and we may have to use the method of Section 2 or a generalization of
Theorem 1 referred to among the references at the end of the chapter; sometimes,
there is an easy way out, as in the following example.

EXAMPLE 9

If X has the standard normal distribution, find the probability density of Z = X2.

Solution
Since the function given by z = x2 is decreasing for negative values of x and increas-
ing for positive values of x, the conditions of Theorem 1 are not met. However, the
transformation from X to Z can be made in two steps: First, we find the probability
density of Y = |X|, and then we find the probability density of Z = Y2(= X2).

As far as the first step is concerned, we already studied the transformation
Y = |X| in Example 2; in fact, we showed that if X has the standard normal dis-
tribution, then Y = |X| has the probability density

g(y) = 2n(y; 0, 1) = 2√
2π

e− 1
2 y2

for y> 0, and g(y) = 0 elsewhere. For the second step, the function given by z = y2

is increasing for y> 0, that is, for all values of Y for which g(y) Z 0. Thus, we can use
Theorem 1, and since

dy
dz

= 1
2

z− 1
2

we get

h(z) = 2√
2π

e− 1
2 z
∣∣∣∣12z− 1

2

∣∣∣∣
= 1√

2π
z− 1

2 e− 1
2 z

for z> 0, and h(z) = 0 elsewhere. Observe that since �( 1
2 ) = √

π , the distribution
we have arrived at for Z is a chi-square distribution with ν = 1.

4 Transformation Technique: Several Variables
The method of the preceding section can also be used to find the distribution of a
random variable that is a function of two or more random variables. Suppose, for
instance, that we are given the joint distribution of two random variables X1 and X2
and that we want to determine the probability distribution or the probability density

217



Functions of Random Variables

of the random variable Y = u(X1, X2). If the relationship between y and x1 with x2
held constant or the relationship between y and x2 with x1 held constant permits, we
can proceed in the discrete case as in Example 4 to find the joint distribution of Y
and X2 or that of X1 and Y and then sum on the values of the other random variable
to get the marginal distribution of Y. In the continuous case, we first use Theorem 1
with the transformation formula written as

g(y, x2) = f (x1, x2) ·
∣∣∣∣�x1

�y

∣∣∣∣
or as

g(x1, y) = f (x1, x2) ·
∣∣∣∣�x2

�y

∣∣∣∣
where f (x1, x2) and the partial derivative must be expressed in terms of y and x2 or
x1 and y. Then we integrate out the other variable to get the marginal density of Y.

EXAMPLE 10

If X1 and X2 are independent random variables having Poisson distributions with
the parameters λ1 and λ2, find the probability distribution of the random variable
Y = X1 + X2.

Solution
Since X1 and X2 are independent, their joint distribution is given by

f (x1, x2) = e−λ1(λ1)
x1

x1!
· e−λ2(λ2)

x2

x2!

= e−(λ1+λ2)(λ1)
x1(λ2)

x2

x1!x2!

for x1 = 0, 1, 2, . . . and x2 = 0, 1, 2, . . .. Since y = x1 + x2 and hence x1 = y − x2, we
can substitute y − x2 for x1, getting

g(y, x2) = e−(λ1+λ2)(λ2)
x2(λ1)

y−x2

x2!(y − x2)!

for y = 0, 1, 2, . . . and x2 = 0, 1, . . . , y, for the joint distribution of Y and X2. Then,
summing on x2 from 0 to y, we get

h(y) =
y∑

x2=0

e−(λ1+λ2)(λ2)
x2(λ1)

y−x2

x2!(y − x2)!

= e−(λ1+λ2)

y!
·

y∑
x2=0

y!
x2!(y − x2)!

(λ2)
x2(λ1)

y−x2
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after factoring out e−(λ1+λ2) and multiplying and dividing by y!. Identifying the sum-
mation at which we arrived as the binomial expansion of (λ1 + λ2)

y, we finally get

h(y) = e−(λ1+λ2)(λ1 + λ2)
y

y!
for y = 0, 1, 2, . . .

and we have thus shown that the sum of two independent random variables having
Poisson distributions with the parameters λ1 and λ2 has a Poisson distribution with
the parameter λ = λ1 + λ2.

EXAMPLE 11

If the joint probability density of X1 and X2 is given by

f (x1, x2) =
{

e−(x1+x2) for x1> 0, x2> 0
0 elsewhere

find the probability density of Y = X1

X1 + X2
.

Solution
Since y decreases when x2 increases and x1 is held constant, we can use Theorem 1 to

find the joint density of X1 and Y. Since y = x1

x1 + x2
yields x2 = x1 · 1 − y

y
and hence

�x2

�y
= −x1

y2

it follows that

g(x1, y) = e−x1/y

∣∣∣∣∣−x1

y2

∣∣∣∣∣ = x1

y2 · e−x1/y

for x1> 0 and 0< y< 1. Finally, integrating out x1 and changing the variable of inte-
gration to u = x1/y, we get

h(y) =
∫ q

0

x1

y2 · e−x1/ydx1

=
∫ q

0
u · e−udu

= �(2)

= 1

for 0< y< 1, and h(y) = 0 elsewhere. Thus, the random variable Y has the uniform
density with α = 0 and β = 1. (Note that in Exercise 7 the reader was asked to show
this by the distribution function technique.)

The preceding example could also have been worked by a general method where
we begin with the joint distribution of two random variables X1 and X2 and determine

219



Functions of Random Variables

the joint distribution of two new random variables Y1 = u1(X1, X2) and Y2 =
u2(X1, X2). Then we can find the marginal distribution of Y1 or Y2 by summation
or integration.

This method is used mainly in the continuous case, where we need the following
theorem, which is a direct generalization of Theorem 1.

THEOREM 2. Let f (x1, x2) be the value of the joint probability density of
the continuous random variables X1 and X2 at (x1, x2). If the functions
given by y1 = u1(x1, x2) and y2 = u2(x1, x2) are partially differentiable
with respect to both x1 and x2 and represent a one-to-one transformation
for all values within the range of X1 and X2 for which f (x1, x2)Z 0, then,
for these values of x1 and x2, the equations y1 = u1(x1, x2) and y2 =
u2(x1, x2) can be uniquely solved for x1 and x2 to give x1 = w1(y1, y2) and
x2 = w2(y1, y2), and for the corresponding values of y1 and y2, the joint
probability density of Y1 = u1(X1, X2) and Y2 = u2(X1, X2) is given by

g(y1, y2) = f [w1(y1, y2), w2(y1, y2)] · |J|
Here, J, called the Jacobian of the transformation, is the determinant

J =

∣∣∣∣∣∣∣∣∣

�x1

�y1

�x1

�y2

�x2

�y1

�x2

�y2

∣∣∣∣∣∣∣∣∣
Elsewhere, g(y1, y2) = 0.

We shall not prove this theorem, but information about Jacobians and their
applications can be found in most textbooks on advanced calculus. There they are
used mainly in connection with multiple integrals, say, when we want to change
from rectangular coordinates to polar coordinates or from rectangular coordinates
to spherical coordinates.

EXAMPLE 12

With reference to the random variables X1 and X2 of Example 11, find

(a) the joint density of Y1 = X1 + X2 and Y2 = X1

X1 + X2
;

(b) the marginal density of Y2.

Solution

(a) Solving y1 = x1 + x2 and y2 = x1

x1 + x2
for x1 and x2, we get x1 = y1y2 and

x2 = y1(1 − y2), and it follows that

J =
∣∣∣∣∣∣

y2 y1

1 − y2 −y1

∣∣∣∣∣∣ = −y1
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Since the transformation is one-to-one, mapping the region x1> 0 and x2> 0
in the x1x2-plane into the region y1> 0 and 0< y2< 1 in the y1y2-plane, we can
use Theorem 2 and it follows that

g(y1, y2) = e−y1 | − y1| = y1e−y1

for y1> 0 and 0< y2< 1; elsewhere, g(y1, y2) = 0.

(b) Using the joint density obtained in part (a) and integrating out y1, we get

h(y2) =
∫ q

0
g(y1, y2)dy1

=
∫ q

0
y1e−y1 dy1

= �(2)

= 1

for 0< y2< 1; elsewhere, h(y2) = 0.

EXAMPLE 13

If the joint density of X1 and X2 is given by

f (x1, x2) =
{

1 for 0< x1< 1, 0< x2< 1
0 elsewhere

find

(a) the joint density of Y = X1 + X2 and Z = X2;

(b) the marginal density of Y.

Note that in Exercise 6 the reader was asked to work the same problem by the dis-
tribution function technique.

Solution

(a) Solving y = x1 + x2 and z = x2 for x1 and x2, we get x1 = y − z and x2 = z,
so that

J =
∣∣∣∣∣1 −1

0 1

∣∣∣∣∣ = 1

Because this transformation is one-to-one, mapping the region 0< x1< 1 and
0< x2< 1 in the x1x2-plane into the region z< y< z + 1 and 0< z< 1 in the
yz-plane (see Figure 7), we can use Theorem 2 and we get

g(y, z) = 1 · |1| = 1

for z< y< z + 1 and 0< z< 1; elsewhere, g(y, z) = 0.
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1

z

0 1z � 0

z � y

z � 1

z � y � 1

y
2

x

Figure 7. Transformed sample space for Example 13.

(b) Integrating out z separately for y F 0, 0< y< 1, 1< y< 2, and y G 2, we get

h(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for y F 0∫ y

0
1 · dz = y for 0< y< 1

∫ 1

y−1
1 · dz = 2 − y for 1< y< 2

0 for y G 2

and to make the density function continuous, we let h(1) = 1. We have thus
shown that the sum of the given random variables has the triangular probabil-
ity density whose graph is shown in Figure 8.

1

h(y)

h(y) � y h(y) � 2 � y

0
y

21

Figure 8. Triangular probability density.

So far we have considered here only functions of two random variables, but
the method based on Theorem 2 can easily be generalized to functions of three or
more random variables. For instance, if we are given the joint probability density
of three random variables X1, X2, and X3 and we want to find the joint probabil-
ity density of the random variables Y1 = u1(X1, X2, X3), Y2 = u2(X1,X2, X3), and
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Y3 = u3(X1, X2, X3), the general approach is the same, but the Jacobian is now the
3 * 3 determinant

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

�x1

�y1

�x1

�y2

�x1

�y3

�x2

�y1

�x2

�y2

�x2

�y3

�x3

�y1

�x3

�y2

�x3

�y3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Once we have determined the joint probability density of the three new random
variables, we can find the marginal density of any two of the random variables, or
any one, by integration.

EXAMPLE 14

If the joint probability density of X1, X2, and X3 is given by

f (x1, x2, x3) =
⎧⎨
⎩

e−(x1+x2+x3) for x1> 0, x2> 0, x3> 0

0 elsewhere

find

(a) the joint density of Y1 = X1 + X2 + X3, Y2 = X2, and Y3 = X3;

(b) the marginal density of Y1.

Solution

(a) Solving the system of equations y1 = x1 + x2 + x3, y2 = x2, and y3 = x3 for x1,
x2, and x3, we get x1 = y1 − y2 − y3, x2 = y2, and x3 = y3. It follows that

J =

∣∣∣∣∣∣∣
1 −1 −1

0 1 0

0 0 1

∣∣∣∣∣∣∣ = 1

and, since the transformation is one-to-one, that

g(y1, y2, y3) = e−y1 · |1|
= e−y1

for y2> 0, y3> 0, and y1> y2 + y3; elsewhere, g(y1, y2, y3) = 0.

(b) Integrating out y2 and y3, we get

h(y1) =
∫ y1

0

∫ y1−y3

0
e−y1 dy2 dy3

= 1
2

y2
1 · e−y1

for y1> 0; h(y1) = 0 elsewhere. Observe that we have shown that the sum of
three independent random variables having the gamma distribution with α = 1
and β = 1 is a random variable having the gamma distribution with α = 3 and
β = 1.

223



Functions of Random Variables

As the reader will find in Exercise 39, it would have been easier to obtain the
result of part (b) of Example 14 by using the method based on Theorem 1.

Exercises
9. If X has a hypergeometric distribution with M = 3,
N = 6, and n = 2, find the probability distribution of Y,
the number of successes minus the number of failures.

10. With reference to Exercise 9, find the probability dis-
tribution of the random variable Z = (X − 1)2.

11. If X has a binomial distribution with n = 3 and θ = 1
3 ,

find the probability distributions of

(a) Y = X
1 + X

;

(b) U = (X − 1)4.

12. If X has a geometric distribution with θ = 1
3 , find

the formula for the probability distribution of the random
variable Y = 4 − 5X.

13. This question has been intentionally omitted for this
edition.

14. This question has been intentionally omitted for this
edition.

15. Use the transformation technique to rework Exer-
cise 2.

16. If the probability density of X is given by

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

kx3

(1 + 2x)6
for x> 0

0 elsewhere

where k is an appropriate constant, find the probability

density of the random variable Y = 2X
1 + 2X

. Identify the

distribution of Y, and thus determine the value of k.

17. If the probability density of X is given by

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

x
2

for 0< x< 2

0 elsewhere

find the probability density of Y = X3. Also, plot the
graphs of the probability densities of X and Y and indi-
cate the respective areas under the curves that represent
P( 1

2 <X < 1) and P( 1
8 <Y< 1).

18. If X has a uniform density with α = 0 and β = 1, show
that the random variable Y = −2. In X has a gamma dis-
tribution. What are its parameters?

19. This question has been intentionally omitted for this
edition.

20. Consider the random variable X with the probabil-
ity density

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

3x2

2
for − 1< x< 1

0 elsewhere

(a) Use the result of Example 2 to find the probability
density of Y = |X|.
(b) Find the probability density of Z = X2(= Y2).

21. Consider the random variable X with the uniform
density having α = 1 and β = 3.
(a) Use the result of Example 2 to find the probability
density of Y = |X|.
(b) Find the probability density of Z = X4(= Y4).

22. If the joint probability distribution of X1 and X2 is
given by

f (x1, x2) = x1x2

36

for x1 = 1, 2, 3 and x2 = 1, 2, 3, find
(a) the probability distribution of X1X2;
(b) the probability distribution of X1/X2.

23. With reference to Exercise 22, find
(a) the joint distribution of Y1 = X1 + X2 and Y2 =
X1 − X2;
(b) the marginal distribution of Y1.

24. If the joint probability distribution of X and Y is
given by

f (x, y) = (x − y)2

7

for x = 1, 2 and y = 1, 2, 3, find
(a) the joint distribution of U = X + Y and V = X − Y;
(b) the marginal distribution of U.

25. If X1, X2, and X3 have the multinomial distribution
with n = 2, θ1 = 1

4 , θ2 = 1
3 , and θ3 = 5

12 , find the joint
probability distribution of Y1 = X1 + X2, Y2 = X1 − X2,
and Y3 = X3.

26. This question has been intentionally omitted for this
edition.
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27. If X1 and X2 are independent random variables hav-
ing binomial distributions with the respective parameters
n1 and θ and n2 and θ , show that Y = X1 + X2 has the
binomial distribution with the parameters n1 + n2 and θ .

28. If X1 and X2 are independent random variables hav-
ing the geometric distribution with the parameter θ , show
that Y = X1 + X2 is a random variable having the neg-
ative binomial distribution with the parameters θ and
k = 2.

29. If X and Y are independent random variables hav-
ing the standard normal distribution, show that the ran-
dom variable Z = X + Y is also normally distributed.
(Hint: Complete the square in the exponent.) What are
the mean and the variance of this normal distribution?

30. Consider two random variables X and Y with the
joint probability density

f (x, y) =
⎧⎨
⎩

12xy(1 − y) for 0< x< 1, 0< y< 1

0 elsewhere

Find the probability density of Z = XY2 by using
Theorem 1 to determine the joint probability density of
Y and Z and then integrating out y.

31. Rework Exercise 30 by using Theorem 2 to determine
the joint probability density of Z = XY2 and U = Y and
then finding the marginal density of Z.

32. Consider two independent random variables X1 and
X2 having the same Cauchy distribution

f (x) = 1
π(1 + x2)

for −q< x<q

Find the probability density of Y1 = X1 + X2 by using
Theorem 1 to determine the joint probability density of
X1 and Y1 and then integrating out x1. Also, identify the
distribution of Y1.

33. Rework Exercise 32 by using Theorem 2 to determine
the joint probability density of Y1 = X1 + X2 and Y2 =
X1 − X2 and then finding the marginal density of Y1.

34. Consider two random variables X and Y whose joint
probability density is given by

f (x, y) =

⎧⎪⎨
⎪⎩

1
2

for x> 0, y> 0, x + y< 2

0 elsewhere

Find the probability density of U = Y − X by using
Theorem 1.

35. Rework Exercise 34 by using Theorem 2 to determine
the joint probability density of U = Y − X and V = X
and then finding the marginal density of U.

36. Let X1 and X2 be two continuous random variables
having the joint probability density

f (x1, x2) =
{

4x1x2 for 0< x1< 1, 0< x2< 1
0 elsewhere

Find the joint probability density of Y1 = X2
1 and Y2 =

X1X2.

37. Let X and Y be two continuous random variables hav-
ing the joint probability density

f (x, y) =
{

24xy for 0< x< 1, 0< y< 1, x + y< 1
0 elsewhere

Find the joint probability density of Z = X + Y and
W = X.

38. Let X and Y be two independent random variables
having identical gamma distributions.
(a) Find the joint probability density of the random vari-

ables U = X
X + Y

and V = X + Y.

(b) Find and identify the marginal density of U.

39. The method of transformation based on Theorem 1
can be generalized so that it applies also to random vari-
ables that are functions of two or more random variables.
So far we have used this method only for functions of two
random variables, but when there are three, for example,
we introduce the new random variable in place of one of
the original random variables, and then we eliminate (by
summation or integration) the other two random vari-
ables with which we began. Use this method to rework
Example 14.

40. In Example 13 we found the probability density of
the sum of two independent random variables having
the uniform density with α = 0 and β = 1. Given a
third random variable X3, which has the same uniform
density and is independent of both X1 and X2, show that
if U = Y + X3 = X1 + X2 + X3, then
(a) the joint probability density of U and Y is given by

g(u, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y for Regions I and II of Figure 9

2 − y for Regions III and IV of Figure 9

0 elsewhere
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y � u

y � u � 1

IV

III

II

I

u

y

2

1

321

Figure 9. Diagram for Exercise 40.

(b) the probability density of U is given by

h(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for u F 0

1
2

u2 for 0<u< 1

1
2

u2 − 3
2
(u − 1)2 for 1<u< 2

1
2

u2 − 3
2
(u − 1)2 + 3

2
(u − 2)2 for 2<u< 3

0 for u G 3

Note that if we let h(1) = h(2) = 1
2 , this will make the

probability density of U continuous.

5 Moment-Generating Function Technique
Moment-generating functions can play an important role in determining the prob-
ability distribution or density of a function of random variables when the func-
tion is a linear combination of n independent random variables. We shall illustrate
this technique here when such a linear combination is, in fact, the sum of n inde-
pendent random variables, leaving it to the reader to generalize it in Exercises 45
and 46.

The method is based on the following theorem that the moment-generating
function of the sum of n independent random variables equals the product of their
moment-generating functions.

THEOREM 3. If X1, X2, . . ., and Xn are independent random variables and
Y = X1 + X2 + · · · + Xn, then

MY(t) =
n∏

i=1

MXi(t)

where MXi(t) is the value of the moment-generating function of Xi at t.

Proof Making use of the fact that the random variables are independent
and hence

f (x1, x2, . . . , xn) = f1(x1) · f2(x2) · . . . · fn(xn)

according to the following definition “INDEPENDENCE OF DISCRETE

RANDOM VARIABLES. If f(x1, x2, . . . , xn) is the value of the joint proba-
bility distribution of the discrete random variables X1, X2, . . . , Xn at
(x1, x2, . . . , xn) and fi(xi) is the value of the marginal distribution of Xi at
xi for i = 1, 2, . . . , n, then the n random variables are independent if and
only if f (x1, x2, . . . , xn) = f1(x1) · f2(x2) · . . . · fn(xn) for all (x1, x2, . . . , xn)

within their range”, we can write
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MY(t) = E(eYt)

= E
[
e(X1+X2+ ···+Xn)t

]

=
∫ q

−q
· · ·
∫ q

−q
e(x1+x2+ ··· +xn)tf (x1, x2, . . . , xn) dx1 dx2 · · · dxn

=
∫ q

−q
ex1tf1(x1) dx1 ·

∫ q

−q
ex2tf2(x2) dx2 · · ·

∫ q

−q
exntfn(xn) dxn

=
n∏

i=1

MXi(t)

which proves the theorem for the continuous case. To prove it for the
discrete case, we have only to replace all the integrals by sums.

Note that if we want to use Theorem 3 to find the probability distribution or the
probability density of the random variable Y = X1 + X2 + · · · + Xn, we must be able
to identify whatever probability distribution or density corresponds to MY(t).

EXAMPLE 15

Find the probability distribution of the sum of n independent random variables X1,
X2, . . . , Xn having Poisson distributions with the respective parameters λ1, λ2, . . . , λn.

Solution
By the theorem “The moment-generating function of the Poisson distribution is
given by MX(t) = eλ(e

t−1)” we have

MXi(t) = eλi(et−1)

hence, for Y = X1 + X2 + · · · + Xn, we obtain

MY(t) =
n∏

i=1

eλi(et−1) = e(λ1+λ2+ ···+λn)(et−1)

which can readily be identified as the moment-generating function of the Poisson
distribution with the parameter λ = λ1 + λ2 + · · · + λn. Thus, the distribution of the
sum of n independent random variables having Poisson distributions with the param-
eters λi is a Poisson distribution with the parameter λ = λ1 + λ2 + · · · + λn. Note that
in Example 10 we proved this for n = 2.

EXAMPLE 16

If X1, X2, . . . , Xn are independent random variables having exponential distributions
with the same parameter θ , find the probability density of the random variable Y =
X1 + X2 + · · · + Xn.

Solution
Since the exponential distribution is a gamma distribution with α = 1 and β = θ ,
we have

MXi(t) = (1 − θ t)−1
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and hence

MY(t) =
n∏

i=1

(1 − θ t)−1 = (1 − θ t)−n

Identifying the moment-generating function of Y as that of a gamma distribution
with α = n and β = θ , we conclude that the distribution of the sum of n independent
random variables having exponential distributions with the same parameter θ is a
gamma distribution with the parameters α = n and β = θ . Note that this agrees
with the result of Example 14, where we showed that the sum of three independent
random variables having exponential distributions with the parameter θ = 1 has a
gamma distribution with α = 3 and β = 1.

Theorem 3 also provides an easy and elegant way of deriving the moment-
generating function of the binomial distribution. Suppose that X1, X2, . . . , Xn are
independent random variables having the same Bernoulli distribution f (x; θ) =
θx(1 − θ)1−x for x = 0, 1. We have

MXi(t) = e0·t(1 − θ)+ e1·tθ = 1 + θ(et − 1)

so that Theorem 3 yields

MY(t) =
n∏

i=1

[1 + θ(et − 1)] = [1 + θ(et − 1)]n

This moment-generating function is readily identified as that of the binomial dis-
tribution with the parameters n and θ . Of course, Y = X1 + X2 + · · · + Xn is the
total number of successes in n trials, since X1 is the number of successes on the
first trial, X2 is the number of successes on the second trial, . . ., and Xn is the num-
ber of successes on the nth trial. This is a fruitful way of looking at the binomial
distribution.

Exercises
41. Use the moment-generating function technique to
rework Exercise 27.

42. Find the moment-generating function of the negative
binomial distribution by making use of the fact that if k
independent random variables have geometric distribu-
tions with the same parameter θ , their sum is a random
variable having the negative binomial distribution with
the parameters θ and k.

43. If n independent random variables have the same
gamma distribution with the parameters α and β, find the
moment-generating function of their sum and, if possible,
identify its distribution.

44. If n independent random variables Xi have normal
distributions with the means μi and the standard devia-
tions σi, find the moment-generating function of their sum

and identify the corresponding distribution, its mean, and
its variance.

45. Prove the following generalization of Theorem 3: If
X1, X2, . . ., and Xn are independent random variables and
Y = a1X1 + a2X2 + · · · + anXn, then

MY(t) =
n∏

i=1

MXi(ait)

where MXi(t) is the value of the moment-generating func-
tion of Xi at t.

46. Use the result of Exercise 45 to show that, if n
independent random variables Xi have normal distribu-
tions with the means μi and the standard deviations σi,
then Y = a1X1 + a2X2 + · · · + anXn has a normal dis-
tribution. What are the mean and the variance of this
distribution?
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6 The Theory in Application
Examples of the need for transformations in solving practical problems abound. To
illustrate these applications, we give three examples. The first example illustrates
an application of the transformation technique to a simple problem in electrical
engineering.

EXAMPLE 17

Suppose the resistance in a simple circuit varies randomly in response to environ-
mental conditions. To determine the effect of this variation on the current flowing
through the circuit, an experiment was performed in which the resistance (R) was
varied with equal probabilities on the interval 0<R … A and the ensuing voltage
(E) was measured. Find the distribution of the random variable I, the current flowing
through the circuit.

Solution
Using the well-known relation E = IR, we have I = u(R) = E

R
. The probability

distribution of R is given by f (R) = 1
A

for 0<R … A. Thus, w(I) = E
I

, and the

probability density of I is given by

g(I) = f (R) · |w′(I)| = 1
A

∣∣∣∣− E
R2

∣∣∣∣ = E
AR2 R> 0

It should be noted, with respect to this example, that this is a designed experi-
ment in as much as the distribution of R was preselected as a uniform distribution. If
the nominal value of R is to be the mean of this distribution, some other distribution
might have been selected to impart better properties to this estimate.

The next example illustrates transformations of data to normality.

EXAMPLE 18

What underlying distribution of the data is assumed when the square-root transfor-
mation is used to obtain approximately normally distributed data? (Assume the data
are nonnegative, that is, the probability of a negative observation is zero.)

Solution
A simple alternate way to use the distribution-function technique is to write down
the differential element of the density function, f (x)dx, of the transformed obser-
vations, y, and to substitute x2 for y. (When we do this, we must remember that the
differential element, dy, must be changed to dx = 2x dx.) We obtain

f (x)dx = 1√
2πσ

· 2x · e− 1
2 (x

2−μ)2/σ 2
dx

The required density function is given by

f (x) =
√

2
πσ 2 xe− 1

2 (x
2−μ)2/σ 2

This distribution is not immediately recognizable, but it can be graphed quickly using
appropriate computer software.
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The final example illustrates an application to waiting-time problems.

EXAMPLE 19

Let us assume that the decay of a radioactive element is exponentially distributed,
so that f (x) = λe−λx for λ> 0 and x> 0; that is, the time for the nucleus to emit
the first α particle is x (in seconds). It can be shown that such a process has no
memory; that is, the time between successive emissions also can be described by this
distribution. Thus, it follows that successive emissions of α particles are independent.
If the parameter λ equals 5, find the probability that a given substance will emit 2
particles in less than or equal to 3 seconds.

Solution
Let xi be the waiting time between emissions i and i + 1, for i = 0, 1, 2, . . . , n − 1.
Then the total time for n emissions to take place is the sum T = x0 + x1 + · · · + xn−1.
The moment-generating function of this sum is given in Example 16 to be

MT(t) = (1 − t/λ)−n

This can be recognized as the moment-generating function of the gamma distribu-
tion with parameters α = n = 2 and β = 1/λ = 1/5. The required probability is
given by

P
(

T … 3;α = 10,β = 1
5

)
= 1

1
5�(2)

∫ 3

0
x e−5xdx

Integrating by parts, the integral becomes

P(T … 3) = −1
5

xe−5x
∣∣∣3
0
−
∫ 3

0
−1

5
e−5x dx = 1 − 1.6e−15

Without further evaluation, it is clear that this event is virtually certain to occur.

Applied Exercises SECS. 1–2

47. This question has been intentionally omitted for this
edition.

48. This question has been intentionally omitted for this
edition.

49. This question has been intentionally omitted for this
edition.

50. Let X be the amount of premium gasoline (in 1,000
gallons) that a service station has in its tanks at the
beginning of a day, and Y the amount that the service sta-
tion sells during that day. If the joint density of X and Y
is given by

f (x, y) =

⎧⎪⎨
⎪⎩

1
200

for 0< y< x< 20

0 elsewhere

use the distribution function technique to find the prob-
ability density of the amount that the service station has
left in its tanks at the end of the day.

51. The percentages of copper and iron in a certain kind
of ore are, respectively, X1 and X2. If the joint density of
these two random variables is given by

f (x1, x2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3
11
(5x1 + x2) for x1> 0, x2> 0,

and x1 + 2x2< 2

0 elsewhere

use the distribution function technique to find the prob-
ability density of Y = X1 + X2. Also find E(Y), the
expected total percentage of copper and iron in the ore.
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SECS. 3–4
52. According to the Maxwell–Boltzmann law of theoret-
ical physics, the probability density of V, the velocity of a
gas molecule, is

f (v) =
⎧⎨
⎩

kv2e−βv2
for v> 0

0 elsewhere

where β depends on its mass and the absolute tem-
perature and k is an appropriate constant. Show that
the kinetic energy E = 1

2 mV2, where m the mass
of the molecule is a random variable having a gamma
distribution.

53. This question has been intentionally omitted for this
edition.

54. This question has been intentionally omitted for this
edition.

55. This question has been intentionally omitted for this
edition.

56. Use a computer program to generate 10 “pseudoran-
dom” numbers having the standard normal distribution.

57. Describe how the probability integral transformation
might have been used by the writers of the software that
you used to produce the result of Exercise 56.

SEC. 5
58. A lawyer has an unlisted number on which she
receives on the average 2.1 calls every half-hour and
a listed number on which she receives on the average
10.9 calls every half-hour. If it can be assumed that the
numbers of calls that she receives on these phones are
independent random variables having Poisson distribu-
tions, what are the probabilities that in half an hour she
will receive altogether
(a) 14 calls;
(b) at most 6 calls?

59. In a newspaper ad, a car dealer lists a 2001 Chrysler, a
2010 Ford, and a 2008 Buick. If the numbers of inquiries
he will get about these cars may be regarded as indepen-
dent random variables having Poisson distributions with
the parameters λ1 = 3.6, λ2 = 5.8, and λ3 = 4.6, what are
the probabilities that altogether he will receive
(a) fewer than 10 inquiries about these cars;
(b) anywhere from 15 to 20 inquiries about these cars;
(c) at least 18 inquiries about these cars?

60. With reference to Exercise 59, what is the probabil-
ity that the car dealer will receive six inquiries about the
2010 Ford and eight inquiries about the other two cars?

61. If the number of complaints a dry-cleaning establish-
ment receives per day is a random variable having the
Poisson distribution with λ = 3.3, what are the probabili-
ties that it will receive
(a) 2 complaints on any given day;
(b) 5 complaints altogether on any two given days;
(c) at least 12 complaints altogether on any three given
days?

62. The number of fish that a person catches per hour
at Woods Canyon Lake is a random variable having the
Poisson distribution with λ = 1.6. What are the probabil-
ities that a person fishing there will catch
(a) four fish in 2 hours;
(b) at least two fish in 3 hours;
(c) at most three fish in 4 hours?

63. If the number of minutes it takes a service station
attendant to balance a tire is a random variable having an
exponential distribution with the parameter θ = 5, what
are the probabilities that the attendant will take

(a) less than 8 minutes to balance two tires;
(b) at least 12 minutes to balance three tires?

64. If the number of minutes that a doctor spends with a
patient is a random variable having an exponential distri-
bution with the parameter θ = 9, what are the probabili-
ties that it will take the doctor at least 20 minutes to treat

(a) one patient; (b) two patients; (c) three patients?

65. If X is the number of 7’s obtained when rolling a pair
of dice three times, find the probability that Y = X2 will
exceed 2.

66. If X has the exponential distribution given by f (x) =
0.5 e−0.5x, x> 0, find the probability that x> 1.

SEC. 6
67. If, d, the diameter of a circle is selected at random
from the density function

f (d) = k
(

1 − d
5

)
, 0<d< 5,

(a) find the value of k so that f(d) is a probability density;
(b) find the density function of the areas of the circles so
selected.

68. Show that the underlying distribution function of
Example 18 is, indeed, a probability distribution, and use
a computer program to graph the density function.

69. If X = ln Y has a normal distribution with the mean μ
and the standard deviation σ , find the probability density
of Y which is said to have the log-normal distribution.
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70. The logarithm of the ratio of the output to the input
current of a transistor is called its current gain. If cur-
rent gain measurements made on a certain transistor are

normally distributed with μ = 1.8 and σ = 0.05, find the
probability that the current gain will exceed the required
minimum value of 6.0.
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Answers to Odd-Numbered Exercises

1 g(y) = 1
θ eye−(1/θ)ey for −q< y<q.

3 g(y) = 2y for 0< y< 1 and g(y) = 0 elsewhere.

5 (a) f (y) = 1
θ1 − θ2

· (e−y/θ1 − e−y/θ2 ) for y> 0 and

f (y) = 0 elsewhere; (b) f (y) = 1

θ2
· ye−y/θ for y> 0 and

f (y) = 0 elsewhere.

9 h(−2) = 1
5 , h(0) = 3

5 , and h(2) = 1
5 .

11 (a) g(0) = 8
27 , g( 1

2 ) = 12
27 , g( 2

3 ) = 6
27 , g( 3

4 ) = 1
27 ;

(b) g(0) = 12
27 , g(1) = 14

27 , g(16) = 1
27 .

13 g(0) = 1
3 , g(1) = 1

3 , g(2) = 1
3 .

17 g(y) = 1
6

y
−1
3 .

21 (a) g(y) = 1
8 y−3/4 for 0< y< 1 and g(y) = 1

4 for 1<
y< 3;

(b) h(z) = 1
16 · z−3/4 for 1< z< 81 and h(z) = 0 elsewhere.

23 (a) f (2, 0) = 1
36 , f (3, −1) = 2

36 , f (3, 1) = 2
36 , f (4, −2)

= 3
36 , f (4, 0) = 4

36 , f (4, 2) = 3
36 , f (5, −1) = 6

36 , f (5, 1) =
6

36 , and f (6, 0) = 9
36 ;

(b) g(2) = 1
36 , g(3) = 4

36 , g(4) = 10
36 , g(5) = 12

36 , and

g(6) = 9
36 .

25 (b) g(0, 0, 2) = 25
144 , g(1, −1, 1) = 5

18 , g(1, 1, 1) =
5

24 , g(2, −2, 0) = 1
9 , g(2, 0, 0) = 1

6 , and g(2, 2, 0) = 1
16 .

29 μ = 0 and σ 2 = 2.
31 g(z, u) = 12z(u−3 − u−2) over the region bounded by
z = 0, u = 1, and z = u2, and g(z, u) = 0 elsewhere;
h(z) = 6z + 6 − 12

√
z for 0< z< 1 and h(z) = 0 elsewhere.

33 The marginal distribution is the Cauchy distribution

g(y) = 1
π

· 2

4 + y2
for −q< y<q.

35 f (u, v) = 1
2 over the region bounded by v = 0, u = −v,

and 2v + u = 2, and f (u, v) = 0 elsewhere; g(u) = 1
4 (2 + u)

for −2<u … 0, g(u) = 1
4 (2 − u) for 0<u< 2 and g(u) = 0

elsewhere.
37 g(w, z) = 24w(z − w) over the region bounded by w =
0, z = 1, and z = w; g(w, z) = 0 elsewhere.
43 It is a gamma distribution with the parameters αn
and β.

51 g(y) = 9
11 · y2 for 0< y … 1, g(y) = 3(2 − y)(7y − 4)

11
for

1< y< 2, and g(y) = 0 elsewhere.
53 h(r) = 2r for 0< r< 1 and h(r) = 0 elsewhere.
55 g(v, w) = 5e−v for 0.2<w< 0.4 and v> 0; h(v) = e−v

for v> 0 and h(v) = 0 elsewhere.
59 (a) 0.1093; (b) 0.3817; (c) 0.1728.
61 (a) 0.2008; (b) 0.1420; (c) 0.2919.
63 (a) 0.475; (b) 0.570.
65 2

27 .

67 (a) 2
5 ; (b) g(A) = 2

5

(
1√
π

A−1/2 − 1

)
for 0<A< 25

4 π

and g(A) = 0 elsewhere.

69 g(y) = 1√
2πσ

· 1
y

· e
− 1

2

(
ln y−μ
σ

)2

for y> 0 and g(y) = 0

elsewhere.
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1 Introduction Statistics concerns itself mainly with conclusions and predictions resulting from
chance outcomes that occur in carefully planned experiments or investigations.
Drawing such conclusions usually involves taking sample observations from a given
population and using the results of the sample to make inferences about the popu-
lation itself, its mean, its variance, and so forth. To do this requires that we first find
the distributions of certain functions of the random variables whose values make up
the sample, called statistics. (An example of such a statistic is the sample mean.) The
properties of these distributions then allow us to make probability statements about
the resulting inferences drawn from the sample about the population. The theory to
be given in this chapter forms an important foundation for the theory of statistical
inference.

Inasmuch as statistical inference can be loosely defined as a process of drawing
conclusions from a sample about the population from which it is drawn, it is useful
to have the following definition.

DEFINITION 1. POPULATION. A set of numbers from which a sample is drawn is
referred to as a population. The distribution of the numbers constituting a popu-
lation is called the population distribution.

To illustrate, suppose a scientist must choose and then weigh 5 of 40 guinea pigs
as part of an experiment, a layman might say that the ones she selects constitute the
sample. This is how the term “sample” is used in everyday language. In statistics, it is
preferable to look upon the weights of the 5 guinea pigs as a sample from the popu-
lation, which consists of the weights of all 40 guinea pigs. In this way, the population
as well as the sample consists of numbers. Also, suppose that, to estimate the average
useful life of a certain kind of transistor, an engineer selects 10 of these transistors,
tests them over a period of time, and records for each one the time to failure. If these
times to failure are values of independent random variables having an exponential
distribution with the parameter θ , we say that they constitute a sample from this
exponential population.

As can well be imagined, not all samples lend themselves to valid generalizations
about the populations from which they came. In fact, most of the methods of infer-
ence discussed in this chapter are based on the assumption that we are dealing with

From Chapter 8 of John E. Freund’s Mathematical Statistics with Applications,
Eighth Edition. Irwin Miller, Marylees Miller. Copyright © 2014 by Pearson Education, Inc.
All rights reserved.
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random samples. In practice, we often deal with random samples from populations
that are finite, but large enough to be treated as if they were infinite. Thus, most
statistical theory and most of the methods we shall discuss apply to samples from
infinite populations, and we shall begin here with a definition of random samples
from infinite populations. Random samples from finite populations will be treated
later in Section 3.

DEFINITION 2. RANDOM SAMPLE. If X1, X2, . . . , Xn are independent and identically
distributed random variables, we say that they constitute a random sample from
the infinite population given by their common distribution.

If f (x1, x2, . . . , xn) is the value of the joint distribution of such a set of random vari-
ables at (x1, x2, . . . , xn), by virtue of independence we can write

f (x1, x2, . . . , xn) =
n∏

i=1

f (xi)

where f (xi) is the value of the population distribution at xi. Observe that Definition 2
and the subsequent discussion apply also to sampling with replacement from finite
populations; sampling without replacement from finite populations is discussed in
section 3.

Statistical inferences are usually based on statistics, that is, on random variables
that are functions of a set of random variables X1, X2, . . . , Xn, constituting a random
sample. Typical of what we mean by “statistic” are the sample mean and the sample
variance.

DEFINITION 3. SAMPLE MEAN AND SAMPLE VARIANCE. If X1, X2, . . . , Xn constitute a
random sample, then the sample mean is given by

X =

n∑
i=1

Xi

n
and the sample variance is given by

S2 =

n∑
i=1
(Xi − X)2

n − 1

As they are given here, these definitions apply only to random samples, but the sam-
ple mean and the sample variance can, similarly, be defined for any set of random
variables X1, X2, . . . , Xn.

It is common practice also to apply the terms “random sample,” “statistic,”
“sample mean,” and “sample variance” to the values of the random variables instead
of the random variables themselves. Intuitively, this makes more sense and it con-
forms with colloquial usage. Thus, we might calculate

x =

n∑
i=1

xi

n
and s2 =

n∑
i=1

(xi − x)2

n − 1
for observed sample data and refer to these statistics as the sample mean and the
sample variance. Here, the xi, x, and s2 are values of the corresponding random

†The note has been intentionally omitted for this edition.
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variables Xi, X, and S2. Indeed, the formulas for x and s2 are used even when we
deal with any kind of data, not necessarily sample data, in which case we refer to x
and s2 simply as the mean and the variance.

These, and other statistics that will be introduced in this chapter, are those
mainly used in statistical inference. Sample statistics such as the sample mean and
sample variance play an important role in estimating the parameters of the popula-
tion from which the corresponding random samples were drawn.

2 The Sampling Distribution of the Mean
Inasmuch as the values of sampling statistics can be expected to vary from sam-
ple to sample, it is necessary that we find the distribution of such statistics. We call
these distributions sampling distributions, and we make important use of them in
determining the properties of the inferences we draw from the sample about the
parameters of the population from which it is drawn.

First let us study some theory about the sampling distribution of the mean, mak-
ing only some very general assumptions about the nature of the populations sampled.

THEOREM 1. If X1, X2, . . . , Xn constitute a random sample from an infinite
population with the mean μ and the variance σ 2, then

E(X) = μ and var(X) = σ 2

n

Proof Letting Y = X and hence setting ai = 1
n

, we get

E(X) =
n∑

i=1

1
n

·μ = n
(

1
n

·μ
)

= μ

since E(Xi) = μ. Then, by the corollary of a theorem “If the random

variables X1, X2, . . . , Xn are independent and Y =
n∑

i=1
aiXi, then var(Y) =

n∑
i=1

a2
i · var(Xi)”, we conclude that

var(X) =
n∑

i=1

1
n2 · σ 2 = n

(
1
n2 · σ 2

)
= σ 2

n

It is customary to write E(X) as μX and var(X) as σ 2
X

and refer to σX as the
standard error of the mean. The formula for the standard error of the mean, σX =
σ√
n

, shows that the standard deviation of the distribution of X decreases when n,

the sample size, is increased. This means that when n becomes larger and we actually
have more information (the values of more random variables), we can expect values
of X to be closer to μ, the quantity that they are intended to estimate.

THEOREM 2. For any positive constant c, the probability that X will take on
a value between μ− c and μ+ c is at least

1 − σ 2

nc2

When n →q, this probability approaches 1.
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This result, called a law of large numbers, is primarily of theoretical interest. Of
much more practical value is the central limit theorem, one of the most important
theorems of statistics, which concerns the limiting distribution of the standardized
mean of n random variables when n→q. We shall prove this theorem here only
for the case where the n random variables are a random sample from a population
whose moment-generating function exists. More general conditions under which the
theorem holds are given in Exercises 7 and 9, and the most general conditions under
which it holds are referred to at the end of this chapter.

THEOREM 3. CENTRAL LIMIT THEOREM. If X1, X2, . . . , Xn constitute a ran-
dom sample from an infinite population with the mean μ, the variance
σ 2, and the moment-generating function MX(t), then the limiting distri-
bution of

Z = X −μ
σ/

√
n

as n→q is the standard normal distribution.

Proof First using the third part and then the second of the given theorem
“If a and b are constants, then 1. MX+a(t) = E[e(X+a)t] = eat · MX(t); 2.

MbX(t) = E(ebXt) = MX(bt); 3. M X+a
b
(t) = E[e

(
X+a

b

)
t
] = e

a
b t · MX

(
t
b

)
”,

we get

MZ(t) = M X−μ
σ/

√
n

(t) = e−√
n μt/σ · MX

(√
nt
σ

)

= e−√
n μt/σ · MnX

(
t

σ
√

n

)

Since nX = X1 + X2 + · · · + Xn,

MZ(t) = e−√
n μt/σ ·

⎡
⎣MX

(
t

σ
√

n

)⎤⎦
n

and hence that

ln MZ(t) = −
√

n μt
σ

+ n · ln MX

(
t

σ
√

n

)

Expanding MX

(
t

σ
√

n

)
as a power series in t, we obtain

ln MZ(t) = −
√

n μt
σ

+ n · ln

[
1 +μ′

1
t

σ
√

n
+μ′

2
t2

2σ 2n
+μ′

3
t3

6σ 3n
√

n
+ · · ·

]

where μ′
1,μ′

2, and μ′
3 are the moments about the origin of the population

distribution, that is, those of the original random variables Xi.
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If n is sufficiently large, we can use the expansion of ln(1 + x) as a power
series in x, getting

ln MZ(t) = −
√

n μt
σ

+ n

⎧⎨
⎩
[
μ′

1
t

σ
√

n
+μ′

2
t2

2σ 2n
+μ′

3
t3

6σ 3n
√

n
+ · · ·

]

− 1
2

[
μ′

1
t

σ
√

n
+μ′

2
t2

2σ 2n
+μ′

3
t3

6σ 3n
√

n
+ · · ·

]2

+ 1
3

[
μ′

1
t

σ
√

n
+μ′

2
t2

2σ 2n
+μ′

3
t3

6σ 3n
√

n
+ · · ·

]3

− · · ·
⎫⎬
⎭

Then, collecting powers of t, we obtain

ln MZ(t) =
(

−
√

n μ
σ

+
√

n μ′
1

σ

)
t +
(
μ′

2

2σ 2 − μ
′2
1

2σ 2

)
t2

+
⎛
⎝ μ′

3

6σ 3√n
− μ′

1 ·μ′
2

2σ 3√n
+ μ

′3
1

3σ 3√n

⎞
⎠ t3 + · · ·

and since μ′
1 = μ and μ′

2 − (μ′
1)

2 = σ 2, this reduces to

ln MZ(t) = 1
2

t2 +
⎛
⎝μ′

3

6
− μ′

1μ
′
2

2
+ μ

′3
1

6

⎞
⎠ t3

σ 3√n
+ · · ·

Finally, observing that the coefficient of t3 is a constant times
1√
n

and in

general, for r G 2, the coefficient of tr is a constant times
1√

nr−2
, we get

lim
n→q

ln MZ(t) = 1
2

t2

and hence
lim

n→q
MZ(t) = e

1
2 t2

since the limit of a logarithm equals the logarithm of the limit (provided
these limits exist). An illustration of this theorem is given in Exercise 13
and 14.

Sometimes, the central limit theorem is interpreted incorrectly as implying that
the distribution of X approaches a normal distribution when n →q. This is incorrect
because var(X)→ 0 when n →q; on the other hand, the central limit theorem does
justify approximating the distribution of X with a normal distribution having the

mean μ and the variance
σ 2

n
when n is large. In practice, this approximation is used

when n G 30 regardless of the actual shape of the population sampled. For smaller
values of n the approximation is questionable, but see Theorem 4.

237



Sampling Distributions

EXAMPLE 1

A soft-drink vending machine is set so that the amount of drink dispensed is a ran-
dom variable with a mean of 200 milliliters and a standard deviation of 15 milliliters.
What is the probability that the average (mean) amount dispensed in a random sam-
ple of size 36 is at least 204 milliliters?

Solution
According to Theorem 1, the distribution of X has the mean μX = 200 and the

standard deviation σX = 15√
36

= 2.5, and according to the central limit theorem,

this distribution is approximately normal. Since z = 204 − 200
2.5

= 1.6, it follows from

Table III of “Statistical Tables” that P(X G 204) = P(Z G 1.6) = 0.5000 − 0.4452 =
0.0548.

It is of interest to note that when the population we are sampling is normal, the
distribution of X is a normal distribution regardless of the size of n.

THEOREM 4. If X is the mean of a random sample of size n from a normal
population with the mean μ and the variance σ 2, its sampling distribution
is a normal distribution with the mean μ and the variance σ 2/n.

Proof According to Theorems “If a and b are constants, then 1. MX+a(t) =
E[e(X+a)t] = eat · MX(t); 2. MbX(t) = E(ebXt) = MX(bt); 3. M X+a

b
(t) =

E[e
(

X+a
b

)
t
] = e

a
b t · MX

(
t
b

)
. If X1, X2, . . ., and Xn are independent ran-

dom variables and Y = X1 + X2 + · · · + Xn, then MY(t) = ∏n
i=1 MXi(t)

where MXi(t) is the value of the moment-generating function of Xi at t”,
we can write

MX(t) =
[

MX

(
t
n

)]n

and since the moment-generating function of a normal distribution with
the mean μ and the variance σ 2 is given by

MX(t) = eμt+ 1
2σ

2t2

according to the theorem MX(t) = eμt+ 1
2σ

2t2 , we get

MX(t) =
[

eμ· t
n + 1

2 (
t
n )

2σ 2
]n

= eμt+ 1
2 t2( σ

2
n )

This moment-generating function is readily seen to be that of a normal
distribution with the mean μ and the variance σ 2/n.

3 The Sampling Distribution of the Mean: Finite Populations
If an experiment consists of selecting one or more values from a finite set of numbers
{c1, c2, . . . , cN}, this set is referred to as a finite population of size N. In the definition
that follows, it will be assumed that we are sampling without replacement from a
finite population of size N.
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DEFINITION 4. RANDOM SAMPLE—FINITE POPULATION. If X1 is the first value drawn
from a finite population of size N, X2 is the second value drawn, . . . , Xn is the nth
value drawn, and the joint probability distribution of these n random variables is
given by

f (x1, x2, . . . , xn) = 1
N(N − 1) · . . . · (N − n + 1)

for each ordered n-tuple of values of these random variables, then X1, X2, . . . , Xn
are said to constitute a random sample from the given finite population.

As in Definition 2, the random sample is a set of random variables, but here again
it is common practice also to apply the term “random sample” to the values of the
random variables, that is, to the actual numbers drawn.

From the joint probability distribution of Definition 4, it follows that the prob-
ability for each subset of n of the N elements of the finite population (regardless of
the order in which the values are drawn) is

n!
N(N − 1) · . . . · (N − n + 1)

= 1(
N
n

)

This is often given as an alternative definition or as a criterion for the selection of a

random sample of size n from a finite population of size N: Each of the
(

N
n

)
possible

samples must have the same probability.
It also follows from the joint probability distribution of Definition 4 that the

marginal distribution of Xr is given by

f (xr) = 1
N

for xr = c1, c2, . . . , cN

for r = 1, 2, . . . , n, and we refer to the mean and the variance of this discrete uniform
distribution as the mean and the variance of the finite population. Therefore,

DEFINITION 5. SAMPLE MEAN AND VARIANCE—FINITE POPULATION. The sample mean
and the sample variance of the finite population {c1, c2, . . . , cN} are

μ =
N∑

i=1

ci · 1
N

and σ 2 =
N∑

i=1

(ci−μ)2 · 1
N

Finally, it follows from the joint probability distribution of Definition 4 that
the joint marginal distribution of any two of the random variables X1, X2, . . . , Xn
is given by

g(xr, xs) = 1
N(N − 1)

for each ordered pair of elements of the finite population. Thus, we can prove the
following theorem.
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THEOREM 5. If Xr and Xs are the rth and sth random variables of a random
sample of size n drawn from the finite population {c1, c2, . . . , cN}, then

cov(Xr, Xs) = − σ 2

N − 1

Proof According to the definition given here “COVARIANCE. �1,1 is called
the covariance of X and Y, and it is denoted by �XY, cov(X, Y), or C(X, Y)”,

cov(Xr, Xs) =
N∑

i=1

N∑
j=1

iZj

1
N(N − 1)

(ci −μ)(cj −μ)

= 1
N(N − 1)

·
N∑

i=1

(ci −μ)

⎡
⎢⎢⎣

N∑
j=1
jZi

(cj −μ)

⎤
⎥⎥⎦

and since
N∑

j=1
jZi

(cj −μ) =
N∑

j=1

(cj −μ)− (ci −μ) = −(ci −μ), we get

cov(Xr, Xs) = − 1
N(N − 1)

·
N∑

i=1

(ci −μ)2

= − 1
N − 1

· σ 2

Making use of all these results, let us now prove the following theorem, which,
for random samples from finite populations, corresponds to Theorem 1.

THEOREM 6. If X is the mean of a random sample of size n taken without
replacement from a finite population of size N with the mean μ and the
variance σ 2, then

E(X) = μ and var(X) = σ 2

n
· N − n

N − 1

Proof Substituting ai = 1
N

, var(Xi) = σ 2, and cov(Xi, Xj) = − σ 2

N − 1
into

the formula E(Y) =∑n
i=1 aiE(Xi), we get

E(X) =
n∑

i=1

1
n

·μ = μ

and

var(X) =
n∑

i=1

1
n2 · σ 2 + 2 ·

∑∑
i<j

1
n2

(
− σ 2

N − 1

)

= σ 2

n
+ 2 · n(n − 1)

2
· 1

n2

(
− σ 2

N − 1

)

= σ 2

n
· N − n

N − 1
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It is of interest to note that the formulas we obtained for var(X) in Theorems 1

and 6 differ only by the finite population correction factor
N − n
N − 1

.† Indeed, when

N is large compared to n, the difference between the two formulas for var(X) is
usually negligible, and the formula σX = σ√

n
is often used as an approximation

when we are sampling from a large finite population. A general rule of thumb is to
use this approximation when the sample does not constitute more than 5 percent of
the population.

Exercises
1. This question has been intentionally omitted for this
edition.

2. This question has been intentionally omitted for this
edition.

3. With reference to Exercise 2, show that if the two sam-
ples come from normal populations, then X1 − X2 is a
random variable having a normal distribution with the

mean μ1 −μ2 and the variance
σ 2

1

n1
+ σ 2

2

n2
. (Hint: Proceed

as in the proof of Theorem 4.)

4. If X1, X2, . . . , Xn are independent random variables
having identical Bernoulli distributions with the param-
eter θ , then X is the proportion of successes in n trials,
which we denote by �̂. Verify that

(a) E(�̂) = θ ;

(b) var(�̂) = θ(1 − θ)
n

.

5. If the first n1 random variables of Exercise 2 have
Bernoulli distributions with the parameter θ1 and the
other n2 random variables have Bernoulli distributions
with the parameter θ2, show that, in the notation of Exer-
cise 4,

(a) E(�̂1 − �̂2) = θ1 − θ2;

(b) var(�̂1 − �̂2) = θ1(1 − θ1)

n1
+ θ2(1 − θ2)

n2
.

6. This question has been intentionally omitted for this
edition.

7. The following is a sufficient condition for the central
limit theorem: If the random variables X1, X2, . . . , Xn are
independent and uniformly bounded (that is, there exists
a positive constant k such that the probability is zero that
any one of the random variables Xi will take on a value
greater than k or less than −k), then if the variance of

Yn = X1 + X2 + · · · + Xn

becomes infinite when n →q, the distribution of the
standardized mean of the Xi approaches the standard

normal distribution. Show that this sufficient condition
holds for a sequence of independent random variables Xi
having the respective probability distributions

fi(xi) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

for xi = 1 − ( 1
2 )

i

1
2

for xi = ( 1
2 )

i − 1

8. Consider the sequence of independent random vari-
ables X1, X2, X3, . . . having the uniform densities

fi(xi) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2 − 1
i

for 0< xi< 2 − 1
i

0 elsewhere

Use the sufficient condition of Exercise 7 to show that the
central limit theorem holds.

9. The following is a sufficient condition, the Laplace–
Liapounoff condition, for the central limit theorem: If
X1, X2, X3, . . . is a sequence of independent random vari-
ables, each having an absolute third moment

ci = E(|Xi −μi|3)

and if

lim
n→q

[var(Yn)]−
3
2 ·

n∑
i=1

ci = 0

where Yn = X1 + X2 + · · · + Xn, then the distribution
of the standardized mean of the Xi approaches the stan-
dard normal distribution when n →q. Use this condi-
tion to show that the central limit theorem holds for the
sequence of random variables of Exercise 7.

10. Use the condition of Exercise 9 to show that the cen-
tral limit theorem holds for the sequence of random vari-
ables of Exercise 8.

†Since there are many problems in which we are interested in the standard deviation rather than the variance, the term “finite population correction

factor” often refers to

√
N − n
N − 1

instead of
N − n
N − 1

. This does not matter, of course, as long as the usage is clearly understood.
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11. Explain why, when we sample with replacement from
a finite population, the results of Theorem 1 apply rather
than those of Theorem 6.

12. This question has been intentionally omitted for this
edition.

13. Use MINITAB or some other statistical computer
program to generate 20 samples of size 10 each from the
uniform density function f (x) = 1, 0 ≤ x ≤ 1.
(a) Find the mean of each sample and construct a his-
togram of these sample means.
(b) Calculate the mean and the variance of the 20 sample
means.

14. Referring to Exercise 13, now change the sample size
to 30.
(a) Does this histogram more closely resemble that of a
normal distribution than that of Exercise 13? Why?
(b) Which resembles it more closely?
(c) Calculate the mean and the variance of the 20 sample
means.

15. If a random sample of size n is selected without
replacement from the finite population that consists of
the integers 1, 2, . . . , N, show that

(a) the mean of X is
N + 1

2
;

(b) the variance of X is
(N + 1)(N − n)

12n
;

(c) the mean and the variance of Y = n · X are

E(Y) = n(N + 1)
2

and var(Y) = n(N + 1)(N − n)
12

16. Find the mean and the variance of the finite popula-
tion that consists of the 10 numbers 15, 13, 18, 10, 6, 21, 7,
11, 20, and 9.

17. Show that the variance of the finite population
{c1, c2, . . . , cN} can be written as

σ 2 =

N∑
i=1

c2
i

N
−μ2

Also, use this formula to recalculate the variance of the
finite population of Exercise 16.

18. Show that, analogous to the formula of Exercise 17,
the formula for the sample variance can be written as

S2 =

n∑
i=1

X2
i

n − 1
− nX

2

n − 1

Also, use this formula to calculate the variance of the
following sample data on the number of service calls
received by a tow truck operator on eight consecutive
working days: 13, 14, 13, 11, 15, 14, 17, and 11.

19. Show that the formula for the sample variance can be
written as

S2 =
n

⎛
⎝ n∑

i=1

X2
i

⎞
⎠−

⎛
⎝ n∑

i=1

Xi

⎞
⎠

2

n(n − 1)

Also, use this formula to recalculate the variance of the
sample data of Exercise 18.

4 The Chi-Square Distribution
If X has the standard normal distribution, then X2 has the special gamma distri-
bution, which is referred to as the chi-square distribution, and this accounts for
the important role that the chi-square distribution plays in problems of sampling
from normal populations. Theorem 11 will show the importance of this distribution
in making inferences about sample variances.

The chi-square distribution is often denoted by “χ2 distribution,” where χ is the
lowercase Greek letter chi. We also use χ2 for values of random variables having
chi-square distributions, but we shall refrain from denoting the corresponding ran-
dom variables by X2, where X is the capital Greek letter chi. This avoids having to
reiterate in each case whether X is a random variable with values x or a random
variable with values χ .

If a random variable X has the chi-square distribution with ν degrees of freedom
if its probability density is given by

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

1
2ν/2�(ν/2)

x
ν−2

2 e−x/2 for x> 0

0 elsewhere
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The mean and the variance of the chi-square distribution with ν degrees of free-
dom are ν and 2ν, respectively, and its moment-generating function is given by

MX(t) = (1 − 2t)−ν/2

The chi-square distribution has several important mathematical properties, which
are given in Theorems 7 through 10.

THEOREM 7. If X has the standard normal distribution, then X2 has the
chi-square distribution with ν = 1 degree of freedom.

More generally, let us prove the following theorem.

THEOREM 8. If X1, X2, . . . , Xn are independent random variables having
standard normal distributions, then

Y =
n∑

i=1

X2
i

has the chi-square distribution with ν = n degrees of freedom.

Proof Using the moment-generating function given previously with ν = 1
and Theorem 7, we find that

MX2
i
(t) = (1 − 2t)−

1
2

and it follows the theorem “MY(t) =∏n
i=1 MXi(t)” that

MY(t) =
n∏

i=1

(1 − 2t)−
1
2 = (1 − 2t)−

n
2

This moment-generating function is readily identified as that of the chi-
square distribution with ν = n degrees of freedom.

Two further properties of the chi-square distribution are given in the two theo-
rems that follow; the reader will be asked to prove them in Exercises 20 and 21.

THEOREM 9. If X1, X2, . . . , Xn are independent random variables having
chi-square distributions with ν1, ν2, . . . , νn degrees of freedom, then

Y =
n∑

i=1

Xi

has the chi-square distribution with ν1 + ν2 + · · · + νn degrees of freedom.

THEOREM 10. If X1 and X2 are independent random variables, X1
has a chi-square distribution with ν1 degrees of freedom, and X1 + X2 has
a chi-square distribution with ν > ν1 degrees of freedom, then X2 has a
chi-square distribution with ν− ν1 degrees of freedom.
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The chi-square distribution has many important applications. Foremost are those
based, directly or indirectly, on the following theorem.

THEOREM 11. If X and S2 are the mean and the variance of a random sam-
ple of size n from a normal population with the mean μ and the standard
deviation σ , then

1. X and S2 are independent;

2. the random variable
(n − 1)S2

σ 2 has a chi-square distribution with n −
1 degrees of freedom.

Proof Since a detailed proof of part 1 would go beyond the scope of this
chapter we shall assume the independence of X and S2 in our proof of
part 2. In addition to the references to proofs of part 1 at the end of this
chapter, Exercise 31 outlines the major steps of a somewhat simpler proof
based on the idea of a conditional moment-generating function, and in
Exercise 30 the reader will be asked to prove the independence of X and
S2 for the special case where n = 2.

To prove part 2, we begin with the identity

n∑
i=1

(Xi −μ)2 =
n∑

i=1

(Xi − X)2 + n(X −μ)2

which the reader will be asked to verify in Exercise 22. Now, if we divide

each term by σ 2 and substitute (n − 1)S2 for
n∑

i=1
(Xi − X)2, it follows that

n∑
i=1

(
Xi −μ
σ

)2

= (n − 1)S2

σ 2 +
(

X −μ
σ/

√
n

)2

With regard to the three terms of this identity, we know from The-
orem 8 that the one on the left-hand side of the equation is a random
variable having a chi-square distribution with n degrees of freedom. Also,
according to Theorems 4 and 7, the second term on the right-hand side of
the equation is a random variable having a chi-square distribution with 1
degree of freedom. Now, since X and S2 are assumed to be independent,
it follows that the two terms on the right-hand side of the equation are

independent, and we conclude that
(n − 1)S2

σ 2 is a random variable having

a chi-square distribution with n − 1 degrees of freedom.

Since the chi-square distribution arises in many important applications, integrals
of its density have been extensively tabulated. Table V of “Statistical Tables” con-
tains values of χ2

α,ν for α = 0.995, 0.99, 0.975, 0.95, 0.05, 0.025, 0.01, 0.005, and
ν = 1, 2, . . . , 30, where χ2

α,ν is such that the area to its right under the chi-square
curve with ν degrees of freedom (see Figure 1) is equal to α. That is, χ2

α,ν is such
that if X is a random variable having a chi-square distribution with ν degrees of
freedom, then

P(X G χ2
α,ν) = α
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0

a

x2
a, v

x2

Figure 1. Chi-square distribution.

When ν is greater than 30, Table V of “Statistical Tables” cannot be used and prob-
abilities related to chi-square distributions are usually approximated with normal
distributions, as in Exercise 25 or 28.

EXAMPLE 2

Suppose that the thickness of a part used in a semiconductor is its critical dimension
and that the process of manufacturing these parts is considered to be under control if
the true variation among the thicknesses of the parts is given by a standard deviation
not greater than σ = 0.60 thousandth of an inch. To keep a check on the process,
random samples of size n = 20 are taken periodically, and it is regarded to be “out
of control” if the probability that S2 will take on a value greater than or equal to the
observed sample value is 0.01 or less (even though σ = 0.60). What can one conclude
about the process if the standard deviation of such a periodic random sample is
s = 0.84 thousandth of an inch?

Solution

The process will be declared “out of control” if
(n − 1)s2

σ 2 with n = 20 and σ = 0.60

exceeds χ2
0.01,19 = 36.191. Since

(n − 1)s2

σ 2 = 19(0.84)2

(0.60)2
= 37.24

exceeds 36.191, the process is declared out of control. Of course, it is assumed here
that the sample may be regarded as a random sample from a normal population.

5 The t Distribution
In Theorem 4 we showed that for random samples from a normal population with
the mean μ and the variance σ 2, the random variable X has a normal distribution

with the mean μ and the variance
σ 2

n
; in other words,

X −μ
σ/

√
n
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has the standard normal distribution. This is an important result, but the major dif-
ficulty in applying it is that in most realistic applications the population standard
deviation σ is unknown. This makes it necessary to replace σ with an estimate,
usually with the value of the sample standard deviation S. Thus, the theory that

follows leads to the exact distribution of
X −μ
S/

√
n

for random samples from normal

populations.
To derive this sampling distribution, let us first study the more general situation

treated in the following theorem.

THEOREM 12. If Y and Z are independent random variables, Y has a chi-
square distribution with ν degrees of freedom, and Z has the standard
normal distribution, then the distribution of

T = Z√
Y/ν

is given by

f (t) =
�

(
ν+ 1

2

)
√
πν�

(
ν

2

) ·
(

1 + t2

ν

)− ν+1
2

for −q< t<q

and it is called the t distribution with ν degrees of freedom.

Proof Since Y and Z are independent, their joint probability density is
given by

f (y, z) = 1√
2π

e− 1
2 z2 · 1

�

(
ν

2

)
2
ν
2

y
ν
2 −1e− y

2

for y> 0 and −q< z<q, and f (y, z) = 0 elsewhere. Then, to use the
change-of-variable technique, we solve t = z√

y/ν
for z, getting z = t

√
y/ν

and hence
�z
�t

= √y/ν. Thus, the joint density of Y and T is given by

g(y, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
√

2πν�
(
ν

2

)
2
ν
2

y
ν−1

2 e
− y

2

(
1+ t2

ν

)
for y> 0 and −q< t<q

0 elsewhere

and, integrating out y with the aid of the substitution w = y
2

(
1 + t2

ν

)
, we

finally get

f (t) =
�

(
ν+ 1

2

)
√
πν�

(
ν

2

) ·
(

1 + t2

ν

)− ν+1
2

for −q< t<q
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The t distribution was introduced originally by W. S. Gosset, who published his
scientific writings under the pen name “Student,” since the company for which he
worked, a brewery, did not permit publication by employees. Thus, the t distribution
is also known as the Student t distribution, or Student’s t distribution. As shown
in Figure 2, graphs of t distributions having different numbers of degrees of free-
dom resemble that of the standard normal distribution, but have larger variances.
In fact, for large values of υ, the t distribution approaches the standard normal
distribution.

In view of its importance, the t distribution has been tabulated extensively.
Table IV of “Statistical Tables”, for example, contains values of tα,ν for α = 0.10, 0.05,
0.025, 0.01, 0.005 and ν = 1, 2, . . . , 29, where tα,ν is such that the area to its right under
the curve of the t distribution with ν degrees of freedom (see Figure 3) is equal to
α. That is, tα,ν is such that if T is a random variable having a t distribution with ν
degrees of freedom, then

P(T G tα,ν) = α

The table does not contain values of tα,ν for α > 0.50, since the density is symmetrical
about t = 0 and hence t1−α,ν = −tα,ν . When ν is 30 or more, probabilities related to
the t distribution are usually approximated with the use of normal distributions (see
Exercise 35).

Among the many applications of the t distribution, its major application (for
which it was originally developed) is based on the following theorem.

0−1−2 1 2

n (0; 1)

f (t; 10)

f (t; 2)

Figure 2. Comparison of t distributions and standard normal distribution.

a

0
t

ta, v

Figure 3. t distribution.
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THEOREM 13. If X and S2 are the mean and the variance of a random sam-
ple of size n from a normal population with the mean μ and the variance
σ 2, then

T = X −μ
S/

√
n

has the t distribution with n − 1 degrees of freedom.

Proof By Theorems 11 and 4, the random variables

Y = (n − 1)S2

σ 2 and Z = X −μ
σ/

√
n

have, respectively, a chi-square distribution with n − 1 degrees of freedom
and the standard normal distribution. Since they are also independent
by part 1 of Theorem 11, substitution into the formula for T of Theo-
rem 12 yields

T =
X −μ
σ/

√
n√

S2/σ 2
= X −μ

S/
√

n

and this completes the proof.

EXAMPLE 3

In 16 one-hour test runs, the gasoline consumption of an engine averaged 16.4 gallons
with a standard deviation of 2.1 gallons. Test the claim that the average gasoline
consumption of this engine is 12.0 gallons per hour.

Solution
Substituting n = 16,μ = 12.0, x = 16.4, and s = 2.1 into the formula for t in
Theorem 13, we get

t = x −μ
s/

√
n

= 16.4 − 12.0

2.1/
√

16
= 8.38

Since Table IV of “Statistical Tables” shows that for ν = 15 the probability of getting
a value of T greater than 2.947 is 0.005, the probability of getting a value greater
than 8 must be negligible. Thus, it would seem reasonable to conclude that the true
average hourly gasoline consumption of the engine exceeds 12.0 gallons.

6 The F Distribution
Another distribution that plays an important role in connection with sampling from
normal populations is the F distribution, named after Sir Ronald A. Fisher, one
of the most prominent statisticians of the last century. Originally, it was studied as
the sampling distribution of the ratio of two independent random variables with
chi-square distributions, each divided by its respective degrees of freedom, and this
is how we shall present it here.

Fisher’s F distribution is used to draw statistical inferences about the ratio of
two sample variances. As such, it plays a key role in the analysis of variance, used in
conjunction with experimental designs.
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THEOREM 14. If U and V are independent random variables having
chi-square distributions with ν1 and ν2 degrees of freedom, then

F = U/ν1

V/ν2

is a random variable having an F distribution, that is, a random variable
whose probability density is given by

g(f ) =
�

(
ν1 + ν2

2

)

�

(
ν1

2

)
�

(
ν2

2

) (ν1

ν2

) ν1
2 · f

ν1
2 −1

(
1 + ν1

ν2
f
)− 1

2 (ν1+ν2)

for f > 0 and g(f ) = 0 elsewhere.

Proof By virtue of independence, the joint density of U and V is given by

f (u, v) = 1

2ν1/2�

(
ν1

2

) · u
ν1
2 −1e− u

2 · 1

2ν2/2�

(
ν2

2

) · v
ν2
2 −1e− v

2

= 1

2(ν1+ν2)/2�

(
ν1

2

)
�

(
ν2

2

) · u
ν1
2 −1v

ν2
2 −1e−μ+v

2

for u> 0 and v> 0, and f (u, v) = 0 elsewhere. Then, to use the change-of-
variable technique, we solve

f = u/ν1

v/ν2

for u, getting u = ν1

ν2
· vf and hence

�u
�f

= ν1

ν2
· v. Thus, the joint density

of F and V is given by

g(f , v) =

(
ν1

ν2

)ν1/2

2(ν1+ν2)/2�

(
ν1

2

)
�

(
ν2

2

) · f
ν1
2 −1v

ν1+ν2
2 −1e

− v
2

(
ν1f
ν2

+1
)

for f > 0 and v> 0, and g(f , v) = 0 elsewhere. Now, integrating out v by

making the substitution w = v
2

(
ν1f
ν2

+ 1
)

, we finally get

g(f ) =
�

(
ν1 + ν2

2

)

�

(
ν1

2

)
�

(
ν2

2

) (ν1

ν2

) ν1
2 · f

ν1
2 −1

(
1 + ν1

ν2
f
)− 1

2 (ν1+ν2)

for f > 0, and g(f ) = 0 elsewhere.
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a

fa, v1, v2
0

f

Figure 4. F distribution.

In view of its importance, the F distribution has been tabulated extensively.
Table VI of “Statistical Tables”, for example, contains values of fα,ν1,ν2 for α = 0.05
and 0.01 and for various values of ν1 and ν2, where fα,ν1,ν2 is such that the area to its
right under the curve of the F distribution with ν1 and ν2 degrees of freedom (see
Figure 4) is equal to α. That is, fα,ν1,ν2 is such that

P(F G fα,ν1,ν2) = α

Applications of Theorem 14 arise in problems in which we are interested in com-
paring the variances σ 2

1 and σ 2
2 of two normal populations; for instance, in problems

in which we want to estimate the ratio
σ 2

1

σ 2
2

or perhaps to test whether σ 2
1 = σ 2

2 . We

base such inferences on independent random samples of sizes n1 and n2 from the
two populations and Theorem 11, according to which

χ2
1 = (n1 − 1)s2

1

σ 2
1

and χ2
2 = (n2 − 1)s2

2

σ 2
2

are values of random variables having chi-square distributions with n1 − 1 and n2 − 1
degrees of freedom. By “independent random samples,” we mean that the n1 + n2
random variables constituting the two random samples are all independent, so that
the two chi-square random variables are independent and the substitution of their
values for U and V in Theorem 14 yields the following result.

THEOREM 15. If S2
1 and S2

2 are the variances of independent random samples
of sizes n1 and n2 from normal populations with the variances σ 2

1 and
σ 2

2 , then

F = S2
1/σ

2
1

S2
2/σ

2
2

= σ 2
2 S2

1

σ 2
1 S2

2

is a random variable having an F distribution with n1 − 1 and n2 − 1 degrees
of freedom.

The F distribution is also known as the variance-ratio distribution.
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Exercises
20. Prove Theorem 9.

21. Prove Theorem 10.

22. Verify the identity

n∑
i=1

(Xi −μ)2 =
n∑

i=1

(Xi − X)2 + n(X −μ)2

which we used in the proof of Theorem 11.

23. Use Theorem 11 to show that, for random samples of
size n from a normal population with the variance σ 2,
the sampling distribution of S2 has the mean σ 2 and the

variance
2σ 4

n − 1
. (A general formula for the variance of

S2 for random samples from any population with finite
second and fourth moments may be found in the book
by H. Cramér listed among the references at the end of
this chapter.)

24. Show that if X1, X2, . . . , Xn are independent ran-
dom variables having the chi-square distribution with
ν = 1 and Yn = X1 + X2 + · · · + Xn, then the limiting
distribution of

Z =
Yn

n
− 1√

2/n

as n→q is the standard normal distribution.

25. Based on the result of Exercise 24, show that if X is
a random variable having a chi-square distribution with
ν degrees of freedom and ν is large, the distribution of
X − ν√

2ν
can be approximated with the standard normal dis-

tribution.

26. Use the method of Exercise 25 to find the approxi-
mate value of the probability that a random variable hav-
ing a chi-square distribution with ν = 50 will take on a
value greater than 68.0.

27. If the range of X is the set of all positive real num-
bers, show that for k> 0 the probability that

√
2X −√

2ν
will take on a value less than k equals the probability that
X − ν√

2ν
will take on a value less than k + k2

2
√

2ν
.

28. Use the results of Exercises 25 and 27 to show that
if X has a chi-square distribution with ν degrees of free-
dom, then for large ν the distribution of

√
2X −√

2ν can
be approximated with the standard normal distribution.
Also, use this method of approximation to rework Exer-
cise 26.

29. Find the percentage errors of the approximations of
Exercises 26 and 28, given that the actual value of the
probability (rounded to five decimals) is 0.04596.

30. (Proof of the independence of X and S2 for n = 2) If
X1 and X2 are independent random variables having the
standard normal distribution, show that
(a) the joint density of X1 and X is given by

f (x1, x) = 1
π

· e−x−2
e−(x1−x)2

for −q< x1<q and −q< x<q;
(b) the joint density of U = |X1 − X| and X is given by

g(u, x) = 2
π

· e−(x2+u2)

for u> 0 and −q< x<q, since f (x1, x) is symmetrical
about x for fixed x;
(c) S2 = 2(X1 − X)2 = 2U2;
(d) the joint density of X and S2 is given by

h(s2, x) = 1√
π

e−x2 · 1√
2π
(s2)−

1
2 e− 1

2 s2

for s2> 0 and −q< x<q, demonstrating that X and S2

are independent.

31. (Proof of the independence of X and S2) If
X1, X2, . . . , Xn constitute a random sample from a normal
population with the mean μ and the variance σ 2,
(a) find the conditional density of X1 given X2 = x2, X3 =
x3, . . . , Xn = xn, and then set X1 = nX − X2 − · · · − Xn
and use the transformation technique to find the condi-
tional density of X given X2 = x2, X3 = x3, . . . , Xn = xn;
(b) find the joint density of X, X2, X3, . . . , Xn by multiply-
ing the conditional density of X obtained in part (a) by
the joint density of X2, X3, . . . , Xn, and show that

g(x2, x3, . . . , xn|x) = √
n

(
1

σ
√

2π

)n−1

e− (n−1)s2

2σ2

for −q< xi<q, i = 2, 3, . . . , n;
(c) show that the conditional moment-generating func-

tion of
(n − 1)S2

σ 2 given X = x is

E

⎡
⎣e

(n−1)S2

σ2 ·t
∣∣∣∣∣x
⎤
⎦ = (1 − 2t)−

n−1
2 for t<

1
2

Since this result is free of x, it follows that X and S2 are

independent; it also shows that
(n − 1)S2

σ 2 has a chi-square

distribution with n − 1 degrees of freedom.

This proof, due to J. Shuster, is listed among the refer-
ences at the end of this chapter.

32. This question has been intentionally omitted for this
edition.
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33. Show that for ν > 2 the variance of the t distribution

with ν degrees of freedom is
ν

ν− 2
. (Hint: Make the sub-

stitution 1 + t2

ν
= 1

u
.)

34. Show that for the t distribution with ν > 4 degrees
of freedom

(a) μ4 = 3ν2

(ν− 2)(ν− 4)
;

(b) α4 = 3 + 6
ν− 4

.

(Hint: Make the substitution 1 + t2

ν
= 1

u
.)

35. This question has been intentionally omitted for this
edition.

36. By what name did we refer to the t distribution with
ν = 1 degree of freedom?

37. This question has been intentionally omitted for this
edition.

38. Show that for ν2> 2 the mean of the F distribution
is

ν2

ν2 − 2
, making use of the definition of F in Theo-

rem 14 and the fact that for a random variable V having
the chi-square distribution with ν2 degrees of freedom,

E
(

1
V

)
= 1
ν2 − 2

.

39. Verify that if X has an F distribution with ν1 and
ν2 degrees of freedom and ν2 →q, the distribution of
Y = ν1X approaches the chi-square distribution with ν1
degrees of freedom.

40. Verify that if T has a t distribution with ν degrees of
freedom, then X = T2 has an F distribution with ν1 = 1
and ν2 = ν degrees of freedom.

41. If X has an F distribution with ν1 and ν2 degrees of

freedom, show that Y = 1
X

has an F distribution with ν2

and ν1 degrees of freedom.

42. Use the result of Exercise 41 to show that

f1−α,ν1,ν2 = 1
fα,ν2,ν1

43. Verify that if Y has a beta distribution with α = ν1

2
and β = ν2

2
, then

X = ν2Y
ν1(1 − Y)

has an F distribution with ν1 and ν2 degrees of freedom.

44. Show that the F distribution with 4 and 4 degrees of
freedom is given by

g(f ) =
{

6f (1 + f )−4 for f > 0
0 elsewhere

and use this density to find the probability that for inde-
pendent random samples of size n = 5 from normal pop-
ulations with the same variance, S2

1/S
2
2 will take on a value

less than 1
2 or greater than 2.

7 Order Statistics
The sampling distributions presented so far in this chapter depend on the assumption
that the population from which the sample was taken has the normal distribution.
This assumption often is satisfied, at least approximately for large samples, as illus-
trated by the central limit theorem. However, small samples sometimes must be used
in practice, for example in statistical quality control or where taking and measuring
a sample is very expensive. In an effort to deal with the problem of small samples
in cases where it may be unreasonable to assume a normal population, statisti-
cians have developed nonparametric statistics, whose sampling distributions do not
depend upon any assumptions about the population from which the sample is taken.
Statistical inferences based upon such statistics are called nonparametric inference.
We will identify a class of nonparametric statistics called order statistics and discuss
their statistical properties.

Consider a random sample of size n from an infinite population with a continu-
ous density, and suppose that we arrange the values of X1, X2, . . ., and Xn according
to size. If we look upon the smallest of the x’s as a value of the random variable Y1,
the next largest as a value of the random variable Y2, the next largest after that as a
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value of the random variable Y3, . . ., and the largest as a value of the random vari-
able Yn, we refer to these Y’s as order statistics. In particular, Y1 is the first order
statistic, Y2 is the second order statistic, Y3 is the third order statistic, and so on. (We
are limiting this discussion to infinite populations with continuous densities so that
there is zero probability that any two of the x’s will be alike.)

To be more explicit, consider the case where n = 2 and the relationship between
the values of the X’s and the Y’s is

y1 = x1 and y2 = x2 when x1< x2

y1 = x2 and y2 = x1 when x2< x1

Similarly, for n = 3 the relationship between the values of the respective random
variables is

y1 = x1, y2 = x2, and y3 = x3, when x1< x2< x3

y1 = x1, y2 = x3, and y3 = x2, when x1< x3< x2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y1 = x3, y2 = x2, and y3 = x1, when x3< x2< x1

Let us now derive a formula for the probability density of the rth order statistic
for r = 1, 2, . . . , n.

THEOREM 16. For random samples of size n from an infinite population that
has the value f (x) at x, the probability density of the r th order statistic Yr
is given by

gr(yr) = n!
(r − 1)!(n − r)!

[∫ yr

−q
f (x) dx

]r−1

f (yr)

[∫ q

yr

f (x) dx

]n−r

for −q< yr <q.

Proof Suppose that the real axis is divided into three intervals, one from
−q to yr, a second from yr to yr + h (where h is a positive constant), and
the third from yr + h to q. Since the population we are sampling has the
value f (x) at x, the probability that r − 1 of the sample values fall into the
first interval, 1 falls into the second interval, and n − r fall into the third
interval is

n!
(r − 1)!1!(n − r)!

[∫ yr

−q
f (x) dx

]r−1 [∫ yr+h

yr

f (x) dx

][∫ q

yr+h
f (x) dx

]n−r

according to the formula for the multinomial distribution. Using the mean-
value theorem for integrals from calculus, we have

∫ yr+h

yr

f (x) dx = f (ξ) · h where yr F ξ F yr + h
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and if we let h → 0, we finally get

gr(yr) = n!
(r − 1)!(n − r)!

[∫ yr

−q
f (x) dx

]r−1

f (yr)

[∫ q

yr

f (x) dx

]n−r

for −q< yr <q for the probability density of the rth order statistic.

In particular, the sampling distribution of Y1, the smallest value in a random
sample of size n, is given by

g1(y1) = n · f (y1)

[∫ q

y1

f (x) dx

]n−1

for −q< y1<q

while the sampling distribution of Yn, the largest value in a random sample of size
n, is given by

gn(yn) = n · f (yn)

[∫ yn

−q
f (x) dx

]n−1

for −q< yn<q

Also, in a random sample of size n = 2m + 1 the sample median X̃ is Ym+1, whose
sampling distribution is given by

h(x̃) = (2m + 1)!
m!m!

[∫ x̃

−q
f (x) dx

]m

f (x̃)
[∫ q

x̃
f (x) dx

]m

for −q< x̃<q

[For random samples of size n = 2m, the median is defined as 1
2 (Ym + Ym+1).]

In some instances it is possible to perform the integrations required to obtain
the densities of the various order statistics; for other populations there may be no
choice but to approximate these integrals by using numerical methods.

EXAMPLE 4

Show that for random samples of size n from an exponential population with the
parameter θ , the sampling distributions of Y1 and Yn are given by

g1(y1) =

⎧⎪⎨
⎪⎩

n
θ

· e−ny1/θ for y1> 0

0 elsewhere

and

gn(yn) =

⎧⎪⎨
⎪⎩

n
θ

· e−yn/θ [1 − e−yn/θ ]n−1 for yn> 0

0 elsewhere

and that, for random samples of size n = 2m + 1 from this kind of population, the
sampling distribution of the median is given by

h(x̃) =

⎧⎪⎪⎨
⎪⎪⎩
(2m + 1)!

m!m!θ
· e−x̃(m+1)/θ [1 − e−x̃/θ ]m for x̃> 0

0 elsewhere
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Solution
The integrations required to obtain these results are straightforward, and they will
be left to the reader in Exercise 45.

The following is an interesting result about the sampling distribution of the
median, which holds when the population density is continuous and nonzero at the
population median μ̃, which is such that

∫ μ̃
−q f (x) dx = 1

2 .

THEOREM 17. For large n, the sampling distribution of the median for ran-
dom samples of size 2n + 1 is approximately normal with the mean μ̃ and

the variance
1

8[f (μ̃)]2n
.

Note that for random samples of size 2n + 1 from a normal population we have
μ = μ̃, so

f (μ̃) = f (μ) = 1

σ
√

2π

and the variance of the median is approximately
πσ 2

4n
. If we compare this with the

variance of the mean, which for random samples of size 2n + 1 from an infinite pop-

ulation is
σ 2

2n + 1
, we find that for large samples from normal populations the mean

is more reliable than the median; that is, the mean is subject to smaller chance fluc-
tuations than the median.

Exercises
45. Verify the results of Example 4, that is, the sampling
distributions of Y1, Yn, and X̃ shown there for random
samples from an exponential population.

46. Find the sampling distributions of Y1 and Yn for ran-
dom samples of size n from a continuous uniform popu-
lation with α = 0 and β = 1.

47. Find the sampling distribution of the median for ran-
dom samples of size 2m + 1 from the population of Exer-
cise 46.

48. Find the mean and the variance of the sampling dis-
tribution of Y1 for random samples of size n from the
population of Exercise 46.

49. Find the sampling distributions of Y1 and Yn for ran-
dom samples of size n from a population having the beta
distribution with α = 3 and β = 2.

50. Find the sampling distribution of the median for ran-
dom samples of size 2m + 1 from the population of Exer-
cise 49.

51. Find the sampling distribution of Y1 for random sam-
ples of size n = 2 taken
(a) without replacement from the finite population that
consists of the first five positive integers;

(b) with replacement from the same population.
(Hint: Enumerate all possibilities.)

52. Duplicate the method used in the proof of Theo-
rem 16 to show that the joint density of Y1 and Yn is
given by

g(y1, yn) = n(n − 1)f (y1)f (yn)

[∫ yn

y1

f (x) dx

]n−2

for −q< y1< yn<q

and g(y1, yn) = 0 elsewhere.

(a) Use this result to find the joint density of Y1 and
Yn for random samples of size n from an exponen-
tial population.
(b) Use this result to find the joint density of Y1 and Yn
for the population of Exercise 46.

53. With reference to part (b) of Exercise 52, find the
covariance of Y1 and Yn.

54. Use the formula for the joint density of Y1 and Yn
shown in Exercise 52 and the transformation technique of
several variables to find an expression for the joint den-
sity of Y1 and the sample range R = Yn − Y1.
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55. Use the result of Exercise 54 and that of part (a) of
Exercise 52 to find the sampling distribution of R for ran-
dom samples of size n from an exponential population.

56. Use the result of Exercise 54 to find the sampling dis-
tribution of R for random samples of size n from the
continuous uniform population of Exercise 46.

57. Use the result of Exercise 56 to find the mean and
the variance of the sampling distribution of R for random
samples of size n from the continuous uniform population
of Exercise 46.

58. There are many problems, particularly in industrial
applications, in which we are interested in the proportion
of a population that lies between certain limits. Such lim-
its are called tolerance limits. The following steps lead to
the sampling distribution of the statistic P, which is the
proportion of a population (having a continuous density)
that lies between the smallest and the largest values of a
random sample of size n.
(a) Use the formula for the joint density of Y1 and Yn
shown in Exercise 52 and the transformation technique
of several variables to show that the joint density of Y1
and P, whose values are given by

p =
∫ yn

y1

f (x) dx

is
h(y1, p) = n(n − 1)f (y1)p

n−2

(b) Use the result of part (a) and the transformation tech-
nique of several variables to show that the joint density of
P and W, whose values are given by

w =
∫ y1

−q
f (x) dx

is
ϕ(w, p) = n(n − 1)pn−2

for w> 0, p> 0, w + p< 1, and ϕ(w, p) = 0 elsewhere.
(c) Use the result of part (b) to show that the marginal
density of P is given by

g(p) =
{

n(n − 1)pn−2(1 − p) for 0<p< 1
0 elsewhere

This is the desired density of the proportion of the popu-
lation that lies between the smallest and the largest values
of a random sample of size n, and it is of interest to note
that it does not depend on the form of the population
distribution.

59. Use the result of Exercise 58 to show that, for the ran-
dom variable P defined there,

E(P) = n − 1
n + 1

and var(P) = 2(n − 1)
(n + 1)2(n + 2)

What can we conclude from this about the distribution of
P when n is large?

8 The Theory in Practice

More on Random Samples
While it is practically impossible to take a purely random sample, there are several
methods that can be employed to assure that a sample is close enough to random-
ness to be useful in representing the distribution from which it came. In selecting
a sample from a production line, systematic sampling can be used to select units at
evenly spaced periods of time or having evenly spaced run numbers. In selecting
a random sample from products in a warehouse, a two-stage sampling process can
be used, numbering the containers and using a random device, such as a set of ran-
dom numbers generated by a computer, to choose the containers. Then, a second
set of random numbers can be used to select the unit or units in each container to
be included in the sample. There are many other methods, employing mechanical
devices or computer-generated random numbers, that can be used to aid in selecting
a random sample.

Selection of a sample that reasonably can be regarded as random sometimes
requires ingenuity, but it always requires care. Care should be taken to assure that
only the specified distribution is represented. Thus, if a sample of product is meant
to represent an entire production line, it should not be taken from the first shift
only. Care should be taken to assure independence of the observations. Thus, the
production-line sample should not be taken from a “chunk” of products produced at
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about the same time; they represent the same set of conditions and settings, and the
resulting observations are closely related to each other. Human judgment in select-
ing samples usually includes personal bias, often unconscious, and such judgments
should be avoided. Whenever possible, the use of mechanical devices or random
numbers is preferable to methods involving personal choice.

The Assumption of Normality
It is not unusual to expect that errors are made in taking and recording observa-
tions. This phenomenon was described by early nineteenth-century astronomers who
noted that different observers obtained somewhat different results when determin-
ing the location of a star.

Observational error can arise from one or both of two sources, random error,
or statistical error, and bias. Random errors occur as the result of many imper-
fections of measurement; among these imperfections are imprecise markings on
measurement scales, parallax (not viewing readings straight on) errors in setting up
apparatus, slight differences in materials, expansion and contraction, minor changes
in ambient conditions, and so forth. Bias occurs when there is a relatively consistent
error, such as not obtaining a representative sample in a survey, using a measuring
instrument that is not properly calibrated, and recording errors.

Errors involving bias can be corrected by discerning the source of the error and
making appropriate “fixes” to eliminate the bias. Random error, however, is some-
thing we must live with, as no human endeavor can be made perfect in applications.
Let us assume, however, that the many individual sources of random error, known
or unknown, are additive. In fact this is usually the case, at least to a good approxi-
mation. Then we can write

X = μ+ E1 + E2 + · · · + En

where the random variable X is an observed value, μ is the “true” value of the obser-
vation, and the Ei are the n random errors that affect the value of the observation.
We shall assume that

E(X) = μ+ E(E1)+ E(E2)+ · · · + E(En) = μ

In other words, we are assuming that the random errors have a mean of zero, at least
in the long run. We also can write

var(X) = (μ+ E1 + E2 + · · · + En) = nσ 2

In other words, the variance of the sum of the random errors is nσ 2.
It follows that X = μ+ E, where E is the sample mean of the errors E1, E2, . . . ,

En, and σ 2
X = σ 2/n. The central limit theorem given by Theorem 3 allows us to

conclude that

Z = X −μ
σ
√

n

is a random variable whose distribution as n →q is the standard normal distribution.
It is not difficult to see from this argument that most repeated measurements

of the same phenomenon are, at least approximately, normally distributed. It is this
conclusion that underscores the importance of the chi-square, t, and F distributions
in applications that are based on the assumption of data from normally distributed
populations. It also demonstrates why the normal distribution is of major importance
in statistics.
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Applied Exercises SECS. 1–3

In the following exercises it is assumed that all samples are
drawn without replacement unless otherwise specified.

60. How many different samples of size n = 3 can be
drawn from a finite population of size

(a) N = 12; (b) N = 20; (c) N = 50?

61. What is the probability of each possible sample if
(a) a random sample of size n = 4 is to be drawn from a
finite population of size N = 12;
(b) a random sample of size n = 5 is to be drawn from a
finite population of size N = 22?

62. If a random sample of size n = 3 is drawn from a finite
population of size N = 50, what is the probability that a
particular element of the population will be included in
the sample?

63. For random samples from an infinite population, what
happens to the standard error of the mean if the sample
size is
(a) increased from 30 to 120;
(b) increased from 80 to 180;
(c) decreased from 450 to 50;
(d) decreased from 250 to 40?

64. Find the value of the finite population correction fac-

tor
N − n
N − 1

for

(a) n = 5 and N = 200;
(b) n = 50 and N = 300;
(c) n = 200 and N = 800.

65. A random sample of size n = 100 is taken from an
infinite population with the mean μ = 75 and the vari-
ance σ 2 = 256.
(a) Based on Chebyshev’s theorem, with what probabil-
ity can we assert that the value we obtain for X will fall
between 67 and 83?
(b) Based on the central limit theorem, with what proba-
bility can we assert that the value we obtain for X will fall
between 67 and 83?

66. A random sample of size n = 81 is taken from an infi-
nite population with the mean μ = 128 and the standard
deviation σ = 6.3. With what probability can we assert
that the value we obtain for X will not fall between 126.6
and 129.4 if we use
(a) Chebyshev’s theorem;
(b) the central limit theorem?

67. Rework part (b) of Exercise 66, assuming that the
population is not infinite but finite and of size N = 400.

68. A random sample of size n = 225 is to be taken from
an exponential population with θ = 4. Based on the cen-
tral limit theorem, what is the probability that the mean
of the sample will exceed 4.5?

69. A random sample of size n = 200 is to be taken from
a uniform population with α = 24 and β = 48. Based on
the central limit theorem, what is the probability that the
mean of the sample will be less than 35?

70. A random sample of size 64 is taken from a normal
population with μ = 51.4 and σ = 6.8. What is the prob-
ability that the mean of the sample will
(a) exceed 52.9;
(b) fall between 50.5 and 52.3;
(c) be less than 50.6?

71. A random sample of size 100 is taken from a normal
population with σ = 25. What is the probability that the
mean of the sample will differ from the mean of the pop-
ulation by 3 or more either way?

72. Independent random samples of sizes 400 are taken
from each of two populations having equal means and the
standard deviations σ1 = 20 and σ2 = 30. Using Cheby-
shev’s theorem and the result of Exercise 2, what can we
assert with a probability of at least 0.99 about the value
we will get for X1 − X2? (By “independent” we mean
that the samples satisfy the conditions of Exercise 2.)

73. Assume that the two populations of Exercise 72 are
normal and use the result of Exercise 3 to find k such that

P(−k<X1 − X2<k) = 0.99

74. Independent random samples of sizes n1 = 30 and
n2 = 50 are taken from two normal populations hav-
ing the means μ1 = 78 and μ2 = 75 and the variances
σ 2

1 = 150 and σ 2
2 = 200. Use the results of Exercise 3 to

find the probability that the mean of the first sample will
exceed that of the second sample by at least 4.8.

75. The actual proportion of families in a certain city who
own, rather than rent, their home is 0.70. If 84 families in
this city are interviewed at random and their responses to
the question of whether they own their home are looked
upon as values of independent random variables hav-
ing identical Bernoulli distributions with the parameter
θ = 0.70, with what probability can we assert that the
value we obtain for the sample proportion �̂ will fall
between 0.64 and 0.76, using the result of Exercise 4 and
(a) Chebyshev’s theorem;
(b) the central limit theorem?

76. The actual proportion of men who favor a certain
tax proposal is 0.40 and the corresponding proportion
for women is 0.25; n1 = 500 men and n2 = 400
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women are interviewed at random, and their individual
responses are looked upon as the values of independent
random variables having Bernoulli distributions with the
respective parameters θ1 = 0.40 and θ2 = 0.25. What
can we assert, according to Chebyshev’s theorem, with
a probability of at least 0.9375 about the value we will
get for �̂1 − �̂2, the difference between the two sample
proportions of favorable responses? Use the result of
Exercise 5.

SECS. 4–6
(In Exercises 78 through 83, refer to Tables IV, V, and VI
of “Statistical Tables.”)

77. Integrate the appropriate chi-square density to find
the probability that the variance of a random sample of
size 5 from a normal population with σ 2 = 25 will fall
between 20 and 30.

78. The claim that the variance of a normal population
is σ 2 = 25 is to be rejected if the variance of a random
sample of size 16 exceeds 54.668 or is less than 12.102.
What is the probability that this claim will be rejected
even though σ 2 = 25?

79. The claim that the variance of a normal population is
σ 2 = 4 is to be rejected if the variance of a random sam-
ple of size 9 exceeds 7.7535. What is the probability that
this claim will be rejected even though σ 2 = 4?

80. A random sample of size n = 25 from a normal pop-
ulation has the mean x = 47 and the standard deviation
s = 7. If we base our decision on the statistic of Theo-
rem 13, can we say that the given information supports
the conjecture that the mean of the population is μ = 42?

81. A random sample of size n = 12 from a normal pop-
ulation has the mean x = 27.8 and the variance s2 = 3.24.
If we base our decision on the statistic of Theorem 13, can
we say that the given information supports the claim that
the mean of the population is μ = 28.5?

82. If S1 and S2 are the standard deviations of indepen-
dent random samples of sizes n1 = 61 and n2 = 31 from
normal populations with σ 2

1 = 12 and σ 2
2 = 18, find

P(S2
1/S

2
2> 1.16).

83. If S2
1 and S2

2 are the variances of independent random
samples of sizes n1 = 10 and n2 = 15 from normal popu-
lations with equal variances, find P(S2

1/S
2
2< 4.03).

84. Use a computer program to verify the five entries
in Table IV of “Statistical Tables” corresponding to 11
degrees of freedom.

85. Use a computer program to verify the eight entries
in Table V of “Statistical Tables” corresponding to 21
degrees of freedom.

86. Use a computer program to verify the five values of
f0.05 in Table VI of “Statistical Tables” corresponding to
7 and 6 to 10 degrees of freedom.

87. Use a computer program to verify the six values of
f0.01 in Table VI of “Statistical Tables” corresponding to
ν1 = 15 and ν2 = 12, 13, . . . , 17.

SEC. 7
88. Find the probability that in a random sample of size
n = 4 from the continuous uniform population of Exer-
cise 46, the smallest value will be at least 0.20.
89. Find the probability that in a random sample of size
n = 3 from the beta population of Exercise 77, the largest
value will be less than 0.90.

90. Use the result of Exercise 56 to find the probability
that the range of a random sample of size n = 5 from the
given uniform population will be at least 0.75.

91. Use the result of part (c) of Exercise 58 to find the
probability that in a random sample of size n = 10 at least
80 percent of the population will lie between the smallest
and largest values.

92. Use the result of part (c) of Exercise 58 to set up an
equation in n whose solution will give the sample size that
is required to be able to assert with probability 1 −α that
the proportion of the population contained between the
smallest and largest sample values is at least p. Show that
for p = 0.90 and α = 0.05 this equation can be written as

(0.90)n−1 = 1
2n + 18

This kind of equation is difficult to solve, but it can be
shown that an approximate solution for n is given by

1
2

+ 1
4

· 1 + p
1 − p

·χ2
α,4

where χ2
α,4 must be looked up in Table V of “Statistical

Tables”. Use this method to find an approximate solution
of the equation for p = 0.90 and α = 0.05.

SEC. 8
93. Cans of food, stacked in a warehouse, are sampled
to determine the proportion of damaged cans. Explain
why a sample that includes only the top can in each stack
would not be a random sample.

94. An inspector chooses a sample of parts coming from
an automated lathe by visually inspecting all parts, and
then including 10 percent of the “good” parts in the sam-
ple with the use of a table of random digits.
(a) Why does this method not produce a random sample
of the production of the lathe?
(b) Of what population can this be considered to be a ran-
dom sample?

95. Sections of aluminum sheet metal of various lengths,
used for construction of airplane fuselages, are lined up
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on a conveyor belt that moves at a constant speed. A
sample is selected by taking whatever section is passing
in front of a station at five-minute intervals. Explain why
this sample may not be random; that is, it is not an accu-
rate representation of the population of all aluminum
sections.

96. A process error may cause the oxide thicknesses on
the surface of a silicon wafer to be “wavy,” with a constant
difference between the wave heights. What precautions
are necessary in taking a random sample of oxide thick-
nesses at various positions on the wafer to assure that the
observations are independent?
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Answers to Odd-Numbered Exercises

11 When we sample with replacement from a finite popu-
lation, we satisfy the conditions for random sampling from
an infinite population; that is, the random variables are inde-
pendent and identically distributed.
17 μ = 13.0; σ 2 = 25.6.
19 s2 = 4.
29 21.9% and 5.53%.

47 h(x̃) = (2m + 1)!
m!m!

x̃(1 − x̃)m for 0< x< 1; h(x̃) = 0 else-

where.
49 g1(y1) = 12ny2

1(1 − y1)(1 − 4y1)
3.

51 (a)
y1 1 2 3 4

g1(y1)
4

10
3

10
2
10

1
10

(b)
y1 1 2 3 4 5

g1(y1)
9
25

7
25

5
25

3
25

1
25

53
1

(n + 1)2(n + 2)
.

55 f (R) = n − 1
θ

e−R/θ [1 − e−R/θ ]n−2 for R> 0; f (R) = 0

elsewhere.

57 E(R) = n − 1
n + 1

; σ 2 = 2(n − 1)

(n + 1)2(n + 2)
.

61 (a) 1
495 ; (b) 1

77 .
63 (a) It is divided by 2. (b) It is divided by 1.5. (c) It is
multiplied by 3. (d) It is multiplied by 2.5.
65 (a) 0.96; (b) 0.9999994.
67 0.0250.
69 0.0207.
71 0.2302.
73 4.63.
75 (a) 0.3056; (b) 0.7698.
77 0.216.
79 0.5.
81 t = −1.347; the data support the claim.
83 0.99.
89 0.851.
91 0.6242.
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1 Introduction
2 The Theory of Games
3 Statistical Games
4 Decision Criteria

5 The Minimax Criterion
6 The Bayes Criterion
7 The Theory in Practice

1 Introduction In applied situations, mathematical expectations are often used as a guide in choos-
ing among alternatives, that is, in making decisions, because it is generally considered
rational to select alternatives with the “most promising” mathematical expectations—
the ones that maximize expected profits, minimize expected losses, maximize expected
sales, minimize expected costs, and so on.

Although this approach to decision making has great intuitive appeal, it is not
without complications, for there are many problems in which it is difficult, if not
impossible, to assign numerical values to the consequences of one’s actions and to
the probabilities of all eventualities.

EXAMPLE 1

A manufacturer of leather goods must decide whether to expand his plant capacity
now or wait at least another year. His advisors tell him that if he expands now and
economic conditions remain good, there will be a profit of $164,000 during the next
fiscal year; if he expands now and there is a recession, there will be a loss of $40,000;
if he waits at least another year and economic conditions remain good, there will
be a profit of $80,000; and if he waits at least another year and there is a recession,
there will be a small profit of $8,000. What should the manufacturer decide to do if
he wants to minimize the expected loss during the next fiscal year and he feels that
the odds are 2 to 1 that there will be a recession?

Solution
Schematically, all these “payoffs” can be represented as in the following table, where
the entries are the losses that correspond to the various possibilities and, hence, gains
are represented by negative numbers:

†Although the material in this chapter is basic to an understanding of the foundations of statistics, it is often
omitted in a first course in mathematical statistics.

From Chapter 9 of John E. Freund’s Mathematical Statistics with Applications,
Eighth Edition. Irwin Miller, Marylees Miller. Copyright © 2014 by Pearson Education, Inc.
All rights reserved.
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Expand now Delay expansion

Economic conditions remain good −164,000 −80,000

There is a recession 40,000 −8,000

We are working with losses here rather than profits to make this example fit the
general scheme that we shall present in Sections 2 and 3.

Since the probabilities that economic conditions will remain good and that there
will be a recession are, respectively, 1

3 and 2
3 , the manufacturer’s expected loss for the

next fiscal year is

−164,000 · 1
3

+ 40,000 · 2
3

= −28,000

if he expands his plant capacity now, and

−80,000 · 1
3

+ (−8,000) · 2
3

= −32,000

if he waits at least another year. Since an expected profit (negative expected loss)
of $32,000 is preferable to an expected profit (negative expected loss) of $28,000, it
follows that the manufacturer should delay expanding the capacity of his plant.

The result at which we arrived in this example assumes that the values given in
the table and also the odds for a recession are properly assessed. As the reader will
be asked to show in Exercises 10 and 11, changes in these quantities can easily lead
to different results.

EXAMPLE 2

With reference to Example 1, suppose that the manufacturer has no idea about the
odds that there will be a recession. What should he decide to do if he is a con-
firmed pessimist?

Solution
Being the kind of person who always expects the worst to happen, he might argue
that if he expands his plant capacity now he could lose $40,000, if he delays expan-
sion there would be a profit of at least $8,000 and, hence, that he will minimize the
maximum loss (or maximize the minimum profit) if he waits at least another year.

The criterion used in this example is called the minimax criterion, and it is only
one of many different criteria that can be used in this kind of situation. One such
criterion, based on optimism rather than pessimism, is referred to in Exercise 15,
and another, based on the fear of “losing out on a good deal,” is referred to in
Exercise 16.

2 The Theory of Games
The examples of the preceding section may well have given the impression that the
manufacturer is playing a game—a game between him and Nature (or call it fate or
whatever “controls” whether there will be a recession). Each of the “players” has
the choice of two moves: The manufacturer has the choice between actions a1 and
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a2 (to expand his plant capacity now or to delay expansion for at least a year), and
Nature controls the choice between θ1 and θ2 (whether economic conditions are to
remain good or whether there is to be a recession). Depending on the choice of their
moves, there are the “payoffs” shown in the following table:

Player A
(The Manufacturer)

a1 a2

Player B
(Nature)

θ1 L(a1, θ1) L(a2, θ1)

θ2 L(a1, θ2) L(a2, θ2)

The amounts L(a1, θ1), L(a2, θ1), . . . , are referred to as the values of the loss function
that characterizes the particular “game”; in other words, L(ai, θj) is the loss of Player
A (the amount he has to pay Player B) when he chooses alternative ai and Player B
chooses alternative θj. Although it does not really matter, we shall assume here that
these amounts are in dollars. In actual practice, they can also be expressed in terms
of any goods or services, in units of utility (desirability or satisfaction), and even in
terms of life or death (as in Russian roulette or in the conduct of a war).

The analogy we have drawn here is not really farfetched; the problem of
Example 2 is typical of the kind of situation treated in the theory of games, a rela-
tively new branch of mathematics that has stimulated considerable interest in recent
years. This theory is not limited to parlor games, as its name might suggest, but it
applies to any kind of competitive situation and, as we shall see, it has led to a unified
approach to solving problems of statistical inference.

To introduce some of the basic concepts of the theory of games, let us begin
by explaining what we mean by a zero-sum two-person game. In this term, “two-
person” means that there are two players (or, more generally, two parties with con-
flicting interests), and “zero-sum” means that whatever one player loses the other
player wins. Thus, in a zero-sum game there is no “cut for the house” as in profes-
sional gambling, and no capital is created or destroyed during the course of play.
Of course, the theory of games also includes games that are neither zero-sum nor
limited to two players, but, as can well be imagined, such games are generally much
more complicated. Exercise 27 is an example of a game that is not zero-sum.

Games are also classified according to the number of strategies (moves, choices,
or alternatives) that each player has at his disposal. For instance, if each player has
to choose one of two alternatives (as in Example 1), we say that it is a 2 * 2 game; if
one player has 3 possible moves while the other has 4, the game is 3 * 4 or 4 * 3, as
the case may be. In this section we shall consider only finite games, that is, games in
which each player has only a finite, or fixed, number of possible moves, but later we
shall consider also games where each player has infinitely many moves.

It is customary in the theory of games to refer to the two players as Player A and
Player B as we did in the preceding table, but the moves (choices or alternatives) of
Player A are usually labeled I, II, III, . . . , instead of a1, a2, a3, . . . , and those of Player
B are usually labeled 1, 2, 3, . . . , instead of θ1, θ2, θ3, . . . . The payoffs, the amounts
of money or other considerations that change hands when the players choose their
respective strategies, are usually shown in a table like that on this page, which is
referred to as a payoff matrix in the theory of games. (As before, positive payoffs
represent losses of Player A and negative payoffs represent losses of Player B.) Let
us also add that it is always assumed in the theory of games that each player must
choose a strategy without knowing what the opponent is going to do and that once
a player has made a choice it cannot be changed.
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DEFINITION 1. PAYOFF MATRIX. A payoff in game theory is the amount of money (or
other numerical consideration) that changes hands when the players choose their
respective strategies. Positive payoffs represent losses of Player A and negative
payoffs represent losses of player B. A strategy is a choice of actions by either
player. The matrix giving the payoff to a given player for each choice of strategy
by both players is called the payoff matrix.

The objectives of the theory of games are to determine optimum strategies (that
is, strategies that are most profitable to the respective players) and the corresponding
payoff, which is called the value of the game.

EXAMPLE 3

Given the 2 * 2 zero-sum two-person game

Player A
I II

Player B
1 7 −4

2 8 10

find the optimum strategies of Players A and B and the value of the game.

Solution
As can be seen by inspection, it would be foolish for Player B to choose Strategy
1, since Strategy 2 will yield more than Strategy 1 regardless of the choice made by
Player A. In a situation like this we say that Strategy 1 is dominated by Strategy 2 (or
that Strategy 2 dominates Strategy 1), and it stands to reason that any strategy that
is dominated by another should be discarded. If we do this here, we find that Player
B’s optimum strategy is Strategy 2, the only one left, and the Player A’s optimum
strategy is Strategy I, since a loss of 8 units is obviously preferable to a loss of 10
units. Also, the value of the game, the payoff corresponding to Strategies I and 2, is
8 units.

EXAMPLE 4

Given the 3 * 2 zero-sum two-person game

Player A

I II III

Player B
1 −4 1 7

2 4 3 5

find the optimum strategies of Players A and B and the value of the game.

Solution
In this game neither strategy of Player B dominates the other, but the third strategy
of Player A is dominated by each of the other two. Expressing the units as dollars, a
profit of $4 or a loss of $1 is preferable to a loss of $7, and a loss of $4 or a loss of
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$3 is preferable to a loss of $5. Thus, we can discard the third column of the payoff
matrix and study the 2 * 2 game

Player A
I II

Player B
1 −4 1

2 4 3

where now Strategy 2 of Player B dominates Strategy 1. Thus, the optimum choice
of Player B is Strategy 2, the optimum choice of Player A is Strategy II (since a loss
of $3 is preferable to a loss of $4), and the value of the game is $3.

The process of discarding dominated strategies can be of great help in the solu-
tion of a game (that is, in finding optimum strategies and the value of the game),
but it is the exception rather than the rule that it will lead to a complete solution.
Dominances may not even exist, as is illustrated by the following 3 * 3 zero-sum
two-person game:

Player A
I II III

1 −1 6 −2

Player B 2 2 4 6

3 −2 −6 12

So, we must look for other ways of arriving at optimum strategies. From the point of
view of Player A, we might argue as follows: If he chooses Strategy I, the worst that
can happen is that he loses $2; if he chooses Strategy II, the worst that can happen is
that he loses $6; and if he chooses Strategy III, the worst that can happen is that he
loses $12. Thus, he could minimize the maximum loss by choosing Strategy I.

Applying the same kind of argument to select a strategy for Player B, we find
that if she chooses Strategy 1, the worst that can happen is that she loses $2; if she
chooses Strategy 2, the worst that can happen is that she wins $2; and if she chooses
Strategy 3, the worst that can happen is that she loses $6. Thus, she could minimize
the maximum loss (or maximize the minimum gain, which is the same) by choosing
Strategy 2.

DEFINITION 2. MINIMAX STRATEGY. A strategy that minimizes the maximum loss of
a player is called a minimax strategy. The choice of a minimax strategy to make
a decision is called the minimax criterion.

The selection of Strategies I and 2, the minimax strategies, is really quite rea-
sonable. By choosing Strategy I, Player A makes sure that his opponent can win at
most $2, and by choosing Strategy 2, Player B makes sure that she will actually win
this amount. Thus $2 is the value of the game, which means that the game favors
Player B, but we could make it equitable by charging Player B $2 for the privilege
of playing the game and giving the $2 to Player A.

A very important aspect of the minimax strategies I and 2 of this example is
that they are completely “spyproof” in the sense that neither player can profit from
knowing the other’s choice. In our example, even if Player A announced publicly
that he will choose Strategy I, it would still be best for Player B to choose Strategy 2,
and if Player B announced publicly that she will choose Strategy 2, it would still be
best for Player A to choose Strategy I. Unfortunately, not all games are spyproof.
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EXAMPLE 5

Show that the minimax strategies of Players A and B are not spyproof in the follow-
ing game:

Player A
I II

Player B
1 8 −5

2 2 6

Solution
Player A can minimize his maximum loss by choosing Strategy II, and Player B can
minimize her maximum loss by choosing Strategy 2. However, if Player A knew that
Player B was going to base her choice on the minimax criterion, he could switch
to Strategy I and thus reduce his loss from $6 to $2. Of course, if Player B dis-
covered that Player A would try to outsmart her in this way, she could in turn
switch to Strategy 1 and increase her gain to $8. In any case, the minimax strate-
gies of the two players are not spyproof, thus leaving room for all sorts of trickery or
deception.

There exists an easy way of determining for any given game whether minimax
strategies are spyproof. What we have to look for are saddle points, that is, pairs
of strategies for which the corresponding entry in the payoff matrix is the smallest
value of its row and the greatest value of its column.

DEFINITION 3. SADDLE POINT. A saddle point of a game is a pair of strategies for
which the corresponding entry in the payoff matrix is the smallest value of its row
and the greatest value of its column. A game that has a saddle point is said to be
strictly determined.

In Example 5 there is no saddle point, since the smallest value of each row is
also the smallest value of its column. On the other hand, in the game of Example 3
there is a saddle point corresponding to Strategies I and 2 since 8, the smallest value
of the second row, is the greatest value of the first column. Also, the 3 * 2 game of
Example 4 has a saddle point corresponding to Strategies II and 2 since 3, the small-
est value of the second row, is the greatest value of the second column, and the 3 * 3
game on the previous page has a saddle point corresponding to Strategies I and 2
since 2, the smallest value of the second row, is the greatest value of the first column.
In general, if a game has a saddle point, it is said to be strictly determined, and the
strategies corresponding to the saddle point are spyproof (and hence optimum) min-
imax strategies. The fact that there can be more than one saddle point in a game is
illustrated in Exercise 2; it also follows from this exercise that it does not matter in
that case which of the saddle points is used to determine the optimum strategies of
the two players.

If a game does not have a saddle point, minimax strategies are not spyproof, and
each player can outsmart the other if he or she knows how the opponent will react in
a given situation. To avoid this possibility, each player should somehow mix up his or
her behavior patterns intentionally, and the best way of doing this is by introducing
an element of chance into the selection of strategies.
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EXAMPLE 6

With reference to the game of Example 5, suppose that Player A uses a gambling
device (dice, cards, numbered slips of paper, a table of random numbers) that leads
to the choice of Strategy I with probability x and to the choice of Strategy II with
probability 1 − x. Find the value of x that will minimize Player A’s maximum
expected loss.

Solution
If Player B chooses Strategy 1, Player A can expect to lose

E = 8x − 5(1 − x)

dollars, and if Player B chooses Strategy 2, Player A can expect to lose

E = 2x + 6(1 − x)

dollars. Graphically, this situation is described in Figure 1, where we have plotted
the lines whose equations are E = 8x − 5(1 − x) and E = 2x + 6(1 − x) for values of
x from 0 to 1.

Applying the minimax criterion to the expected losses of Player A, we find from
Figure 1 that the greater of the two values of E for any given value of x is smallest
where the two lines intersect, and to find the corresponding value of x, we have only
to solve the equation

8x − 5(1 − x) = 2x + 6(1 − x)

which yields x = 11
17 . Thus, if Player A uses 11 slips of paper numbered I and 6 slips

of paper numbered II, shuffles them thoroughly, and then acts according to which
kind he randomly draws, he will be holding his maximum expected loss down to
8 · 11

17 − 5 · 6
17 = 3 7

17 , or $3.41 to the nearest cent.

As far as Player B of the preceding example is concerned, in Exercise 22 the
reader will be asked to use a similar argument to show that Player B will maximize
her minimum gain (which is the same as minimizing her maximum loss) by choosing
between Strategies 1 and 2 with respective probabilities of 4

17 and 13
17 and that she

will thus assure for herself an expected gain of 3 7
17 , or $3.41 to the nearest cent.

Incidentally, the $3.41 to which Player A can hold down his expected loss and Player
B can raise her expected gain is called the value of this game.

DEFINITION 4. RANDOMIZED STRATEGY. If a player’s choice of strategy is left to chance,
the overall strategy is called a randomized strategy, or a mixed strategy. By con-
trast, in a game where each player makes a definite choice of a given strategy, each
strategy is called a pure strategy.

The examples of this section were all given without any “physical” interpreta-
tion because we were interested only in introducing some of the basic concepts of the
theory of games. If we apply these methods to Example 1, we find that the “game”
has a saddle point and that the manufacturer’s minimax strategy is to delay expand-
ing the capacity of his plant. Of course, this assumes, questionably so, that Nature
(which controls whether there is going to be a recession) is a malevolent opponent.
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Figure 1. Diagram for Example 6.

Also, it would seem that in a situation like this the manufacturer ought to have some
idea about the chances for a recession and hence that the problem should be solved
by the first method of Section 1.

Exercises

1. An n * n matrix is called a Latin square if each row and
each column contains the integers 1, 2, . . . , n. The follow-
ing is an example of a 3 * 3 Latin square.∣∣∣∣∣∣∣

1 2 3
2 3 1
3 1 2

∣∣∣∣∣∣∣
Show that any strategy is the minimax strategy for either
player in a game whose payoff matrix is an n * n Latin
square. What is the value of the game?

2. If a zero-sum two-person game has a saddle point cor-
responding to the ith row and the jth column of the payoff
matrix and another corresponding to the kth row and the
lth column, show that
(a) there are also saddle points corresponding to the ith
row and the lth column of the payoff matrix and the kth
row and the jth column;

(b) the payoff must be the same for all four saddle
points.
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3 Statistical Games
In statistical inference we base decisions about populations on sample data, and it is
by no means farfetched to look upon such an inference as a game between Nature,
which controls the relevant feature (or features) of the population, and the person
(scientist or statistician) who must arrive at some decision about Nature’s choice. For
instance, if we want to estimate the mean μ of a normal population on the basis of a
random sample of size n, we could say that Nature has control over the “true” value
of μ. On the other hand, we might estimate μ in terms of the value of the sample
mean or that of the sample median, and presumably there is some penalty or reward
that depends on the size of our error.

In spite of the obvious similarity between this problem and the ones of the
preceding section, there are essentially two features in which statistical games are
different. First, there is the question that we already met when we tried to apply
the theory of games to the decision problem of Example 1, that is, the question of
whether it is reasonable to treat Nature as a malevolent opponent. Obviously not,
but this does not simplify matters; if we could treat Nature as a rational opponent,
we would know, at least, what to expect.

The other distinction is that in the games of Section 2 each player had to choose
his strategy without any knowledge of what his opponent had done or was planning
to do, whereas in a statistical game the statistician is supplied with sample data that
provide him with some information about Nature’s choice. This also complicates
matters, but it merely amounts to the fact that we are dealing with more complicated
kinds of games. To illustrate, let us consider the following decision problem: We are
told that a coin is either balanced with heads on one side and tails on the other or
two-headed. We cannot inspect the coin, but we can flip it once and observe whether it
comes up heads or tails. Then we must decide whether or not it is two-headed, keeping
in mind that there is a penalty of $1 if our decision is wrong and no penalty (or reward)
if our decision is right. If we ignored the fact that we can observe one flip of the coin,
we could treat the problem as the following game:

Player A
(The Statistician)
a1 a2

Player B
(Nature)

θ1 L(a1, θ1) = 0 L(a2, θ1) = 1

θ2 L(a1, θ2) = 1 L(a2, θ2) = 0

which should remind the reader of the scheme in Section 2. Now, θ1 is the “state of
Nature” that the coin is two-headed, θ2 is the “state of Nature” that the coin is bal-
anced with heads on one side and tails on the other, a1 is the statistician’s decision
that the coin is two-headed, and a2 is the statistician’s decision that the coin is bal-
anced with heads on one side and tails on the other. The entries in the table are the
corresponding values of the given loss function.

Now let us consider also the fact that we (Player A, or the statistician) know
what happened in the flip of the coin; that is, we know whether a random variable X
has taken on the value x = 0 (heads) or x = 1 (tails). Since we shall want to make
use of this information in choosing between a1 and a2, we need a function, a decision
function, that tells us what action to take when x = 0 and what action to take when
x = 1.
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DEFINITION 5. DECISION FUNCTION. The function that tells the statistician which
decision to make for each action of Nature is called the decision function of a
statistical game. The values of this function are given by di(x), where di refers to
the ith decision made by the statistician and x is a value of the random variable X
whose values give the actions that can be taken by Nature.

One possibility is to choose a1 when x = 0 and a2 when x = 1, and we can
express this symbolically by writing

d1(x) =
{

a1 when x = 0
a2 when x = 1

or, more simply, d1(0) = a1 and d1(1) = a2. The purpose of the subscript is to
distinguish this decision function from others, for instance, from

d2(0) = a1 and d2(1) = a1

which tells us to choose a1 regardless of the outcome of the experiment, from

d3(0) = a2 and d3(1) = a2

which tells us to choose a2 regardless of the outcome of the experiment, and from

d4(0) = a2 and d4(1) = a1

which tells us to choose a2 when x = 0 and a1 when x = 1.
To compare the merits of all these decision functions, let us first determine the

expected losses to which they lead for the various strategies of Nature.

DEFINITION 6. RISK FUNCTION. The function that gives the expected loss to which
each value of the decision function leads for each action of Nature is called the
risk function. This function is given by

R(di, θj) = E{L[di(X), θj]}

where the expectation is taken with respect to the random variable X .

Since the probabilities for x = 0 and x = 1 are, respectively, 1 and 0 for θ1, and
1
2 and 1

2 for θ2, we get

R(d1, θ1) = 1 · L(a1, θ1)+ 0 · L(a2, θ1) = 1 · 0 + 0 · 1 = 0

R(d1, θ2) = 1
2

· L(a1, θ2)+ 1
2

· L(a2, θ2) = 1
2

· 1 + 1
2

· 0 = 1
2

R(d2, θ1) = 1 · L(a1, θ1)+ 0 · L(a1, θ1) = 1 · 0 + 0 · 0 = 0

R(d2, θ2) = 1
2

· L(a1, θ2)+ 1
2

· L(a1, θ2) = 1
2

· 1 + 1
2

· 1 = 1

R(d3, θ1) = 1 · L(a2, θ1)+ 0 · L(a2, θ1) = 1 · 1 + 0 · 1 = 1

270



Decision Theory

R(d3, θ2) = 1
2

· L(a2, θ2)+ 1
2

· L(a2, θ2) = 1
2

· 0 + 1
2

· 0 = 0

R(d4, θ1) = 1 · L(a2, θ1)+ 0 · L(a1, θ1) = 1 · 1 + 0 · 0 = 1

R(d4, θ2) = 1
2

· L(a2, θ2)+ 1
2

· L(a1, θ2) = 1
2

· 0 + 1
2

· 1 = 1
2

where the values of the loss function were obtained from the table under Section 3.
We have thus arrived at the following 4 * 2 zero-sum two-person game, in which

the payoffs are the corresponding values of the risk function:

Player A
(The Statistician)
d1 d2 d3 d4

Player B
(Nature)

θ1 0 0 1 1

θ2
1
2

1 0
1
2

As can be seen by inspection, d2 is dominated by d1 and d4 is dominated by d3, so
that d2 and d4 can be discarded; in decision theory we say that they are inadmissi-
ble. Actually, this should not come as a surprise, since in d2 as well as d4 we accept
alternative a1 (that the coin is two-headed) even though it came up tails.

This leaves us with the 2 * 2 zero-sum two-person game in which Player A has
to choose between d1 and d3. It can easily be verified that if Nature is looked upon
as a malevolent opponent, the optimum strategy is to randomize between d1 and d3
with respective probabilities of 2

3 and 1
3 , and the value of the game (the expected

risk) is 1
3 of a dollar. If Nature is not looked upon as a malevolent opponent, some

other criterion will have to be used for choosing between d1 and d3, and this will
be discussed in the sections that follow. Incidentally, we formulated this problem
with reference to a two-headed coin and an ordinary coin, but we could just as well
have formulated it more abstractly as a decision problem in which we must decide
on the basis of a single observation whether a random variable has the Bernoulli
distribution with the parameter θ = 0 or the parameter θ = 1

2 .
To illustrate further the concepts of a loss function and a risk function, let us

consider the following example, in which Nature as well as the statistician has a
continuum of strategies.

EXAMPLE 7

A random variable has the uniform density

f (x) =

⎧⎪⎨
⎪⎩

1
θ

for 0< x<θ

0 elsewhere

and we want to estimate the parameter θ (the “move” of Nature) on the basis of a
single observation. If the decision function is to be of the form d(x) = kx, where
k G 1, and the losses are proportional to the absolute value of the errors, that is,

L(kx, θ) = c|kx − θ |

where c is a positive constant, find the value of k that will minimize the risk.
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Solution
For the risk function we get

R(d, θ) =
∫ θ/k

0
c(θ − kx) · 1

θ
dx +

∫ θ

θ/k
c(kx − θ) · 1

θ
dx

= cθ
(

k
2

− 1 + 1
k

)

and there is nothing we can do about the factor θ ; but it can easily be verified that

k = √
2 will minimize

k
2

− 1 + 1
k

. Thus, if we actually took the observation and got

x = 5, our estimate of θ would be 5
√

2, or approximately 7.07.

4 Decision Criteria
In Example 7 we were able to find a decision function that minimized the risk regard-
less of the true state of Nature (that is, regardless of the true value of the parameter
θ), but this is the exception rather than the rule. Had we not limited ourselves to deci-
sion functions of the form d(x) = kx, then the decision function given by d(x) = θ1
would be best when θ happens to equal θ1, the one given by d(x) = θ2 would be
best when θ happens to equal θ2, . . . , and it is obvious that there can be no decision
function that is best for all values of θ .

In general, we thus have to be satisfied with decision functions that are best only
with respect to some criterion, and the two criteria that we shall study in this chapter
are (1) the minimax criterion, according to which we choose the decision function
d for which R(d, θ), maximized with respect to θ , is a minimum; and (2) the Bayes
criterion.

DEFINITION 7. BAYES RISK. If � is assumed to be a random variable having a given
distribution, the quantity

E[R(d,�)]

where the expectation is taken with respect to�, is called the Bayes risk. Choosing
the decision function d for which the Bayes risk is a minimum is called the Bayes
criterion.

It is of interest to note that in the example of Section 1 we used both of these
criteria. When we quoted odds for a recession, we assigned probabilities to the two
states of Nature, θ1 and θ2, and when we suggested that the manufacturer minimize
his expected loss, we suggested, in fact, that he use the Bayes criterion. Also, when
we asked in Section 2 what the manufacturer might do if he were a confirmed pes-
simist, we suggested that he would protect himself against the worst that can happen
by using the minimax criterion.

5 The Minimax Criterion
If we apply the minimax criterion to the illustration of Section 3, dealing with the
coin that is either two-headed or balanced with heads on one side and tails on the
other, we find from the table on the previous page with d2 and d4 deleted that for
d1 the maximum risk is 1

2 , for d3 the maximum risk is 1, and, hence, the one that
minimizes the maximum risk is d1.
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EXAMPLE 8

Use the minimax criterion to estimate the parameter θ of a binomial distribution
on the basis of the random variable X, the observed number of successes in n trials,
when the decision function is of the form

d(x) = x + a
n + b

where a and b are constants, and the loss function is given by

L
(

x + a
n + b

, θ
)

= c
(

x + a
n + b

− θ
)2

where c is a positive constant.

Solution
The problem is to find the values of a and b that will minimize the corresponding
risk function after it has been maximized with respect to θ . After all, we have control
over the choice of a and b, while Nature (our presumed opponent) has control over
the choice of θ .

Since E(X) = nθ and E(X2) = nθ(1 − θ + nθ) it follows that

R(d, θ) = E

[
c
(

X + a
n + b

− θ
)2
]

= c
(n + b)2

[θ2(b2 − n)+ θ(n − 2ab)+ a2]

and, using calculus, we could find the value of θ that maximizes this expression and
then minimize R(d, θ) for this value of θ with respect to a and b. This is not partic-
ularly difficult, but it is left to the reader in Exercise 6 as it involves some tedious
algebraic detail.

To simplify the work in a problem of this kind, we can often use the equal-
izer principle, according to which (under fairly general conditions) the risk function
of a minimax decision rule is a constant; for instance, it tells us that in Example 8
the risk function should not depend on the value of θ .† To justify this principle, at
least intuitively, observe that in Example 6 the minimax strategy of Player A leads
to an expected loss of $3.41 regardless of whether Player B chooses Strategy 1 or
Strategy 2.

To make the risk function of Example 8 independent of θ , the coefficients of θ
and θ2 must both equal 0 in the expression for R(d, θ). This yields b2 − n = 0 and
n − 2ab = 0, and, hence, a = 1

2
√

n and b = √
n. Thus, the minimax decision function

is given by

d(x) =
x + 1

2

√
n

n +√
n

†The exact conditions under which the equalizer principle holds are given in the book by T. S. Ferguson listed
among the references at the end of this chapter.
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and if we actually obtained 39 successes in 100 trials, we would estimate the param-
eter θ of this binomial distribution as

d(39) =
39 + 1

2

√
100

100 +√
100

= 0.40

6 The Bayes Criterion
To apply the Bayes criterion in the illustration of Section 3, the one dealing with the
coin that is either two-headed or balanced with heads on one side and tails on the
other, we will have to assign probabilities to the two strategies of Nature, θ1 and θ2.
If we assign θ1 and θ2, respectively, the probabilities p and 1 − p, it can be seen from
the second table in Section 3 that for d1 the Bayes risk is

0 · p + 1
2

· (1 − p) = 1
2

· (1 − p)

and that for d3 the Bayes risk is

1 · p + 0 · (1 − p) = p

It follows that the Bayes risk of d1 is less than that of d3 (and d1 is to be preferred
to d3) when p> 1

3 and that the Bayes risk of d3 is less than that of d1 (and d3 is to be
preferred to d1) when p< 1

3 . When p = 1
3 , the two Bayes risks are equal, and we can

use either d1 or d3.

EXAMPLE 9

With reference to Example 7, suppose that the parameter of the uniform density is
looked upon as a random variable with the probability density

h(θ) =
{
θ · e−θ for θ > 0
0 elsewhere

If there is no restriction on the form of the decision function and the loss function is
quadratic, that is, its values are given by

L[d(x), θ ] = c{d(x)− θ}2

find the decision function that minimizes the Bayes risk.

Solution
Since � is now a random variable, we look upon the original probability density as
the conditional density

f (x|θ) =

⎧⎪⎨
⎪⎩

1
θ

for 0< x<θ

0 elsewhere
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and, letting f (x, θ) = f (x|θ) · h(θ) we get

f (x, θ) =
{

e−θ for 0< x<θ
0 elsewhere

As the reader will be asked to verify in Exercise 8, this yields

g(x) =
{

e−x for x> 0
0 elsewhere

for the marginal density of X and

ϕ(θ |x) =
{

ex−θ θ > x
0 elsewhere

for the conditional density of � given X = x.
Now, the Bayes risk E[R(d,�)] that we shall want to minimize is given by the

double integral ∫ q

0

{∫ θ

0
c[d(x)− θ ]2f (x|θ)dx

}
h(θ)dθ

which can also be written as∫ q

0

{∫ q

0
c[d(x)− θ ]2ϕ(θ |x)dθ

}
g(x)dx

making use of the fact that f (x|θ) · h(θ) = ϕ(θ |x) · g(x) and changing the order of
integration. To minimize this double integral, we must choose d(x) for each x so that
the integral ∫ q

x
c[d(x)− θ ]2ϕ(θ |x)dθ =

∫ q

x
c[d(x)− θ ]2ex−θ dθ

is as small as possible. Differentiating with respect to d(x) and putting the derivative
equal to 0, we get

2cex ·
∫ q

x
[d(x)− θ ]e−θ dθ = 0

This yields

d(x) ·
∫ q

x
e−θ dθ −

∫ q

x
θe−θ dθ = 0

and, finally,

d(x) =

∫ q

x
θe−θ dθ∫ q

x
e−θ dθ

= (x + 1)e−x

e−x = x + 1

Thus, if the observation we get is x = 5, this decision function gives the Bayes esti-
mate 5 + 1 = 6 for the parameter of the original uniform density.
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Exercises
3. With reference to the illustration in Section 3, show
that even if the coin is flipped n times, there are only
two admissible decision functions. Also, construct a table
showing the values of the risk function corresponding to
these two decision functions and the two states of Nature.

4. With reference to Example 7, show that if the losses
are proportional to the squared errors instead of their
absolute values, the risk function becomes

R(d, θ) = cθ2

3
(k2 − 3k + 3)

and its minimum is at k = 3
2 .

5. A statistician has to decide on the basis of a single
observation whether the parameter θ of the density

f (x) =
⎧⎨
⎩

2x
θ2 for 0< x<θ

0 elsewhere

equals θ1 or θ2, where θ1<θ2. If he decides on θ1 when the
observed value is less than the constant k, on θ2 when the
observed value is greater than or equal to the constant k,
and he is fined C dollars for making the wrong decision,
which value of k will minimize the maximum risk?

6. Find the value of θ that maximizes the risk function of
Example 8, and then find the values of a and b that min-
imize the risk function for that value of θ . Compare the
results with those given in Section 6.

7. If we assume in Example 8 that � is a random variable
having a uniform density with α = 0 and β = 1, show that
the Bayes risk is given by

c
(n + b)2

[
1
3
(b2 − n)+ 1

2
(n − 2ab)+ a2

]

Also show that this Bayes risk is a minimum when a = 1
and b = 2, so that the optimum Bayes decision rule is

given by d(x) = x + 1
n + 2

.

8. Verify the results given on the previous page for the
marginal density of X and the conditional density of �
given
X = x.

9. Suppose that we want to estimate the parameter θ of
the geometric distribution on the basis of a single obser-
vation. If the loss function is given by

L[d(x), θ ] = c{d(x)− θ}2

and � is looked upon as a random variable having the
uniform density h(θ) = 1 for 0<θ < 1 and h(θ) = 0 else-
where, duplicate the steps in Example 9 to show that
(a) the conditional density of � given X = x is

ϕ(θ |x) =
{

x(x + 1)θ(1 − θ)x−1 for 0<θ < 1
0 elsewhere

(b) the Bayes risk is minimized by the decision function

d(x) = 2
x + 2

(Hint: Make use of the fact that the integral of any beta
density is equal to 1.)

7 The Theory in Practice
When Prof. A. Wald (1902–1950) first developed the ideas of decision theory, it was
intended to deal with the assumption of normality and the arbitrariness of the choice
of levels of significance in statistical testing of hypotheses. However, statistical deci-
sion theory requires the choice of a loss function as well as a decision criterion,
and sometimes the mathematics can be cumbersome. Perhaps it is for these reasons
that decision theory is not often employed in applications. However, this theory is a
remarkable contribution to statistical thinking and, in the opinion of the authors, it
should be used more often.

In this section we offer an example of how some of the ideas of decision the-
ory can be used in acceptance sampling. Acceptance sampling is a process whereby
a random sample is taken from a lot of manufactured product, and the units in
the sample are inspected to make a decision whether to accept or reject the lot.
If the number of defective units in the sample exceeds a certain limit (the “accep-
tance number”), the entire lot is rejected, otherwise it is accepted and sent to the
warehouse, or to a distributor for eventual sale. If the lot is “rejected,” it is rarely
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scrapped; instead it is “detailed,” that is, it is inspected further and efforts are made
to cull out the defective units. The following example shows how elements of deci-
sion theory can be applied to such a process.

EXAMPLE 10

Suppose a manufacturer incurs warranty costs of Cw for every defective unit shipped
and it costs Cd to detail an entire lot. The sampling inspection procedure is to inspect
n items chosen at random from a lot containing N units, and to make the decision to
accept or reject on the basis of the number of defective units found in the sample.
Two strategies are to be compared, as follows:

Number of Sample
Defectives, x Strategy 1 Strategy 2

0 Accept Accept
1 Accept Reject
2 Accept Reject

3 or more Reject Reject

In other words, the acceptance number is 2 under the first strategy, and 0 under the
second.

(a) Find the risk function for these two strategies.

(b) Under what conditions is either strategy preferable?

Solution
The decision function d1 accepts the lot if x, the number of defective units found
in the sampling inspection, does not exceed 2, and rejects the lot otherwise. The
decision function d2 accepts the lot if x = 0 and rejects it otherwise. Thus, the loss
functions are

L(d1, θ) = Cw · x · P(x = 0, 1, 2|θ)+ Cd · P(x> 2|θ)
= Cw · x · B(2; n, θ)+ Cd · [1 − B(2; n, θ)]

L(d2, θ) = Cw · x · P(x = 0|θ)+ Cd · P(x> 0|θ)
= Cw · x · B(0; n, θ)+ Cd · [1 − B(0; n, θ)]

where B(x; n, θ) represents the cumulative binomial distribution having the para-
meters n and θ . The corresponding risk functions are found by taking the expected
values of the loss functions with respect to x, obtaining

R(d1, θ) = Cw · nθ · B(2; n, θ)+ Cd · [1 − B(2; n, θ)]

R(d2, θ) = Cw · nθ · B(0; n, θ)+ Cd · [1 − B(0; n, θ)]

Either the minimax or the Bayes criterion could be used to choose between the
two decision functions. However, if we use the minimax criterion, we need to max-
imize the risk functions with respect to θ and then minimize the results. This is a
somewhat daunting task for this example, and we shall not attempt it here. On the
other hand, use of the Bayes criterion requires that we assume a prior distribution
for θ , thus introducing a new assumption that may not be warranted. It is not too dif-
ficult, however, to examine the difference between the two risk functions as a func-
tion of θ and to determine for which values of θ one is associated with less risk than
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the other. Experience with the proportions of defectives in prior lots can guide us in
determining for which “reasonable” values of θ we should compare the two risks.

To illustrate, suppose the sample size is chosen to be n = 10, the warranty cost
per defective unit shipped is Cw = $100, and the cost of detailing a rejected lot is
Cd = $2,000. The risk functions become

R(d1, θ) = 1,000 · θ · B(2; 10, θ)+ 2,000 · [1 − B(2; 10, θ)]

R(d2, θ) = 1,000 · θ · B(0; 10, θ)+ 2,000 · [1 − B(0; 10, θ)]

Collecting coefficients of B(2; 10, θ) in the first equation and B(2; 10, θ) in the second,
then subtracting, we obtain

δ(θ) = R(d1, θ)− R(d2, θ) = (1,000θ − 2,000)[B(2; 10, θ)− B(0; 10, θ)]

Since θ … 1, the quantity (1,000θ − 2,000)… 0. Also, it is straight forward to show
that B(2; 10, θ)Ú B(0; 10, θ). Thus, δ(θ) is never positive and, since the risk for Strat-
egy 1 is less than or equal to that for Strategy 2 for all values of θ , we choose Strat-
egy 1, for which the acceptance number is 2.

Applied Exercises SECS. 1–2

10. With reference to Example 1, what decision would
minimize the manufacturer’s expected loss if he felt that
(a) the odds for a recession are 3 to 2;
(b) the odds for a recession are 7 to 4?

11. With reference to Example 1, would the manufac-
turer’s decision remain the same if
(a) the $164,000 profit is replaced by a $200,000 profit and
the odds are 2 to 1 that there will be a recession;
(b) the $40,000 loss is replaced by a $60,000 loss and the
odds are 3 to 2 that there will be a recession?

12. Ms. Cooper is planning to attend a convention in
Honolulu, and she must send in her room reservation
immediately. The convention is so large that the activities
are held partly in Hotel X and partly in Hotel Y, and
Ms. Cooper does not know whether the particular ses-
sion she wants to attend will be held at Hotel X or Hotel
Y. She is planning to stay only one night, which would
cost her $66.00 at Hotel X and $62.40 at Hotel Y, and it
will cost her an extra $6.00 for cab fare if she stays at the
wrong hotel.
(a) If Ms. Cooper feels that the odds are 3 to 1 that the
session she wants to attend will be held at Hotel X, where
should she make her reservation so as to minimize her
expected cost?
(b) If Ms. Cooper feels that the odds are 5 to 1 that the
session she wants to attend will be held at Hotel X, where
should she make her reservation so as to minimize her
expected cost?

13. A truck driver has to deliver a load of lumber to one
of two construction sites, which are, respectively, 27 and

33 miles from the lumberyard, but he has misplaced the
order telling him where the load of lumber should go. The
two construction sites are 12 miles apart, and, to compli-
cate matters, the telephone at the lumberyard is out of
order. Where should he go first if he wants to minimize
the distance he can expect to drive and he feels that
(a) the odds are 5 to 1 that the lumber should go to the
construction site that is 33 miles from the lumberyard;
(b) the odds are 2 to 1 that the lumber should go to the
construction site that is 33 miles from the lumberyard;
(c) the odds are 3 to 1 that the lumber should go to the
construction site that is 33 miles from the lumberyard?

14. Basing their decisions on pessimism as in Example 2,
where should
(a) Ms. Cooper of Exercise 12 make her reservation;
(b) the truck driver of Exercise 13 go first?

15. Basing their decisions on optimism (that is, maximiz-
ing maximum gains or minimizing minimum losses), what
decisions should be reached by
(a) the manufacturer of Example 1;
(b) Ms. Cooper of Exercise 12;
(c) the truck driver of Exercise 13?

16. Suppose that the manufacturer of Example 1 is the
kind of person who always worries about losing out on
a good deal. For instance, he finds that if he delays
expansion and economic conditions remain good, he will
lose out by $84,000 (the difference between the $164,000
profit that he would have made if he had decided to
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expand right away and the $80,000 profit that he will actu-
ally make). Referring to this quantity as an opportunity
loss, or regret, find
(a) the opportunity losses that correspond to the other
three possibilities;
(b) the decision that would minimize the manufacturer’s
maximum loss of opportunity.

17. With reference to the definition of Exercise 16, find
the decisions that will minimize the maximum opportu-
nity loss of
(a) Ms. Cooper of Exercise 12;
(b) the truck driver of Exercise 13.

18. With reference to Example 1, suppose that the man-
ufacturer has the option of hiring an infallible forecaster
for $15,000 to find out for certain whether there will be a
recession. Based on the original 2 to 1 odds that there will
be a recession, would it be worthwhile for the manufac-
turer to spend this $15,000?

19. Each of the following is the payoff matrix (the pay-
ments Player A makes to Player B) for a zero-sum
two-person game. Eliminate all dominated strategies and
determine the optimum strategy for each player as well
as the value of the game:

(a)
3 −2

5 7

(b)
14 11

16 −2

(c) −5 0 3

−6 −3 −3

−12 −1 1

(d)
7 10 8

8 8 11

7 5 9

20. Each of the following is the payoff matrix of a zero-
sum two-person game. Find the saddle point (or saddle
points) and the value of each game:

(a) −1 5 −2

0 3 1

−2 −4 5

(b)
3 2 4 9

4 4 4 3

5 6 5 6

5 7 5 9

21. A small town has two service stations, which share
the town’s market for gasoline. The owner of Station A
is debating whether to give away free glasses to her cus-
tomers as part of a promotional scheme, and the owner
of Station B is debating whether to give away free steak
knives. They know (from similar situations elsewhere)
that if Station A gives away free glasses and Station B
does not give away free steak knives, Station A’s share of
the market will increase by 6 percent; if Station B gives
away free steak knives and Station A does not give away
free glasses, Station B’s share of the market will increase
by 8 percent; and if both stations give away the respective

items, Station B’s share of the market will increase by
3 percent.
(a) Present this information in the form of a payoff table
in which the entries are Station A’s losses in its share of
the market.
(b) Find optimum strategies for the owners of the
two stations.

22. Verify the two probabilities 4
17 and 13

17 , which we gave
in Section 2, for the randomized strategy of Player B.

23. The following is the payoff matrix of a 2 * 2 zero-sum
two-person game:

3 −4

−3 1

(a) What randomized strategy should Player A use so as
to minimize his maximum expected loss?
(b) What randomized strategy should Player B use so as
to maximize her minimum expected gain?
(c) What is the value of the game?

24. With reference to Exercise 12, what randomized
strategy will minimize Ms. Cooper’s maximum expected
cost?

25. A country has two airfields with installations worth
$2,000,000 and $10,000,000, respectively, of which it can
defend only one against an attack by its enemy. The
enemy, on the other hand, can attack only one of these
airfields and take it successfully only if it is left unde-
fended. Considering the “payoff” to the country to be the
total value of the installations it holds after the attack,
find the optimum strategy of the country as well as that
of its enemy and the value of the “game.”

26. Two persons agree to play the following game: The
first writes either 1 or 4 on a slip of paper, and at the same
time the second writes either 0 or 3 on another slip of
paper. If the sum of the two numbers is odd, the first wins
this amount in dollars; otherwise, the second wins $2.
(a) Construct the payoff matrix in which the payoffs are
the first person’s losses.
(b) What randomized decision procedure should the first
person use so as to minimize her maximum expected loss?
(c) What randomized decision procedure should the sec-
ond person use so as to maximize his minimum expected
gain?

27. There are two gas stations in a certain block, and the
owner of the first station knows that if neither station
lowers its prices, he can expect a net profit of $100 on any
given day. If he lowers his prices while the other station
does not, he can expect a net profit of $140; if he does
not lower his prices but the other station does, he can
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expect a net profit of $70; and if both stations participate
in this “price war,” he can expect a net profit of $80. The
owners of the two gas stations decide independently what
prices to charge on any given day, and it is assumed that
they cannot change their prices after they discover those
charged by the other.
(a) Should the owner of the first gas station charge his
regular prices or should he lower them if he wants to
maximize his minimum net profit?
(b) Assuming that the profit figures for the first gas sta-
tion apply also to the second gas station, how might the
owners of the gas stations collude so that each could
expect a net profit of $105?

Note that this “game” is not zero-sum, so that the possi-
bility of collusion opens entirely new possibilities.

SECS. 3–6
28. A statistician has to decide on the basis of one obser-
vation whether the parameter θ of a Bernoulli distribu-
tion is 0, 1

2 , or 1; her loss in dollars (a penalty that is
deducted from her fee) is 100 times the absolute value
of her error.
(a) Construct a table showing the nine possible values of
the loss function.
(b) List the nine possible decision functions and con-
struct a table showing all the values of the corresponding
risk function.
(c) Show that five of the decision functions are not admis-
sible and that, according to the minimax criterion, the
remaining decision functions are all equally good.
(d) Which decision function is best, according to the
Bayes criterion, if the three possible values of the param-
eter θ are regarded as equally likely?

29. A statistician has to decide on the basis of two obser-
vations whether the parameter θ of a binomial distribu-
tion is 1

4 or 1
2 ; his loss (a penalty that is deducted from his

fee) is $160 if he is wrong.
(a) Construct a table showing the four possible values of
the loss function.

(b) List the eight possible decision functions and con-
struct a table showing all the values of the corresponding
risk function.
(c) Show that three of the decision functions are not
admissible.
(d) Find the decision function that is best according to the
minimax criterion.
(e) Find the decision function that is best according to the
Bayes criterion if the probabilities assigned to θ = 1

4 and
θ = 1

2 are, respectively, 2
3 and 1

3 .
SEC. 7

30. A manufacturer produces an item consisting of two
components, which must both work for the item to func-
tion properly. The cost of returning one of the items to the
manufacturer for repairs is α dollars, the cost of inspect-
ing one of the components is β dollars, and the cost of
repairing a faulty component is ϕ dollars. She can ship
each item without inspection with the guarantee that it
will be put into perfect working condition at her factory
in case it does not work; she can inspect both components
and repair them if necessary; or she can randomly select
one of the components and ship the item with the origi-
nal guarantee if it works, or repair it and also check the
other component.
(a) Construct a table showing the manufacturer’s
expected losses corresponding to her three “strategies”
and the three “states” of Nature that 0, 1, or 2 of the
components do not work.
(b) What should the manufacturer do if α = $25.00,
ϕ = $10.00, and she wants to minimize her maximum
expected losses?
(c) What should the manufacturer do to minimize her
Bayes risk if α = $10.00, β = $12.00, ϕ = $30.00, and
she feels that the probabilities for 0, 1, and 2 defective
components are, respectively, 0.70, 0.20, and 0.10?

31. Rework Example 10, changing the first strategy to an
acceptance number of 1, instead of 2.

32. With reference to Example 10, for what values of Cw
and Cd will Strategy 2 be preferred?
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Answers to Odd-Numbered Exercises

1 n.
3 d1 d2

θ1 0 1

θ2
1

2n 0

5
θ1θ2√
θ2

1 + θ2
2

.

11 (a) The decision would be reversed. (b) The decision
would be the same.
13 (a) He should go to the construction site that is 33 miles
from the lumberyard. (b) He should go to the construction
site that is 27 miles from the lumberyard. (c) It does not
matter.
15 (a) He should expand his plant capacity now. (b) She
should choose Hotel Y. (c) He should go to the construction
site that is 27 miles from the lumberyard.
17 (a) She should choose Hotel Y. (b) He should go to the
construction site that is 27 miles from the lumberyard.
19 (a) The optimum strategies are I and 2 and the value of
the game is 5. (b) The optimum strategies are II and 1 and
the value is 11. (c) The optimum strategies are I and 1 and
the value is −5. (d) The optimum strategies are I and 2 and
the value is 8.

21 (a) The payoffs are 0 and −6 for the first row of the table
and 8 and 3 for the second row of the table. (b) The optimum
strategies are for Station A to give away the glasses and for
Station B to give away the knives.

23 (a) 5
11 and 6

11 ; (b) 4
11 and 7

11 ; (c) − 9
11 .

25 The defending country should randomize its strategies
with probabilities 1

6 and 5
6 , and the enemy should random-

ize its strategies with probabilities 5
6 and 1

6 ; the value is
$10,333,333.
27 (a) He should lower the prices. (b) They could accom-
plish this by lowering their prices on alternate days.
29 (a) The values of the first row are 0 and 160; those of the
second row are 160 and 0.

(b) d1(0) = 1
4

, d1(1) = 1
4

, d1(2) = 1
4

, d2(0) = 1
4

,

d2(1) = 1
4

, d2(2) = 1
2

, d3(0) = 1
4

, d3(1) = 1
2

, d3(2) = 1
4

,

d4(0) = 1
4

, d4(1) = 1
2

, d4(2) = 1
2

, d5(0) = 1
2

, d5(1) = 1
4

,

d5(2) = 1
2

, d6(0) = 1
2

, d6(1) = 1
4

, d6(2) = 1
2

, d7(0) = 1
2

,

d7(1) = 1
2

, d7(2) = 1
2

, d8(0) = 1
2

, d8(1) = 1
2

, d8(2) = 1
2

;

(d) d4; (e) d2.

281



This page intentionally left blank 



Point Estimation

1 Introduction
2 Unbiased Estimators
3 Efficiency
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7 The Method of Moments
8 The Method of Maximum Likelihood
9 Bayesian Estimation

10 The Theory in Practice

1 Introduction Traditionally, problems of statistical inference are divided into problems of estima-
tion and tests of hypotheses, though actually they are all decision problems and,
hence, could be handled by the unified approach. The main difference between the
two kinds of problems is that in problems of estimation we must determine the value
of a parameter (or the values of several parameters) from a possible continuum of
alternatives, whereas in tests of hypotheses we must decide whether to accept or
reject a specific value or a set of specific values of a parameter (or those of sev-
eral parameters).

DEFINITION 1. POINT ESTIMATION. Using the value of a sample statistic to estimate
the value of a population parameter is called point estimation. We refer to the
value of the statistic as a point estimate.

For example, if we use a value of X to estimate the mean of a population, an
observed sample proportion to estimate the parameter θ of a binomial population,
or a value of S2 to estimate a population variance, we are in each case using a point
estimate of the parameter in question. These estimates are called point estimates
because in each case a single number, or a single point on the real axis, is used to
estimate the parameter.

Correspondingly, we refer to the statistics themselves as point estimators. For
instance, X may be used as a point estimator of μ, in which case x is a point estimate
of this parameter. Similarly, S2 may be used as a point estimator of σ 2, in which
case s2 is a point estimate of this parameter. Here we used the word “point” to
distinguish between these estimators and estimates and the interval estimators and
interval estimates.

Since estimators are random variables, one of the key problems of point esti-
mation is to study their sampling distributions. For instance, when we estimate the
variance of a population on the basis of a random sample, we can hardly expect that
the value of S2 we get will actually equal σ 2, but it would be reassuring, at least, to
know whether we can expect it to be close. Also, if we must decide whether to use
a sample mean or a sample median to estimate the mean of a population, it would
be important to know, among other things, whether X or X̃ is more likely to yield a
value that is actually close.

From Chapter 10 of John E. Freund’s Mathematical Statistics with Applications,
Eighth Edition. Irwin Miller, Marylees Miller. Copyright © 2014 by Pearson Education, Inc.
All rights reserved.
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Various statistical properties of estimators can thus be used to decide which esti-
mator is most appropriate in a given situation, which will expose us to the smallest
risk, which will give us the most information at the lowest cost, and so forth. The par-
ticular properties of estimators that we shall discuss in Sections 2 through 6 are unbi-
asedness, minimum variance, efficiency, consistency, sufficiency, and robustness.

2 Unbiased Estimators
Perfect decision functions do not exist, and in connection with problems of estima-
tion this means that there are no perfect estimators that always give the right answer.
Thus, it would seem reasonable that an estimator should do so at least on the aver-
age; that is, its expected value should equal the parameter that it is supposed to
estimate. If this is the case, the estimator is said to be unbiased; otherwise, it is said
to be biased. Formally, this concept is expressed by means of the following definition.

DEFINITION 2. UNBIASED ESTIMATOR. A statistic �̂ is an unbiased estimator of the
parameter � of a given distribution if and only if E(�̂) = � for all possible values
of �.

The following are some examples of unbiased and biased estimators.

EXAMPLE 1

Definition 2 requires that E(�) = θ for all possible values of θ . To illustrate why
this statement is necessary, show that unless θ = 1

2 , the minimax estimator of the
binomial parameter θ is biased.

Solution
Since E(X) = nθ , it follows that

E

⎛
⎜⎜⎝

X + 1
2

√
n

n +√
n

⎞
⎟⎟⎠ =

E
(

X + 1
2

√
n
)

n +√
n

=
nθ + 1

2

√
n

n +√
n

and it can easily be seen that this quantity does not equal θ unless θ = 1
2 .

EXAMPLE 2

If X has the binomial distribution with the parameters n and θ , show that the sample

proportion,
X
n

, is an unbiased estimator of θ .

Solution
Since E(X) = nθ , it follows that

E
(

X
n

)
= 1

n
· E(X) = 1

n
· nθ = θ

and hence that
X
n

is an unbiased estimator of θ .
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EXAMPLE 3

If X1, X2, . . . , Xn constitute a random sample from the population given by

f (x) =
{

e−(x−δ) for x>δ
0 elsewhere

show that X is a biased estimator of δ.

Solution
Since the mean of the population is

μ =
∫ q

δ

x · e−(x−δ)dx = 1 + δ

it follows from the theorem “If X is the mean of a random sample of size n taken
without replacement from a finite population of size N with the mean μ and the
variance σ 2, then E(X) = μ and var(X) = σ 2

n · N−n
N−1 ” that E(X) = 1 + δ Z δ and

hence that X is a biased estimator of δ.

When �̂, based on a sample of size n from a given population, is a biased esti-
mator of θ , it may be of interest to know the extent of the bias, given by

bn(θ) = E(�̂)− θ

Thus, for Example 1 the bias is

nθ + 1
2

√
n

n +√
n

− θ =
1
2

− θ
√

n + 1

and it can be seen that it tends to be small when θ is close to 1
2 and also when n is

large.

DEFINITION 3. ASYMPTOTICALLY UNBIASED ESTIMATOR. Letting bn(�) = E(�̂)− �
express the bias of an estimator �̂ based on a random sample of size n from a
given distribution, we say that �̂ is an asymptotically unbiased estimator of � if
and only if

lim
n→q

bn(θ) = 0

As far as Example 3 is concerned, the bias is (1 + δ)− δ = 1, but here there is
something we can do about it. Since E(X) = 1 + δ, it follows that E(X − 1) = δ and
hence that X − 1 is an unbiased estimator of δ. The following is another example
where a minor modification of an estimator leads to an estimator that is unbiased.

EXAMPLE 4

If X1, X2, . . . , Xn constitute a random sample from a uniform population with α = 0,
show that the largest sample value (that is, the nth order statistic, Yn) is a biased
estimator of the parameter β. Also, modify this estimator of β to make it unbiased.
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Solution

Substituting into the formula for gn(yn) =
{

n
θ

· e−yn/θ [1 − e−yn/θ ]n−1 for yn> 0
0 elsewhere

,

we find that the sampling distribution of Yn is given by

gn(yn) = n · 1
β

·
(∫ yn

0

1
β

dx
)n−1

= n
βn · yn−1

n

for 0< yn<β and gn(yn) = 0 elsewhere, and hence that

E(Yn) = n
βn ·

∫ β

0
yn

n dyn

= n
n + 1

·β

Thus, E(Yn)Zβ and the nth order statistic is a biased estimator of the parameter β.
However, since

E
(

n + 1
n

· Yn

)
= n + 1

n
· n

n + 1
·β

= β

it follows that
n + 1

n
times the largest sample value is an unbiased estimator of the

parameter β.

As unbiasedness is a desirable property of an estimator, we can explain why we
divided by n − 1 and not by n when we defined the sample variance: It makes S2 an
unbiased estimator of σ 2 for random samples from infinite populations.

THEOREM 1. If S2 is the variance of a random sample from an infinite pop-
ulation with the finite variance σ 2, then E(S2) = σ 2.

Proof By definition of sample mean and sample variance,

E(S2) = E

⎡
⎣ 1

n − 1
·

n∑
i=1

(Xi − X)2

⎤
⎦

= 1
n − 1

· E

⎡
⎣ n∑

i=1

{(Xi −μ)− (X −μ)}2

⎤
⎦

= 1
n − 1

·
⎡
⎣ n∑

i=1

E{(Xi −μ)2} − n · E{(X −μ)2}
⎤
⎦

Then, since E{(Xi −μ)2} = σ 2 and E{(X −μ)2} = σ 2

n
, it follows that

E(S2) = 1
n − 1

·
⎡
⎣ n∑

i=1

σ 2 − n · σ
2

n

⎤
⎦ = σ 2
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Although S2 is an unbiased estimator of the variance of an infinite population,
it is not an unbiased estimator of the variance of a finite population, and in neither
case is S an unbiased estimator of σ . The bias of S as an estimator of σ is discussed,
among others, in the book by E. S. Keeping listed among the references at the end
of this chapter.

The discussion of the preceding paragraph illustrates one of the difficulties asso-
ciated with the concept of unbiasedness. It may not be retained under functional
transformations; that is, if �̂ is an unbiased estimator of θ , it does not necessarily fol-
low that ω(�̂) is an unbiased estimator of ω(θ). Another difficulty associated with
the concept of unbiasedness is that unbiased estimators are not necessarily unique.

For instance, in Example 6 we shall see that
n + 1

n
· Yn is not the only unbiased esti-

mator of the parameter β of Example 4, and in Exercise 8 we shall see that X − 1 is
not the only unbiased estimator of the parameter δ of Example 3.

3 Efficiency If we have to choose one of several unbiased estimators of a given parameter, we
usually take the one whose sampling distribution has the smallest variance. The esti-
mator with the smaller variance is “more reliable.”

DEFINITION 4. MINIMUM VARIANCE UNBIASED ESTIMATOR. The estimator for the
parameter � of a given distribution that has the smallest variance of all unbiased
estimators for � is called the minimum variance unbiased estimator, or the best
unbiased estimator for �.

If �̂ is an unbiased estimator of θ , it can be shown under very general conditions
(referred to in the references at the end of the chapter) that the variance of �̂ must
satisfy the inequality

var(�̂) G
1

n · E

[(
� ln f (X)

�θ

)2
]

where f (x) is the value of the population density at x and n is the size of the random
sample. This inequality, the Cramér–Rao inequality, leads to the following result.

THEOREM 2. If �̂ is an unbiased estimator of θ and

var(�̂) = 1

n · E

[(
� ln f (X)

�θ

)2
]

then �̂ is a minimum variance unbiased estimator of θ .

Here, the quantity in the denominator is referred to as the information about θ that
is supplied by the sample (see also Exercise 19). Thus, the smaller the variance is,
the greater the information.
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EXAMPLE 5

Show that X is a minimum variance unbiased estimator of the mean μ of a nor-
mal population.

Solution
Since

f (x) = 1

σ
√

2π
· e

− 1
2

(
x −μ
σ

)2

for −q< x<q

it follows that

ln f (x) = − ln σ
√

2π − 1
2

(
x −μ
σ

)2

so that
� ln f (x)

�μ
= 1
σ

(
x −μ
σ

)

and hence

E

[(
� ln f (X)

�μ

)2
]

= 1
σ 2 · E

[(
X −μ
σ

)2
]

= 1
σ 2 · 1 = 1

σ 2

Thus,

1

n · E

[(
� ln f (X)

�μ

)2
] = 1

n · 1
σ 2

= σ 2

n

and since X is unbiased and var(X) = σ 2

n
, it follows that X is a minimum variance

unbiased estimator of μ.

It would be erroneous to conclude from this example that X is a minimum vari-
ance unbiased estimator of the mean of any population. Indeed, in Exercise 3 the
reader will be asked to verify that this is not so for random samples of size n = 3
from the continuous uniform population with α = θ − 1

2 and β = θ + 1
2 .

As we have indicated, unbiased estimators of one and the same parameter are
usually compared in terms of the size of their variances. If �̂1 and �̂2 are two unbi-
ased estimators of the parameter θ of a given population and the variance of �̂1 is
less than the variance of �̂2, we say that �̂1 is relatively more efficient than �̂2. Also,
we use the ratio

var(�̂1)

var(�̂2)

as a measure of the efficiency of �̂2 relative to �̂1.
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EXAMPLE 6

In Example 4 we showed that if X1, X2, . . . , Xn constitute a random sample from a

uniform population with α = 0, then
n + 1

n
· Yn is an unbiased estimator of β.

(a) Show that 2X is also an unbiased estimator of β.

(b) Compare the efficiency of these two estimators of β.

Solution

(a) Since the mean of the population is μ = β

2
according to the theorem “The

mean and the variance of the uniform distribution are given by μ = α+β
2 and

σ 2 = 1
12 (β −α)2” it follows from the theorem “If X1, X2, . . . , Xn constitute

a random sample from an infinite population with the mean μ and the vari-
ance σ 2, then E(X) = μ and var(X) = σ 2

n ” that E(X) = β
2 and hence that

E(2X) = β. Thus, 2X is an unbiased estimator of β.

(b) First we must find the variances of the two estimators. Using the sampling dis-
tribution of Yn and the expression for E(Yn) given in Example 4, we get

E(Y2
n) = n

βn ·
∫ β

0
yn+1

n dyn = n
n + 2

·β2

and

var(Yn) = n
n + 2

·β2 −
(

n
n + 1

·β
)2

If we leave the details to the reader in Exercise 27, it can be shown that

var
(

n + 1
n

· Yn

)
= β2

n(n + 2)

Since the variance of the population is σ 2 = β2

12
according to the first stated

theorem in the example, it follows from the above (second) theorem that

var(X) = β2

12n
and hence that

var(2X) = 4 · var(X) = β2

3n

Therefore, the efficiency of 2X relative to
n + 1

n
· Yn is given by

var
(

n + 1
n

· Yn

)
var(2X)

=
β2

n(n + 2)
β2

3n

= 3
n + 2

and it can be seen that for n> 1 the estimator based on the nth order statistic
is much more efficient than the other one. For n = 10, for example, the relative
efficiency is only 25 percent, and for n = 25 it is only 11 percent.
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EXAMPLE 7

When the mean of a normal population is estimated on the basis of a random sample
of size 2n + 1, what is the efficiency of the median relative to the mean?

Solution
From the theorem on the previous page we know that X is unbiased and that

var(X) = σ 2

2n + 1

As far as X̃ is concerned, it is unbiased by virtue of the symmetry of the normal
distribution about its mean, and for large samples

var(X̃) = πσ 2

4n
Thus, for large samples, the efficiency of the median relative to the mean is approxi-
mately

var(X)

var(X̃)
=

σ 2

2n + 1
πσ 2

4n

= 4n
π(2n + 1)

and the asymptotic efficiency of the median with respect to the mean is

lim
n→q

4n
π(2n + 1)

= 2
π

or about 64 percent.

The result of the preceding example may be interpreted as follows: For large
samples, the mean requires only 64 percent as many observations as the median to
estimate μ with the same reliability.

It is important to note that we have limited our discussion of relative efficiency
to unbiased estimators. If we included biased estimators, we could always assure our-
selves of an estimator with zero variance by letting its values equal the same constant
regardless of the data that we may obtain. Therefore, if �̂ is not an unbiased estima-
tor of a given parameter θ , we judge its merits and make efficiency comparisons on
the basis of the mean square error E[(�̂− θ)2] instead of the variance of �̂.

Exercises
1. If X1, X2, . . . , Xn constitute a random sample from a
population with the mean μ, what condition must be
imposed on the constants a1, a2, . . . , an so that

a1X1 + a2X2 + · · · + anXn

is an unbiased estimator of μ?

2. If �̂1 and �̂2 are unbiased estimators of the same
parameter θ , what condition must be imposed on the con-
stants k1 and k2 so that

k1�̂1 + k2�̂2

is also an unbiased estimator of θ?

3. This question has been intentionally omitted for this
edition.

4. This question has been intentionally omitted for this
edition.

5. Given a random sample of size n from a population
that has the known mean μ and the finite variance σ 2,
show that

1
n

·
n∑

i=1

(Xi −μ)2

is an unbiased estimator of σ 2.

6. This question has been intentionally omitted for this
edition.
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7. Show that
X + 1
n + 2

is a biased estimator of the binomial

parameter θ . Is this estimator asymptotically unbiased?

8. With reference to Example 3, find an unbiased estima-
tor of δ based on the smallest sample value (that is, on the
first order statistic, Y1).

9. With reference to Example 4, find an unbiased estima-
tor of β based on the smallest sample value (that is, on
the first order statistic, Y1).

10. If X1, X2, . . . , Xn constitute a random sample from a
normal population with μ = 0, show that

n∑
i=1

X2
i

n

is an unbiased estimator of σ 2.

11. If X is a random variable having the binomial dis-

tribution with the parameters n and θ , show that n · X
n

·(
1 − X

n

)
is a biased estimator of the variance of X.

12. If a random sample of size n is taken without replace-
ment from the finite population that consists of the posi-
tive integers 1, 2, . . . , k, show that
(a) the sampling distribution of the nth order statistic, Yn,
is given by

f (yn) =

(
yn − 1
n − 1

)
(

k
n

)
for yn = n, . . . , k;

(b)
n + 1

n
· Yn − 1 is an unbiased estimator of k.

See also Exercise 80.

13. Show that if �̂ is an unbiased estimator of θ and
var(�̂)Z 0, then �̂2 is not an unbiased estimator of θ2.

14. Show that the sample proportion
X
n

is a minimum

variance unbiased estimator of the binomial parameter

θ . (Hint: Treat
X
n

as the mean of a random sample of size

n from a Bernoulli population with the parameter θ .)

15. Show that the mean of a random sample of size n is a
minimum variance unbiased estimator of the parameter
λ of a Poisson population.

16. If �̂1 and �̂2 are independent unbiased estimators of
a given parameter θ and var(�̂1) = 3 · var(�̂2), find the
constants a1 and a2 such that a1�̂1 + a2�̂2 is an unbiased
estimator with minimum variance for such a linear com-
bination.

17. Show that the mean of a random sample of size n from
an exponential population is a minimum variance unbi-
ased estimator of the parameter θ .

18. Show that for the unbiased estimator of Exam-

ple 4,
n + 1

n
· Yn, the Cramér–Rao inequality is not

satisfied.

19. The information about θ in a random sample of size n
is also given by

−n · E

[
�2 ln f (X)

�θ2

]

where f (x) is the value of the population density at x, pro-
vided that the extremes of the region for which f (x)Z 0 do
not depend on θ . The derivation of this formula takes the
following steps:
(a) Differentiating the expressions on both sides of∫

f (x) dx = 1

with respect to θ , show that

∫
� ln f (x)

�θ
· f (x) dx = 0

by interchanging the order of integration and differen-
tiation.
(b) Differentiating again with respect to θ , show that

E

[(
� ln f (X)

�θ

)2
]

= −E

[
�2 ln f (X)

�θ2

]

20. Rework Example 5 using the alternative formula for
the information given in Exercise 19.

21. If X1 is the mean of a random sample of size n from
a normal population with the mean μ and the variance
σ 2

1 , X2 is the mean of a random sample of size n from a
normal population with the mean μ and the variance σ 2

2 ,
and the two samples are independent, show that
(a) ω · X1 + (1 −ω) · X2, where 0 F ω F 1, is an unbiased
estimator of μ;
(b) the variance of this estimator is a minimum when

ω = σ 2
2

σ 2
1 + σ 2

2

22. With reference to Exercise 21, find the efficiency of
the estimator of part (a) with ω = 1

2 relative to this esti-
mator with

ω = σ 2
2

σ 2
1 + σ 2

2
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23. If X1 and X2 are the means of independent random
samples of sizes n1 and n2 from a normal population with
the mean μ and the variance σ 2, show that the variance
of the unbiased estimator

ω · X1 + (1 −ω) · X2

is a minimum when ω = n1

n1 + n2
.

24. With reference to Exercise 23, find the efficiency of
the estimator with ω = 1

2 relative to the estimator with

ω = n1

n1 + n2
.

25. If X1, X2, and X3 constitute a random sample of size
n = 3 from a normal population with the mean μ and the

variance σ 2, find the efficiency of
X1 + 2X2 + X3

4
relative

to
X1 + X2 + X3

3
as estimates of μ.

26. If X1 and X2 constitute a random sample of size n = 2
from an exponential population, find the efficiency of 2Y1
relative to X, where Y1 is the first order statistic and 2Y1
and X are both unbiased estimators of the parameter θ .

27. Verify the result given for var
(

n + 1
n

· Yn

)
in Ex-

ample 6.

28. With reference to Example 3, we showed that X − 1 is
an unbiased estimator of δ, and in Exercise 8 the reader
was asked to find another unbiased estimator of δ based
on the smallest sample value. Find the efficiency of the
first of these two estimators relative to the second.

29. With reference to Exercise 12, show that 2X − 1 is
also an unbiased estimator of k, and find the efficiency

of this estimator relative to the one of part (b) of Exer-
cise 12 for
(a) n = 2; (b) n = 3.

30. Since the variances of the mean and the midrange
are not affected if the same constant is added to each
observation, we can determine these variances for ran-
dom samples of size 3 from the uniform population

f (x) =
⎧⎨
⎩1 for θ − 1

2
< x<θ + 1

2
0 elsewhere

by referring instead to the uniform population

f (x) =
{

1 for 0< x< 1
0 elsewhere

Show that E(X) = 1
2 , E(X2) = 1

3 , and var(X) = 1
12

for this population so that for a random sample of size
n = 3, var(X) = 1

36 .

31. Show that if �̂ is a biased estimator of θ , then

E[(�̂− θ)2] = var(�̂)+ [b(θ)]2

32. If �̂1 = X
n

, �̂2 = X + 1
n + 2

, and �̂3 = 1
3

are estimators

of the parameter θ of a binomial population and θ = 1
2 ,

for what values of n is
(a) the mean square error of �̂2 less than the variance
of �̂1;
(b) the mean square error of �̂3 less than the variance
of �̂1?

4 Consistency In the preceding section we assumed that the variance of an estimator, or its mean
square error, is a good indication of its chance fluctuations. The fact that these mea-
sures may not provide good criteria for this purpose is illustrated by the following
example: Suppose that we want to estimate on the basis of one observation the
parameter θ of the population given by

f (x) = ω · 1

σ
√

2π
· e

− 1
2

(
x−θ
σ

)2

+ (1 −ω) · 1
π

· 1
1 + (x − θ)2

for −q< x<q and 0<ω< 1. Evidently, this population is a combination of a nor-
mal population with the mean θ and the variance σ 2 and a Cauchy population with
α = θ and β = 1. Now, if ω is very close to 1, say, ω = 1 − 10−100, and σ is very small,
say, σ = 10−100, the probability that a random variable having this distribution will
take on a value that is very close to θ , and hence is a very good estimate of θ , is prac-
tically 1. Yet, since the variance of the Cauchy distribution does not exist, neither
will the variance of this estimator.
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The example of the preceding paragraph is a bit farfetched, but it suggests that
we pay more attention to the probabilities with which estimators will take on values
that are close to the parameters that they are supposed to estimate. Basing our argu-
ment on Chebyshev’s theorem, when n→q the probability approaches 1 that the

sample proportion
X
n

will take on a value that differs from the binomial parameter

θ by less than any arbitrary constant c> 0. Also using Chebyshev’s theorem, we see
that when n→q the probability approaches 1 that X will take on a value that differs
from the mean of the population sampled by less than any arbitrary constant c> 0.

In both of these examples we are practically assured that, for large n, the
estimators will take on values that are very close to the respective parameters.
Formally, this concept of “closeness” is expressed by means of the following
definition of consistency.

DEFINITION 5. CONSISTENT ESTIMATOR. The statistic �̂ is a consistent estimator of
the parameter � of a given distribution if and only if for each c> 0

lim
n→q

P(|�̂− θ |< c) = 1

Note that consistency is an asymptotic property, that is, a limiting property of an
estimator. Informally, Definition 5 says that when n is sufficiently large, we can be
practically certain that the error made with a consistent estimator will be less than
any small preassigned positive constant. The kind of convergence expressed by the
limit in Definition 5 is generally called convergence in probability.

Based on Chebyshev’s theorem,
X
n

is a consistent estimator of the binomial

parameter θ and X is a consistent estimator of the mean of a population with a finite
variance. In practice, we can often judge whether an estimator is consistent by using
the following sufficient condition, which, in fact, is an immediate consequence of
Chebyshev’s theorem.

THEOREM 3. If �̂ is an unbiased estimator of the parameter θ and
var(�̂)→0 as n→q, then �̂ is a consistent estimator of θ .

EXAMPLE 8

Show that for a random sample from a normal population, the sample variance S2 is
a consistent estimator of σ 2.

Solution
Since S2 is an unbiased estimator of σ 2 in accordance with Theorem 3, it remains to
be shown that var(S2)→0 as n→q. Referring to the theorem “the random variable
(n−1)S2

σ 2 has a chi-square distribution with n − 1 degrees of freedom”, we find that for
a random sample from a normal population

var(S2) = 2σ 4

n − 1
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It follows that var(S2)→0 as n→q, and we have thus shown that S2 is a consistent
estimator of the variance of a normal population.

It is of interest to note that Theorem 3 also holds if we substitute “asymptotically
unbiased” for “unbiased.” This is illustrated by the following example.

EXAMPLE 9

With reference to Example 3, show that the smallest sample value (that is, the first
order statistic Y1) is a consistent estimator of the parameter δ.

Solution
Substituting into the formula for g1(y1), we find that the sampling distribution of Y1
is given by

g1(y1) = n · e−(y1−δ) ·
[∫ q

y1

e−(x−δ) dx

]n−1

= n · e−n(y1−δ)

for y1>δ and g1(y1) = 0 elsewhere. Based on this result, it can easily be shown

that E(Y1) = δ+ 1
n

and hence that Y1 is an asymptotically unbiased estimator of δ.

Furthermore,

P(|Y1 − δ|< c) = P(δ <Y1<δ+ c)

=
∫ δ+c

δ

n · e−n(y1−δ) dy1

= 1 − e−nc

Since lim
n→q

(1 − e−nc) = 1, it follows from Definition 5 that Y1 is a consistent estima-

tor of δ.

Theorem 3 provides a sufficient condition for the consistency of an estimator. It
is not a necessary condition because consistent estimators need not be unbiased, or
even asymptotically unbiased. This is illustrated by Exercise 41.

5 Sufficiency An estimator �̂ is said to be sufficient if it utilizes all the information in a sample
relevant to the estimation of θ , that is, if all the knowledge about θ that can be
gained from the individual sample values and their order can just as well be gained
from the value of �̂ alone.

Formally, we can describe this property of an estimator by referring to the con-
ditional probability distribution or density of the sample values given �̂ = θ̂ , which
is given by

f (x1, x2, . . . , xn|θ̂ ) = f (x1, x2, . . . , xn, θ̂ )

g(θ̂)
= f (x1, x2, . . . , xn)

g(θ̂)
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If it depends on θ , then particular values of X1, X2, . . . , Xn yielding �̂ = θ̂ will be
more probable for some values of θ than for others, and the knowledge of these
sample values will help in the estimation of θ . On the other hand, if it does not
depend on θ , then particular values of X1, X2, . . . , Xn yielding �̂ = θ̂ will be just as
likely for any value of θ , and the knowledge of these sample values will be of no help
in the estimation of θ .

DEFINITION 6. SUFFICIENT ESTIMATOR. The statistic �̂ is a sufficient estimator of the
parameter � of a given distribution if and only if for each value of �̂ the condi-
tional probability distribution or density of the random sample X1, X2, . . . , Xn,
given �̂ = �, is independent of �.

EXAMPLE 10

If X1, X2, . . . , Xn constitute a random sample of size n from a Bernoulli population,
show that

�̂ = X1 + X2 + · · · + Xn

n

is a sufficient estimator of the parameter θ .

Solution
By the definition “BERNOULLI DISTRIBUTION. A random variable X has a
Bernoulli distribution and it is referred to as a Bernoulli random variable if and
only if its probability distribution is given by f (x; θ) = θx(1 − θ)1−x for x = 0, 1”,

f (xi; θ) = θxi(1 − θ)1−xi for xi = 0, 1

so that

f (x1, x2, . . . , xn) =
n∏

i=1

θxi(1 − θ)1−xi

= θ

n∑
i=1

xi
(1 − θ)

n−
n∑

i=1
xi

= θx(1 − θ)n−x

= θnθ̂ (1 − θ)n−nθ̂

for xi = 0 or 1 and i = 1, 2, . . . , n. Also, since

X = X1 + X2 + · · · + Xn

is a binomial random variable with the parameters θ and n, its distribution is given by

b(x; n, θ) =
(

n
x

)
θx(1 − θ)n−x

and the transformation-of-variable technique yields

g(θ̂) =
(

n
nθ̂

)
θnθ̂ (1 − θ)n−nθ̂ for θ̂ = 0,

1
n

, . . . , 1
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Now, substituting into the formula for f (x1, x2, . . . , xn|θ̂ ) on the previous page, we get

f (x1, x2, . . . , xn, θ̂ )

g(θ̂)
= f (x1, x2, . . . , xn)

g(θ̂ )

= θnθ̂ (1 − θ)n−nθ̂(
n

nθ̂

)
θnθ̂ (1 − θ)n−nθ̂

= 1(
n

nθ̂

)

= 1(
n
x

)

= 1(
n

x1 + x2 + · · · + xn

)

for xi = 0 or 1 and i = 1, 2, . . . , n. Evidently, this does not depend on θ and we have

shown, therefore, that �̂ = X
n

is a sufficient estimator of θ .

EXAMPLE 11

Show that Y = 1
6 (X1 + 2X2 + 3X3) is not a sufficient estimator of the Bernoulli

parameter θ .

Solution
Since we must show that

f (x1, x2, x3|y) = f (x1, x2, x3, y)
g(y)

is not independent of θ for some values of X1, X2, and X3, let us consider the case
where x1 = 1, x2 = 1, and x3 = 0. Thus, y = 1

6 (1 + 2 · 1 + 3 · 0) = 1
2 and

f
(

1, 1, 0|Y = 1
2

)
=

P
(

X1 = 1, X2 = 1, X3 = 0, Y = 1
2

)

P
(

Y = 1
2

)

= f (1, 1, 0)
f (1, 1, 0)+ f (0, 0, 1)

where
f (x1, x2, x3) = θx1+x2+x3(1 − θ)3−(x1+x2+x3)
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for x1 = 0 or 1 and i = 1, 2, 3. Since f (1, 1, 0) = θ2(1 − θ) and f (0, 0, 1) = θ(1 − θ)2, it
follows that

f
(

1, 1, 0|Y = 1
2

)
= θ2(1 − θ)
θ2(1 − θ)+ θ(1 − θ)2 = θ

and it can be seen that this conditional probability depends on θ . We have thus shown
that Y = 1

6 (X1 + 2X2 + 3X3) is not a sufficient estimator of the parameter θ of a
Bernoulli population.

Because it can be very tedious to check whether a statistic is a sufficient estima-
tor of a given parameter based directly on Definition 6, it is usually easier to base it
instead on the following factorization theorem.

THEOREM 4. The statistic �̂ is a sufficient estimator of the parameter
θ if and only if the joint probability distribution or density of the random
sample can be factored so that

f (x1, x2, . . . , xn; θ) = g(θ̂ , θ) · h(x1, x2, . . . , xn)

where g(θ̂ , θ) depends only on θ̂ and θ , and h(x1, x2, . . . , xn) does not
depend on θ .

A proof of this theorem may be found in more advanced texts; see, for instance, the
book by Hogg and Tanis listed among the references at the end of this chapter. Here,
let us illustrate the use of Theorem 4 by means of the following example.

EXAMPLE 12

Show that X is a sufficient estimator of the mean μ of a normal population with the
known variance σ 2.

Solution
Making use of the fact that

f (x1, x2, . . . , xn;μ) =
(

1

σ
√

2π

)n

· e
− 1

2 ·
n∑

i=1

(
xi−μ
σ

)2

and that

n∑
i=1

(xi −μ)2 =
n∑

i=1

[(xi − x)− (μ− x)]2

=
n∑

i=1

(xi − x)2 +
n∑

i=1

(x −μ)2

=
n∑

i=1

(xi − x)2 + n(x −μ)2
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we get

f (x1, x2, . . . , xn;μ) =

⎧⎪⎨
⎪⎩

√
n

σ
√

2π
· e

− 1
2

(
x−μ
σ/

√
n

)2
⎫⎪⎬
⎪⎭

*

⎧⎪⎨
⎪⎩

1√
n

(
1

σ
√

2π

)n−1

· e
− 1

2 ·
n∑

i=1

(
xi−x
σ

)2
⎫⎪⎬
⎪⎭

where the first factor on the right-hand side depends only on the estimate x and
the population mean μ, and the second factor does not involve μ. According to
Theorem 4, it follows that X is a sufficient estimator of the mean μ of a normal
population with the known variance σ 2.

Based on Definition 6 and Theorem 4, respectively, we have presented two ways
of checking whether a statistic �̂ is a sufficient estimator of a given parameter θ . As
we already said, the factorization theorem usually leads to easier solutions; but if
we want to show that a statistic �̂ is not a sufficient estimator of a given parame-
ter θ , it is nearly always easier to proceed with Definition 6. This was illustrated by
Example 11.

Let us also mention the following important property of sufficient estimators.
If �̂ is a sufficient estimator of θ , then any single-valued function Y = u(�̂), not
involving θ , is also a sufficient estimator of θ , and therefore of u(θ), provided y =
u(θ̂) can be solved to give the single-valued inverse θ̂ = w(y). This follows directly
from Theorem 4, since we can write

f (x1, x2, . . . , xn; θ) = g[w(y), θ ] · h(x1, x2, . . . , xn)

where g[w(y), θ ] depends only on y and θ . If we apply this result to Example 10,

where we showed that �̂ = X
n

is a sufficient estimator of the Bernoulli parameter

θ , it follows that X = X1 + X2 + · · · + Xn is also a sufficient estimator of the mean
μ = nθ of a binomial population.

6 Robustness In recent years, special attention has been paid to a statistical property called robust-
ness. It is indicative of the extent to which estimation procedures (and, as we shall see
later, other methods of inference) are adversely affected by violations of underlying
assumptions. In other words, an estimator is said to be robust if its sampling dis-
tribution is not seriously affected by violations of assumptions. Such violations are
often due to outliers caused by outright errors made, say, in reading instruments
or recording the data or by mistakes in experimental procedures. They may also
pertain to the nature of the populations sampled or their parameters. For instance,
when estimating the average useful life of a certain electronic component, we may
think that we are sampling an exponential population, whereas actually we are sam-
pling a Weibull population, or when estimating the average income of a certain
age group, we may use a method based on the assumption that we are sampling a
normal population, whereas actually the population (income distribution) is highly
skewed. Also, when estimating the difference between the average weights of two
kinds of frogs, the difference between the mean I.Q.’s of two ethnic groups, and in
general the difference μ1 −μ2 between the means of two populations, we may be
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assuming that the two populations have the same variance σ 2, whereas in reality
σ 2

1 Z σ 2
2 .

As should be apparent, most questions of robustness are difficult to answer;
indeed, much of the language used in the preceding paragraph is relatively impre-
cise. After all, what do we mean by “not seriously affected”? Furthermore, when we
speak of violations of underlying assumptions, it should be clear that some violations
are more serious than others. When it comes to questions of robustness, we are thus
faced with all sorts of difficulties, mathematically and otherwise, and for the most
part they can be resolved only by computer simulations.

Exercises

33. Use Definition 5 to show that Y1, the first order statis-
tic, is a consistent estimator of the parameter α of a uni-
form population with β = α+ 1.

34. With reference to Exercise 33, use Theorem 3 to show

that Y1 − 1
n + 1

is a consistent estimator of the parameter
α.

35. With reference to the uniform population of Exam-
ple 4, use the definition of consistency to show that Yn,
the nth order statistic, is a consistent estimator of the
parameter β.

36. If X1, X2, . . . , Xn constitute a random sample of size n
from an exponential population, show that X is a consis-
tent estimator of the parameter θ .

37. With reference to Exercise 36, is Xn a consistent esti-
mator of the parameter θ?

38. Show that the estimator of Exercise 21 is consistent.

39. Substituting “asymptotically unbiased” for “unbi-

ased” in Theorem 3, show that
X + 1
n + 2

is a consistent esti-

mator of the binomial parameter θ .

40. Substituting “asymptotically unbiased” for “unbi-
ased” in Theorem 3, use this theorem to rework
Exercise 35.

41. To show that an estimator can be consistent without
being unbiased or even asymptotically unbiased, consider
the following estimation procedure: To estimate the mean
of a population with the finite variance σ 2, we first take
a random sample of size n. Then we randomly draw one
of n slips of paper numbered from 1 through n, and if the
number we draw is 2, 3, . . ., or n, we use as our estimator

the mean of the random sample; otherwise, we use the
estimate n2. Show that this estimation procedure is
(a) consistent;
(b) neither unbiased nor asymptotically unbiased.

42. If X1, X2, . . . , Xn constitute a random sample of size
n from an exponential population, show that X is a suffi-
cient estimator of the parameter θ .

43. If X1 and X2 are independent random variables hav-
ing binomial distributions with the parameters θ and n1

and θ and n2, show that
X1 + X2

n1 + n2
is a sufficient estimator

of θ .

44. In reference to Exercise 43, is
X1 + 2X2

n1 + 2n2
a sufficient

estimator of θ?

45. After referring to Example 4, is the nth order statistic,
Yn, a sufficient estimator of the parameter β?

46. If X1 and X2 constitute a random sample of size n = 2
from a Poisson population, show that the mean of the
sample is a sufficient estimator of the parameter λ.

47. If X1, X2, and X3 constitute a random sample of size
n = 3 from a Bernoulli population, show that Y =
X1 + 2X2 + X3 is not a sufficient estimator of θ . (Hint:
Consider special values of X1, X2, and X3.)

48. If X1, X2, . . . , Xn constitute a random sample of size n
from a geometric population, show that Y = X1 + X2 +
· · · + Xn is a sufficient estimator of the parameter θ .

49. Show that the estimator of Exercise 5 is a sufficient
estimator of the variance of a normal population with the
known mean μ.

7 The Method of Moments
As we have seen in this chapter, there can be many different estimators of one and
the same parameter of a population. Therefore, it would seem desirable to have
some general method, or methods, that yield estimators with as many desirable
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properties as possible. In this section and in Section 8 we shall present two such
methods, the method of moments, which is historically one of the oldest methods,
and the method of maximum likelihood. Furthermore, Bayesian estimation will be
treated briefly in Section 9.

The method of moments consists of equating the first few moments of a popu-
lation to the corresponding moments of a sample, thus getting as many equations as
are needed to solve for the unknown parameters of the population.

DEFINITION 7. SAMPLE MOMENTS. The kth sample moment of a set of observations
x1, x2, . . . , xn is the mean of their kth powers and it is denoted by m′

k; symbolically,

m′
k =

n∑
i=1

xk
i

n

Thus, if a population has r parameters, the method of moments consists of solving
the system of equations

m′
k = μ′

k k = 1, 2, . . . , r

for the r parameters.

EXAMPLE 13

Given a random sample of size n from a uniform population with β = 1, use the
method of moments to obtain a formula for estimating the parameter α.

Solution
The equation that we shall have to solve is m′

1 = μ′
1, where m′

1 = x and μ′
1 =

α+β
2

= α+ 1
2

. Thus,

x = α+ 1
2

and we can write the estimate of α as

α̂ = 2x − 1

EXAMPLE 14

Given a random sample of size n from a gamma population, use the method of
moments to obtain formulas for estimating the parameters α and β.

Solution
The system of equations that we shall have to solve is

m′
1 = μ′

1 and m′
2 = μ′

2

where μ′
1 = αβ and μ′

2 = α(α+ 1)β2. Thus,

m′
1 = αβ and m′

2 = α(α+ 1)β2
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and, solving for α and β, we get the following formulas for estimating the two param-
eters of the gamma distribution:

α̂ = (m′
1)

2

m′
2 − (m′

1)
2 and β̂ = m′

2 − (m′
1)

2

m′
1

Since m′
1 =

n∑
i=1

xi

n
= x and m′

2 =

n∑
i=1

x2
i

n
, we can write

α̂ = nx2

n∑
i=1
(xi − x)2

and β̂ =

n∑
i=1
(xi − x)2

nx

in terms of the original observations.

In these examples we were concerned with the parameters of a specific popula-
tion. It is important to note, however, that when the parameters to be estimated are
the moments of the population, then the method of moments can be used without
any knowledge about the nature, or functional form, of the population.

8 The Method of Maximum Likelihood
In two papers published early in the last century, R. A. Fisher proposed a general
method of estimation called the method of maximum likelihood. He also demon-
strated the advantages of this method by showing that it yields sufficient estimators
whenever they exist and that maximum likelihood estimators are asymptotically
minimum variance unbiased estimators.

To help to understand the principle on which the method of maximum like-
lihood is based, suppose that four letters arrive in somebody’s morning mail, but
unfortunately one of them is misplaced before the recipient has a chance to open it.
If, among the remaining three letters, two contain credit-card billings and the other
one does not, what might be a good estimate of k, the total number of credit-card
billings among the four letters received? Clearly, k must be two or three, and if we
assume that each letter had the same chance of being misplaced, we find that the
probability of the observed data (two of the three remaining letters contain credit-
card billings) is (

2
2

)(
2
1

)
(

4
3

) = 1
2

for k = 2 and (
3
2

)(
1
1

)
(

4
3

) = 3
4
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for k = 3. Therefore, if we choose as our estimate of k the value that maximizes the
probability of getting the observed data, we obtain k = 3. We call this estimate a
maximum likelihood estimate, and the method by which it was obtained is called the
method of maximum likelihood.

Thus, the essential feature of the method of maximum likelihood is that we look
at the sample values and then choose as our estimates of the unknown parameters
the values for which the probability or probability density of getting the sample val-
ues is a maximum. In what follows, we shall limit ourselves to the one-parameter
case; but, as we shall see in Example 18, the general idea applies also when there are
several unknown parameters. In the discrete case, if the observed sample values are
x1, x2, . . . , xn, the probability of getting them is

P(X1 = x1, X2 = x2, . . . , Xn = xn) = f (x1, x2, . . . , xn; θ)

which is just the value of the joint probability distribution of the random variables
X1, X2, . . . , Xn at X1 = x1, X2 = x2, . . . , Xn = xn. Since the sample values have
been observed and are therefore fixed numbers, we regard f (x1, x2, . . . , xn; θ) as a
value of a function of θ , and we refer to this function as the likelihood function.
An analogous definition applies when the random sample comes from a continuous
population, but in that case f (x1, x2, . . . , xn; θ) is the value of the joint probability
density of the random variables X1, X2, . . . , Xn at X1 = x1, X2 = x2, . . . , Xn = xn.

DEFINITION 8. MAXIMUM LIKELIHOOD ESTIMATOR. If x1, x2, . . . , xn are the values of a
random sample from a population with the parameter �, the likelihood function
of the sample is given by

L(θ) = f (x1, x2, . . . , xn; θ)

for values of � within a given domain. Here, f(x1, x2, . . . , xn; �) is the value of
the joint probability distribution or the joint probability density of the random
variables X1, X2, . . . , Xn at X1 = x1, X2 = x2, . . . , Xn = xn. We refer to the value
of � that maximizes L(�) as the maximum likelihood estimator of �.

EXAMPLE 15

Given x “successes” in n trials, find the maximum likelihood estimate of the param-
eter θ of the corresponding binomial distribution.

Solution
To find the value of θ that maximizes

L(θ) =
(

n
x

)
θx(1 − θ)n−x

it will be convenient to make use of the fact that the value of θ that maximizes L(θ)
will also maximize

ln L(θ) = ln

(
n
x

)
+ x · ln θ + (n − x) · ln(1 − θ)
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Thus, we get
d[ln L(θ)]

dθ
= x
θ

− n − x
1 − θ

and, equating this derivative to 0 and solving for θ , we find that the likelihood func-
tion has a maximum at θ = x

n
. This is the maximum likelihood estimate of the

binomial parameter θ , and we refer to �̂ = X
n

as the corresponding maximum like-
lihood estimator.

EXAMPLE 16

If x1, x2, . . . , xn are the values of a random sample from an exponential population,
find the maximum likelihood estimator of its parameter θ .

Solution
Since the likelihood function is given by

L(θ) = f (x1, x2, . . . , xn; θ)

=
n∏

i=1

f (xi; θ)

=
(

1
θ

)n

· e
− 1
θ

(
n∑

i=1
xi

)

differentiation of ln L(θ) with respect to θ yields

d[ln L(θ)]
dθ

= −n
θ

+ 1
θ2 ·

n∑
i=1

xi

Equating this derivative to zero and solving for θ , we get the maximum likelihood
estimate

θ̂ = 1
n

·
n∑

i=1

xi = x

Hence, the maximum likelihood estimator is �̂ = X.

Now let us consider an example in which straightforward differentiation cannot
be used to find the maximum value of the likelihood function.

EXAMPLE 17

If x1, x2, . . . , xn are the values of a random sample of size n from a uniform popula-
tion with α = 0 (as in Example 4), find the maximum likelihood estimator of β.

Solution
The likelihood function is given by

L(β) =
n∏

i=1

f (xi;β) =
(

1
β

)n
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for β greater than or equal to the largest of the x’s and 0 otherwise. Since the value
of this likelihood function increases as β decreases, we must make β as small as
possible, and it follows that the maximum likelihood estimator of β is Yn, the nth
order statistic.

Comparing the result of this example with that of Example 4, we find that maximum
likelihood estimators need not be unbiased. However, the ones of Examples 15 and
16 were unbiased.

The method of maximum likelihood can also be used for the simultaneous esti-
mation of several parameters of a given population. In that case we must find the
values of the parameters that jointly maximize the likelihood function.

EXAMPLE 18

If X1, X2, . . . , Xn constitute a random sample of size n from a normal population with
the mean μ and the variance σ 2, find joint maximum likelihood estimates of these
two parameters.

Solution
Since the likelihood function is given by

L(μ, σ 2) =
n∏

i=1

n(xi;μ, σ)

=
(

1

σ
√

2π

)n

· e
− 1

2σ2 ·
n∑

i=1
(xi−μ)2

partial differentiation of ln L(μ, σ 2) with respect to μ and σ 2 yields

�[ln L(μ, σ 2)]
�μ

= 1
σ 2 ·

n∑
i=1

(xi −μ)

and

�[ln L(μ, σ 2)]
�σ 2 = − n

2σ 2 + 1
2σ 4 ·

n∑
i=1

(xi −μ)2

Equating the first of these two partial derivatives to zero and solving for μ, we get

μ̂ = 1
n

·
n∑

i=1

xi = x

and equating the second of these partial derivatives to zero and solving for σ 2 after
substituting μ = x, we get

σ̂ 2 = 1
n

·
n∑

i=1

(xi − x)2
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It should be observed that we did not show that σ̂ is a maximum likelihood esti-
mate of σ , only that σ̂ 2 is a maximum likelihood estimate of σ 2. However, it can be
shown (see reference at the end of this chapter) that maximum likelihood estima-
tors have the invariance property that if �̂ is a maximum likelihood estimator of θ
and the function given by g(θ) is continuous, then g(�̂) is also a maximum likelihood
estimator of g(θ). It follows that

σ̂ =
√√√√1

n
·

n∑
i=1

(xi − x)2

which differs from s in that we divide by n instead of n − 1, is a maximum likelihood
estimate of σ .

In Examples 15, 16, and 18 we maximized the logarithm of the likelihood func-
tion instead of the likelihood function itself, but this is by no means necessary. It just
so happened that it was convenient in each case.

Exercises
50. If X1, X2, . . . , Xn constitute a random sample from a
population with the mean μ and the variance σ 2, use the
method of moments to find estimators for μ and σ 2.

51. Given a random sample of size n from an exponen-
tial population, use the method of moments to find an
estimator of the parameter θ .

52. Given a random sample of size n from a uniform pop-
ulation with α = 0, find an estimator for β by the method
of moments.

53. Given a random sample of size n from a Poisson popu-
lation, use the method of moments to obtain an estimator
for the parameter λ.

54. Given a random sample of size n from a beta popu-
lation with β = 1, use the method of moments to find a
formula for estimating the parameter α.

55. If X1, X2, . . . , Xn constitute a random sample of size n
from a population given by

f (x; θ) =
⎧⎨
⎩

2(θ − x)
θ2 for 0< x<θ

0 elsewhere

find an estimator for θ by the method of moments.

56. If X1, X2, . . . , Xn constitute a random sample of size n
from a population given by

g(x; θ , δ) =

⎧⎪⎪⎨
⎪⎪⎩

1
θ

· e− x−δ
θ for x>δ

0 elsewhere

find estimators for δ and θ by the method of moments.
This distribution is sometimes referred to as the two-
parameter exponential distribution, and for θ = 1 it is
the distribution of Example 3.

57. Given a random sample of size n from a continuous
uniform population, use the method of moments to find
formulas for estimating the parameters α and β.

58. Consider N independent random variables having
identical binomial distributions with the parameters θ
and n = 3. If n0 of them take on the value 0, n1 take
on the value 1, n2 take on the value 2, and n3 take on the
value 3, use the method of moments to find a formula for
estimating θ .

59. Use the method of maximum likelihood to rework
Exercise 53.

60. Use the method of maximum likelihood to rework
Exercise 54.

61. If X1, X2, . . . , Xn constitute a random sample of size n
from a gamma population with α = 2, use the method of
maximum likelihood to find a formula for estimating β.

62. Given a random sample of size n from a normal pop-
ulation with the known mean μ, find the maximum likeli-
hood estimator for σ .

63. If X1, X2, . . . , Xn constitute a random sample of size n
from a geometric population, find formulas for estimating
its parameter θ by using
(a) the method of moments;
(b) the method of maximum likelihood.
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64. Given a random sample of size n from a Rayleigh
population, find an estimator for its parameter α by the
method of maximum likelihood.

65. Given a random sample of size n from a Pareto pop-
ulation, use the method of maximum likelihood to find a
formula for estimating its parameter α.

66. Use the method of maximum likelihood to rework
Exercise 56.

67. Use the method of maximum likelihood to rework
Exercise 57.

68. Use the method of maximum likelihood to rework
Exercise 58.

69. Given a random sample of size n from a gamma pop-
ulation with the known parameter α, find the maximum
likelihood estimator for
(a) β; (b) τ = (2β − 1)2.

70. If V1, V2, . . . , Vn and W1, W2, . . . , Wn are independent
random samples of size n from normal populations with
the means μ1 = α+β and μ2 = α−β and the common
variance σ 2 = 1, find maximum likelihood estimators for
α and β.

71. If V1, V2, . . . , Vn1 and W1, W2, . . . , Wn2 are inde-
pendent random samples of sizes n1 and n2 from
normal populations with the means μ1 and μ2 and the
common variance σ 2, find maximum likelihood estima-
tors for μ1,μ2, and σ 2.

72. Let X1, X2, . . . , Xn be a random sample of size n from
the uniform population given by

f (x; θ) =
⎧⎨
⎩1 for θ − 1

2
< x<θ + 1

2
0 elsewhere

Show that if Y1 and Yn are the first and nth order statistic,
any estimator �̂ such that

Yn − 1
2

F �̂ F Y1 + 1
2

can serve as a maximum likelihood estimator of θ . This
shows that maximum likelihood estimators need not
be unique.

73. With reference to Exercise 72, check whether the fol-
lowing estimators are maximum likelihood estimators
of θ :
(a) 1

2 (Y1 + Yn); (b) 1
3 (Y1 + 2Y2).

9 Bayesian Estimation†

So far we have assumed in this chapter that the parameters that we want to estimate
are unknown constants; in Bayesian estimation the parameters are looked upon as
random variables having prior distributions, usually reflecting the strength of one’s
belief about the possible values that they can assume.

The main problem of Bayesian estimation is that of combining prior feelings
about a parameter with direct sample evidence, and this is accomplished by deter-
mining ϕ(θ |x), the conditional density of � given X = x. In contrast to the prior
distribution of �, this conditional distribution (which also reflects the direct sample
evidence) is called the posterior distribution of �. In general, if h(θ) is the value
of the prior distribution of � at θ and we want to combine the information that it
conveys with direct sample evidence about �, for instance, the value of a statistic
W = u(X1, X2, . . . , Xn), we determine the posterior distribution of � by means of
the formula

ϕ(θ |w) = f (θ , w)
g(w)

= h(θ) · f (w|θ)
g(w)

Here f (w|θ) is the value of the sampling distribution of W given � = θ at w, f (θ , w)
is the value of the joint distribution of � and W at θ and w, and g(w) is the value
of the marginal distribution of W at w. Note that the preceding formula for ϕ(θ |w)
is, in fact, an extension of Bayes’ theorem to the continuous case. Hence, the term
“Bayesian estimation.”

†This section may be omitted with no loss of continuity.
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Once the posterior distribution of a parameter has been obtained, it can be
used to make estimates, or it can be used to make probability statements about
the parameter, as will be illustrated in Example 20. Although the method we have
described has extensive applications, we shall limit our discussion here to infer-
ences about the parameter � of a binomial population and the mean of a normal
population; inferences about the parameter of a Poisson population are treated in
Exercise 77.

THEOREM 5. If X is a binomial random variable and the prior distribution
of� is a beta distribution with the parameters α and β, then the posterior
distribution of � given X = x is a beta distribution with the parameters
x +α and n − x +β.

Proof For � = θ we have

f (x|θ) =
(

n
x

)
θx(1 − θ)n−x for x = 0, 1, 2, . . . , n

h(θ) =
⎧⎨
⎩
(α+β)
(α) ·(β) · θα−1(1 − θ)β−1 for 0<θ < 1

0 elsewhere

and hence

f (θ , x) = (α+β)
(α) ·(β) · θα−1(1 − θ)β−1 *

(
n
x

)
θx(1 − θ)n−x

=
(

n
x

)
· (α+β)
(α) ·(β) · θx+α−1(1 − θ)n−x+β−1

for 0<θ < 1 and x = 0, 1, 2, . . . , n, and f (θ , x) = 0 elsewhere. To obtain
the marginal density of X, let us make use of the fact that the integral of
the beta density from 0 to 1 equals 1; that is,

∫ 1

0
xα−1(1 − x)β−1dx = (α) ·(β)

(α+β)
Thus, we get

g(x) =
(

n
x

)
· (α+β)
(α) ·(β) · (α+ x) ·(n − x +β)

(n +α+β)

for x = 0, 1, . . . , n, and hence

ϕ(θ |x) = (n +α+β)
(α+ x) ·(n − x +β) · θx+α−1(1 − θ)n−x+β−1

for 0<θ < 1, and ϕ(θ |x) = 0 elsewhere. As can be seen by inspection, this
is a beta density with the parameters x +α and n − x +β.
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To make use of this theorem, let us refer to the result that (under very general
conditions) the mean of the posterior distribution minimizes the Bayes risk when
the loss function is quadratic, that is, when the loss function is given by

L[d(x), θ ] = c[d(x)− θ ]2

where c is a positive constant. Since the posterior distribution of� is a beta distribu-
tion with parameters x +α and n − x +β, it follows from the theorem “The mean and
the variance of the beta distribution are given by μ = α

α+β and σ 2 = αβ

(α+β)2(α+β+1)
”

that

E(�|x) = x +α
α+β + n

is a value of an estimator of θ that minimizes the Bayes risk when the loss function
is quadratic and the prior distribution of � is of the given form.

EXAMPLE 19

Find the mean of the posterior distribution as an estimate of the “true” probability of
a success if 42 successes are obtained in 120 binomial trials and the prior distribution
of � is a beta distribution with α = β = 40.

Solution
Substituting x = 42, n = 120,α = 40, and β = 40 into the formula for E(�|x), we get

E(�|42) = 42 + 40
40 + 40 + 120

= 0.41

Note that without knowledge of the prior distribution of �, the minimum variance
unbiased estimate of θ (see Exercise 14) would be the sample proportion

θ̂ = x
n

= 42
120

= 0.35

THEOREM 6. If X is the mean of a random sample of size n from a normal
population with the known variance σ 2 and the prior distribution of M
(capital Greek mu) is a normal distribution with the mean μ0 and the
variance σ 2

0 , then the posterior distribution of M given X = x is a normal
distribution with the mean μ1 and the variance σ 2

1 , where

μ1 = nxσ 2
0 +μ0σ

2

nσ 2
0 + σ 2

and
1

σ 2
1

= n
σ 2 + 1

σ 2
0

Proof For M = μ we have

f (x|μ) =
√

n

σ
√

2π
· e

− 1
2

(
x−μ
σ/

√
n

)2

for −q< x<q
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and

h(μ) = 1

σ0
√

2π
· e

− 1
2

(
μ−μ0
σ0

)2

for −q<μ<q

so that

ϕ(μ|x) = h(μ) · f (x|μ)
g(x)

=
√

n
2πσσ0g(x)

· e
− 1

2

(
x−μ
σ/

√
n

)2
− 1

2

(
μ−μ0
σ0

)2

for −q<μ<q

Now, if we collect powers of μ in the exponent of e, we get

−1
2

(
n
σ 2 + 1

σ 2
0

)
μ2 +

(
nx
σ 2 + μ0

σ 2
0

)
μ− 1

2

(
nx2

σ 2 + μ2
0

σ 2
0

)

and if we let
1

σ 2
1

= n
σ 2 + 1

σ 2
0

and μ1 = nxσ 2
0 +μ0σ

2

nσ 2
0 + σ 2

factor out − 1

2σ 2
1

, and complete the square, the exponent of e in the expres-

sion for ϕ(μ|x) becomes

− 1

2σ 2
1

(μ−μ1)
2 + R

where R involves n, x,μ0, σ , and σ0, but not μ. Thus, the posterior distri-
bution of M becomes

ϕ(μ|x) =
√

n · eR

2πσσ0g(x)
· e

− 1
2σ2

1
(μ−μ1)

2

for −q<μ<q

which is easily identified as a normal distribution with the mean μ1 and
the variance σ 2

1 . Hence, it can be written as

ϕ(μ|x) = 1

σ1
√

2π
· e

− 1
2

(
μ−μ1
σ1

)2

for −q<μ<q

where μ1 and σ1 are defined above. Note that we did not have to deter-
mine g(x) as it was absorbed in the constant in the final result.

EXAMPLE 20

A distributor of soft-drink vending machines feels that in a supermarket one of his
machines will sell on the average μ0 = 738 drinks per week. Of course, the mean will
vary somewhat from market to market, and the distributor feels that this variation
is measured by the standard deviation σ0 = 13.4. As far as a machine placed in a
particular market is concerned, the number of drinks sold will vary from week to
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z � �1.58 z � 0.53

0.4429

700 715 720
m

0.2019

Figure 1. Diagram for Example 20.

week, and this variation is measured by the standard deviation σ = 42.5. If one of
the distributor’s machines put into a new supermarket averaged x = 692 during the
first 10 weeks, what is the probability (the distributor’s personal probability) that for
this market the value of M is actually between 700 and 720?

Solution
Assuming that the population sampled is approximately normal and that it is reason-
able to treat the prior distribution of M as a normal distribution with the mean μ0
and the standard deviation σ0 = 13.4, we find that substitution into the two formulas
of Theorem 6 yields

μ1 = 10.692(13.4)2 + 738(42.5)2

10(13.4)2 + (42.5)2
= 715

and
1

σ 2
1

= 10
(42.5)2

+ 1
(13.4)2

= 0.0111

so that σ 2
1 = 90.0 and σ1 = 9.5. Now, the answer to our question is given by the

area of the shaded region of Figure 1, that is, the area under the standard normal
curve between

z = 700 − 715
9.5

= −1.58 and z = 720 − 715
9.5

= 0.53

Thus, the probability that the value of M is between 700 and 720 is 0.4429 + 0.2019 =
0.6448, or approximately 0.645.

Exercises
74. This question has been intentionally omitted for this
edition.

75. This question has been intentionally omitted for this
edition.

76. Show that the mean of the posterior distribution of M
given in Theorem 6 can be written as

μ1 = w · x + (1 − w) ·μ0
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that is, as a weighted mean of x and μ0, where

w = n

n + σ 2

σ 2
0

77. If X has a Poisson distribution and the prior dis-
tribution of its parameter � (capital Greek lambda)

is a gamma distribution with the parameters α and β,
show that
(a) the posterior distribution of � given X = x is a

gamma distribution with the parameters α+ x and
β

β + 1
;

(b) the mean of the posterior distribution of � is

μ1 = β(α+ x)
β + 1

10 The Theory in Practice
The sample mean, x, is most frequently used to estimate the mean of a distribution
from a random sample taken from that distribution. It has been shown to be the
minimum variance unbiased estimator as well as a sufficient estimator for the mean
of a normal distribution. It is at least asymptotically unbiased as an estimator for the
mean of most frequently encountered distributions.

In spite of these desirable properties of the sample mean as an estimator for a
population mean, we know that the sample mean will never equal the population
mean. Let us examine the error we make when using x to estimate μ, E = |x −μ|. If
the sample size, n, is large, the quantity

x −μ
σ/

√
n

is a value of a random variable having approximately the standard normal distribu-
tion. Thus, we can state with probability 1 −α that

|x −μ|
σ/

√
n

… zα/2

or
E … zα/2

σ√
n

EXAMPLE 21

A pollster wishes to estimate the percentage of voters who favor a certain candidate.
She wishes to be sure with a probability of 0.95 that the error in the resulting estimate
will not exceed 3 percent. How many registered voters should she interview?

Solution
We shall use the normal approximation to the binomial distribution, assuming that
n will turn out to be large. As per the theorem “If X has a binomial distribution
with the parameters n and θ and Y = X

n , then E(Y) = θ and σ 2
Y = θ(1−θ)

n ” we know

that σ 2
X/n = θ(1 − θ)

n
, where θ is the parameter of the binomial distribution. Since

this quantity is maximized when θ = 1
2

, the maximum value of σ is
1

2
√

n
. Since the

maximum error is to be 0.03, the inequality for E can be written as

E … zα/2 · 1
2
√

n
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Noting that zα/2 = z.025 = 1.96, and solving this inequality for n, we obtain for the
sample size that assures, with probability 0.95, that the error in the resulting estimate
will not exceed 3 percent

n …
z2α/2
4E2 = (1.96)2

4(.03)2
= 1,068

(Note that, in performing this calculation, we always round up to the nearest
integer.)

It should not be surprising in view of this result that most such polls use sample
sizes of about 1,000.

Another consideration related to the accuracy of a sample estimate deals with
the concept of sampling bias. Sampling bias occurs when a sample is chosen that
does not accurately represent the population from which it is taken. For example,
a national poll based on automobile registrations in each of the 50 states proba-
bly is biased, because it omits people who do not own cars. Such people may well
have different opinions than those who do. A sample of product stored on shelves
in a warehouse is likely to be biased if all units of product in the sample were
selected from the bottom shelf. Ambient conditions, such as temperature and humid-
ity, may well have affected the top-shelf units differently than those on the bottom
shelf.

The mean square error defined above can be viewed as the expected squared
error loss encountered when we estimate the parameter θ with the point estimator
�̂. We can write

MSE(�̂) = E(�̂− θ)2

= E[�̂− E(�̂)+ E(�̂)− θ ]2

= E[�̂− E(�̂)]2 + [E(�̂)− θ ]2 + 2{E[�̂− E(�̂)][E(�̂)− θ ]}

The first term of the cross product, E[�̂− E(�̂)] = E(�̂)− E(�̂) = 0, and we are
left with

MSE(�̂) = E[�̂− E(�̂)]2 + [E(�̂)− θ ]2

The first term is readily seen to be the variance of �̂ and the second term is the
square of the bias, the difference between the expected value of the estimate of the
parameter θ and its true value. Thus, we can write

MSE(�̂) = σ 2
�̂

+ [Bias]2

While it is possible to estimate the variance of �̂ in most applications, the sam-
pling bias usually is unknown. Great care should be taken to avoid, or at least
minimize sampling bias, for it can be much greater than the sampling variance σ 2

�̂
.

This can be done by carefully calibrating all instruments to be used in measuring the
sample units, by eliminating human subjectivity as much as possible, and by assuring
that the method of sampling is appropriately randomized over the entire popula-
tion for which sampling estimates are to be made. These and other related issues are
more thoroughly discussed in the book by Hogg and Tanis, referenced at the end of
this chapter.
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Applied Exercises SECS. 1–3

78. Independent random samples of sizes n1 and n2 are
taken from a normal population with the mean μ and the
variance σ 2. If n1 = 25, n2 = 50, x1 = 27.6, and x2 = 38.1,
estimate μ using the estimator of Exercise 23.

79. Random samples of size n are taken from normal
populations with the mean μ and the variances σ 2

1 = 4
and σ 2

2 = 9. If x1 = 26.0 and x2 = 32.5, estimate μ using
the estimator of part (b) of Exercise 21.

80. A country’s military intelligence knows that an enemy
built certain new tanks numbered serially from 1 to k. If
three of these tanks are captured and their serial num-
bers are 210, 38, and 155, use the estimator of part (b) of
Exercise 12 to estimate k.

SECS. 4–8
81. On 12 days selected at random, a city’s consumption
of electricity was 6.4, 4.5, 10.8, 7.2, 6.8, 4.9, 3.5, 16.3, 4.8,
7.0, 8.8, and 5.4 million kilowatt-hours. Assuming that
these data may be looked upon as a random sample
from a gamma population, use the estimators obtained
in Example 14 to estimate the parameters α and β.

82. Certain radial tires had useful lives of 35,200, 41,000,
44,700, 38,600, and 41,500 miles. Assuming that these data
can be looked upon as a random sample from an expo-
nential population, use the estimator obtained in Exer-
cise 51 to estimate the parameter θ .

83. The size of an animal population is sometimes esti-
mated by the capture–recapture method. In this method,
n1 of the animals are captured in the area under con-
sideration, tagged, and released. Later, n2 of the animals
are captured, X of them are found to be tagged, and this
information is used to estimate N, the total number of
animals of the given kind in the area under considera-
tion. If n1 = 3 rare owls are captured in a section of a
forest, tagged, and released, and later n2 = 4 such owls
are captured and only one of them is found to be tagged,
estimate N by the method of maximum likelihood. (Hint:
Try N = 9, 10, 11, 12, 13, and 14.)

84. Among six measurements of the boiling point of a sil-
icon compound, the size of the error was 0.07, 0.03, 0.14,
0.04, 0.08, and 0.03◦C. Assuming that these data can be
looked upon as a random sample from the population
of Exercise 55, use the estimator obtained there by the
method of moments to estimate the parameter θ .

85. Not counting the ones that failed immediately, cer-
tain light bulbs had useful lives of 415, 433, 489, 531, 466,
410, 479, 403, 562, 422, 475, and 439 hours. Assuming that
these data can be looked upon as a random sample from
a two-parameter exponential population, use the estima-
tors obtained in Exercise 56 to estimate the parameters δ
and θ .

86. Rework Exercise 85 using the estimators obtained in
Exercise 66 by the method of maximum likelihood.

87. Data collected over a number of years show that when
a broker called a random sample of eight of her clients,
she got a busy signal 6.5, 10.6, 8.1, 4.1, 9.3, 11.5, 7.3, and
5.7 percent of the time. Assuming that these figures can
be looked upon as a random sample from a continuous
uniform population, use the estimators obtained in Exer-
cise 57 to estimate the parameters α and β.

88. Rework Exercise 87 using the estimators obtained in
Exercise 67.

89. In a random sample of the teachers in a large school
district, their annual salaries were $23,900, $21,500,
$26,400, $24,800, $33,600, $24,500, $29,200, $36,200,
$22,400, $21,500, $28,300, $26,800, $31,400, $22,700, and
$23,100. Assuming that these data can be looked upon
as a random sample from a Pareto population, use the
estimator obtained in Exercise 65 to estimate the param-
eter α.

90. Every time Mr. Jones goes to the race track he bets on
three races. In a random sample of 20 of his visits to the
race track, he lost all his bets 11 times, won once 7 times,
and won twice on 2 occasions. If θ is the probability that
he will win any one of his bets, estimate it by using the
maximum likelihood estimator obtained in Exercise 68.

91. On 20 very cold days, a farmer got her tractor started
on the first, third, fifth, first, second, first, third, seventh,
second, fourth, fourth, eighth, first, third, sixth, fifth, sec-
ond, first, sixth, and second try. Assuming that these data
can be looked upon as a random sample from a geomet-
ric population, estimate its parameter θ by either of the
methods of Exercise 63.

92. The I.Q.’s of 10 teenagers belonging to one ethnic
group are 98, 114, 105, 101, 123, 117, 106, 92, 110, and
108, whereas those of 6 teenagers belonging to another
ethnic group are 122, 105, 99, 126, 114, and 108. Assum-
ing that these data can be looked upon as independent
random samples from normal populations with the means
μ1 and μ2 and the common variance σ 2, estimate these
parameters by means of the maximum likelihood estima-
tors obtained in Exercise 71.

SEC. 9
93. The output of a certain integrated-circuit production
line is checked daily by inspecting a sample of 100 units.
Over a long period of time, the process has maintained
a yield of 80 percent, that is, a proportion defective of
20 percent, and the variation of the proportion defec-
tive from day to day is measured by a standard devi-
ation of 0.04. If on a certain day the sample contains
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38 defectives, find the mean of the posterior distribu-
tion of � as an estimate of that day’s proportion defec-
tive. Assume that the prior distribution of Θ is a beta
distribution.

94. Records of a university (collected over many years)
show that on the average 74 percent of all incoming fresh-
men have I.Q.’s of at least 115. Of course, the percentage
varies somewhat from year to year, and this variation is
measured by a standard deviation of 3 percent. If a sam-
ple check of 30 freshmen entering the university in 2003
showed that only 18 of them have I.Q.’s of at least 115,
estimate the true proportion of students with I.Q.’s of at
least 115 in that freshman class using
(a) only the prior information;
(b) only the direct information;
(c) the result of Exercise 74 to combine the prior infor-
mation with the direct information.

95. With reference to Example 20, find P(712<M<

725|x = 692).

96. A history professor is making up a final examination
that is to be given to a very large group of students. His
feelings about the average grade that they should get is
expressed subjectively by a normal distribution with the
mean μ0 = 65.2 and the standard deviation σ0 = 1.5.
(a) What prior probability does the professor assign to
the actual average grade being somewhere on the interval
from 63.0 to 68.0?
(b) What posterior probability would he assign to this
event if the examination is tried on a random sample of 40
students whose grades have a mean of 72.9 and a standard
deviation of 7.4? Use s = 7.4 as an estimate of σ .

97. An office manager feels that for a certain kind of
business the daily number of incoming telephone calls is

a random variable having a Poisson distribution, whose
parameter has a prior gamma distribution with α = 50
and β = 2. Being told that one such business had 112
incoming calls on a given day, what would be her esti-
mate of that particular business’s average daily number
of incoming calls if she considers
(a) only the prior information;
(b) only the direct information;
(c) both kinds of information and the theory of Exer-
cise 77?

SEC. 10
98. How large a random sample is required from a popu-
lation whose standard deviation is 4.2 so that the sample
estimate of the mean will have an error of at most 0.5 with
a probability of 0.99?

99. A random sample of 36 resistors is taken from a pro-
duction line manufacturing resistors to a specification of
40 ohms. Assuming a standard deviation of 1 ohm, is this
sample adequate to ensure, with 95 percent probability,
that the sample mean will be within 1.5 ohms of the mean
of the population of resistors being produced?

100. Sections of sheet metal of various lengths are lined
up on a conveyor belt that moves at a constant speed. A
sample of these sections is taken for inspection by tak-
ing whatever section is passing in front of the inspection
station at each five-minute interval. If the purpose is to
estimate the number of defects per section in the popu-
lation of all such manufactured sections, explain how this
sampling procedure could be biased.

101. Comment on the sampling bias (if any) of a poll
taken by asking how people will vote in an election if the
sample is confined to the person claiming to be the head
of household.
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Answers to Odd-Numbered Exercises

1
n∑

i=1

ai = 1.

9 (n + 1)Y1.

25 8
9 .

29 (a) 3
4 ; (b) 3

5 .
37 Yes.
45 Yes.
51 θ̂ = m′

1.

53 λ̂ = m′
1.

55 θ̂ = 3m′
1.

57 β̂ = m′
1 +

√
3[m′

2 − (m′
1)

2].

59 λ̂ = x.
61 β̂ = x

2 .

63 (a) θ̂ = 1
x

; (b) θ̂ = 1
x

.

65 α̂ = n
n∑

i=1

ln xi

.

67 α̂ = y1, β̂ = yn.

69 (a) β̂ = x
α

; τ̂ =
(

2x
α

− 1
)2

.

71 μ′
1 = v;μ′

2 = v, σ̂ 2 =
∑
(v − v)2 +∑(w − w)2

n1 + n2
.

73 (a) Yes; (b) No.

75 μ = 1
2 ; σ 2 = 1

18 ; symmetrical about x = 1
2 .

79 μ̂ = 28.
81 α̂ = 4.627 and β̂ = 1.556.
83 N = 11 or 12.
85 θ̂ = 47.69 and δ̂ = 412.64.
87 α̂ = 3.83 and β̂ = 11.95.
91 θ̂ = 0.30.
93 E(Θ|38) = 0.29.
95 0.4786.
97 (a) μ̂ = 100; (b) μ̂ = 112; (c) μ̂ = 108.
99 Yes.
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Interval Estimation

1 Introduction
2 The Estimation of Means
3 The Estimation of Differences Between Means
4 The Estimation of Proportions

5 The Estimation of Differences Between
Proportions

6 The Estimation of Variances
7 The Estimation of the Ratio of Two Variances
8 The Theory in Practice

1 Introduction Although point estimation is a common way in which estimates are expressed, it
leaves room for many questions. For instance, it does not tell us on how much infor-
mation the estimate is based, nor does it tell us anything about the possible size of
the error. Thus, we might have to supplement a point estimate θ̂ of θ with the size of
the sample and the value of var(�̂) or with some other information about the sam-
pling distribution of �̂. As we shall see, this will enable us to appraise the possible
size of the error.

Alternatively, we might use interval estimation. An interval estimate of θ is an
interval of the form θ̂1<θ < θ̂2, where θ̂1 and θ̂2 are values of appropriate random
variables �̂1 and �̂2.

DEFINITION 1. CONFIDENCE INTERVAL. If �̂1 and �̂2 are values of the random vari-
ables �̂1 and �̂2 such that

P(�̂1<θ < �̂2) = 1 −α

for some specified probability 1 − �, we refer to the interval

θ̂1<θ < θ̂2

as a (1 − �)100% confidence interval for �. The probability 1 − � is called the
degree of confidence, and the endpoints of the interval are called the lower and
upper confidence limits.

For instance, when α = 0.05, the degree of confidence is 0.95 and we get a 95%
confidence interval.

It should be understood that, like point estimates, interval estimates of a given
parameter are not unique. This is illustrated by Exercises 2 and 3 and also in Section 2,
where we show that, based on a single random sample, there are various confidence
intervals for μ, all having the same degree of confidence 1 −α. As was the case in
point estimation, methods of interval estimation are judged by their various sta-
tistical properties. For instance, one desirable property is to have the length of a
(1 −α)100% confidence interval as short as possible; another desirable property is
to have the expected length, E(�̂2 − �̂1) as small as possible.

From Chapter 11 of John E. Freund’s Mathematical Statistics with Applications,
Eighth Edition. Irwin Miller, Marylees Miller. Copyright © 2014 by Pearson Education, Inc.
All rights reserved.
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2 The Estimation of Means
To illustrate how the possible size of errors can be appraised in point estimation,
suppose that the mean of a random sample is to be used to estimate the mean of a
normal population with the known variance σ 2. By the theorem, “If χ is the mean of
a random sample of size n from a normal population with the mean μ and the vari-
ance σ 2, its sampling distribution is a normal distribution with the mean μ and the
variance σ 2/n”, the sampling distribution of X for random samples of size n from a
normal population with the mean μ and the variance σ 2 is a normal distribution with

μx = μ and σ 2
x = σ 2

n

Thus, we can write

P(|Z|< zα/2) = 1 −α

where

Z = X −μ
σ/

√
n

and zα/2 is such that the integral of the standard normal density from zα/2 to q
equals α/2. It follows that

P

(∣∣∣X −μ
∣∣∣< zα/2 · σ√

n

)
= 1 −α

or, in words, we have the following theorem.

THEOREM 1. If X, the mean of a random sample of size n from a normal
population with the known variance σ 2, is to be used as an estimator of
the mean of the population, the probability is 1 −α that the error will be

less than zα/2 · σ√
n

.

EXAMPLE 1

A team of efficiency experts intends to use the mean of a random sample of size
n = 150 to estimate the average mechanical aptitude of assembly-line workers in a
large industry (as measured by a certain standardized test). If, based on experience,
the efficiency experts can assume that σ = 6.2 for such data, what can they assert
with probability 0.99 about the maximum error of their estimate?

Solution
Substituting n = 150, σ = 6.2, and z0.005 = 2.575 into the expression for the maxi-
mum error, we get

2.575 · 6.2√
150

= 1.30

Thus, the efficiency experts can assert with probability 0.99 that their error will be
less than 1.30.
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Suppose now that these efficiency experts actually collect the necessary data
and get x = 69.5. Can they still assert with probability 0.99 that the error of their
estimate, x = 69.5, is less than 1.30? After all, x = 69.5 differs from the true
(population) mean by less than 1.30 or it does not, and they have no way of knowing
whether it is one or the other. Actually, they can, but it must be understood that
the 0.99 probability applies to the method that they used to get their estimate and
calculate the maximum error (collecting the sample data, determining the value of
x, and using the formula of Theorem 1) and not directly to the parameter that they
are trying to estimate.

To clarify this distinction, it has become the custom to use the word “confidence”
here instead of “probability.” In general, we make probability statements about future
values of random variables (say, the potential error of an estimate) and confidence
statements once the data have been obtained. Accordingly, we should have said in
our example that the efficiency experts can be 99% confident that the error of their
estimate, x = 69.5, is less than 1.30.

To construct a confidence-interval formula for estimating the mean of a normal
population with the known variance σ 2, we return to the probability

P

(
|X −μ|< zα/2 · σ√

n

)
= 1 −α

the previous page, which we now write as

P

(
X − zα/2 · σ√

n
<μ<X + zα/2 · σ√

n

)
= 1 −α

From this result, we have the following theorem.

THEOREM 2. If x is the value of the mean of a random sample of size n from
a normal population with the known variance σ 2, then

x − zα/2 · σ√
n
<μ< x + zα/2 · σ√

n

is a (1 −α)100% confidence interval for the mean of the population.

EXAMPLE 2

If a random sample of size n = 20 from a normal population with the variance
σ 2 = 225 has the mean x = 64.3, construct a 95% confidence interval for the popu-
lation mean μ.

Solution
Substituting n = 20, x = 64.3, σ = 15, and z0.025 = 1.96 into the confidence-interval
formula of Theorem 2, we get

64.3 − 1.96 · 15√
20
<μ< 64.3 + 1.96 · 15√

20

which reduces to

57.7<μ< 70.9
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As we pointed out earlier, confidence-interval formulas are not unique. This may be
seen by changing the confidence-interval formula of Theorem 2 to

x − z2α/3 · σ√
n
<μ< x + zα/3 · σ√

n

or to the one-sided (1 −α)100% confidence-interval formula

μ< x + zα · σ√
n

Alternatively, we could base a confidence interval for μ on the sample median or,
say, the midrange.

Strictly speaking, Theorems 1 and 2 require that we are dealing with a random
sample from a normal population with the known variance σ 2. However, by virtue
of the central limit theorem, these results can also be used for random samples from
nonnormal populations provided that n is sufficiently large; that is, n G 30. In that
case, we may also substitute for σ the value of the sample standard deviation.

EXAMPLE 3

An industrial designer wants to determine the average amount of time it takes an
adult to assemble an “easy-to-assemble” toy. Use the following data (in minutes), a
random sample, to construct a 95% confidence interval for the mean of the popula-
tion sampled:

17 13 18 19 17 21 29 22 16 28 21 15
26 23 24 20 8 17 17 21 32 18 25 22
16 10 20 22 19 14 30 22 12 24 28 11

Solution
Substituting n = 36, x = 19.92, z0.025 = 1.96, and s = 5.73 for σ into the confidence-
interval formula of Theorem 2, we get

19.92 − 1.96 · 5.73√
36
<μ< 19.92 + 1.96 · 5.73√

36

Thus, the 95% confidence limits are 18.05 and 21.79 minutes.

When we are dealing with a random sample from a normal population, n< 30,
and σ is unknown, Theorems 1 and 2 cannot be used. Instead, we make use of the
fact that

T = X −μ
S/

√
n

is a random variable having the t distribution with n − 1 degrees of freedom. Substi-

tuting
X −μ
S/

√
n

for T in

P(−tα/2, n−1<T< tα/2, n−1) = 1 −α

we get the following confidence interval for μ.
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THEOREM 3. If x and s are the values of the mean and the standard devia-
tion of a random sample of size n from a normal population, then

x − tα/2, n−1 · s√
n
<μ< x + tα/2, n−1 · s√

n

is a (1 −α)100% confidence interval for the mean of the population.

Since this confidence-interval formula is used mainly when n is small, less than
30, we refer to it as a small-sample confidence interval for μ.

EXAMPLE 4

A paint manufacturer wants to determine the average drying time of a new interior
wall paint. If for 12 test areas of equal size he obtained a mean drying time of 66.3
minutes and a standard deviation of 8.4 minutes, construct a 95% confidence interval
for the true mean μ.

Solution
Substituting x = 66.3, s = 8.4, and t0.025,11 = 2.201 (from Table IV of “Statistical
Tables”), the 95% confidence interval for μ becomes

66.3 − 2.201 · 8.4√
12
<μ< 66.3 + 2.201 · 8.4√

12

or simply

61.0<μ< 71.6

This means that we can assert with 95% confidence that the interval from 61.0 min-
utes to 71.6 minutes contains the true average drying time of the paint.

The method by which we constructed confidence intervals in this section con-
sisted essentially of finding a suitable random variable whose values are determined
by the sample data as well as the population parameters, yet whose distribution does
not involve the parameter we are trying to estimate. This was the case, for example,
when we used the random variable

Z = X −μ
σ/

√
n

whose values cannot be calculated without knowledge of μ, but whose distribution
for random samples from normal populations, the standard normal distribution, does
not involve μ. This method of confidence-interval construction is called the pivotal
method and it is widely used, but there exist more general methods, such as the
one discussed in the book by Mood, Graybill, and Boes referred to at the end of
this chapter.

3 The Estimation of Differences Between Means
For independent random samples from normal populations
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Z = (X1 − X2)− (μ1 −μ2)√
σ 2

1

n1
+ σ 2

2

n2

has the standard normal distribution. If we substitute this expression for Z into

P(−zα/2<Z< zα/2) = 1 −α

the pivotal method yields the following confidence-interval formula for μ1 −μ2.

THEOREM 4. If x1 and x2 are the values of the means of independent ran-
dom samples of sizes n1 and n2 from normal populations with the known
variances σ 2

1 and σ 2
2 , then

(x1 − x2)− zα/2 ·
√
σ 2

1

n1
+ σ 2

2

n2
<μ1 −μ2<(x1 − x2)+ zα/2 ·

√
σ 2

1

n1
+ σ 2

2

n2

is a (1 −α)100% confidence interval for the difference between the two
population means.

By virtue of the central limit theorem, this confidence-interval formula can also
be used for independent random samples from nonnormal populations with known
variances when n1 and n2 are large, that is, when n1 G 30 and n2 G 30.

EXAMPLE 5

Construct a 94% confidence interval for the difference between the mean lifetimes
of two kinds of light bulbs, given that a random sample of 40 light bulbs of the first
kind lasted on the average 418 hours of continuous use and 50 light bulbs of the sec-
ond kind lasted on the average 402 hours of continuous use. The population standard
deviations are known to be σ1 = 26 and σ2 = 22.

Solution
For α = 0.06, we find from Table III of “Statistical Tables” that z0.03 = 1.88. There-
fore, the 94% confidence interval for μ1 −μ2 is

(418 − 402)− 1.88 ·
√

262

40
+ 222

50
<μ1 −μ2<(418 − 402)+ 1.88 ·

√
262

40
+ 222

50

which reduces to
6.3<μ1 −μ2< 25.7

Hence, we are 94% confident that the interval from 6.3 to 25.7 hours contains the
actual difference between the mean lifetimes of the two kinds of light bulbs. The fact
that both confidence limits are positive suggests that on the average the first kind of
light bulb is superior to the second kind.

To construct a (1 −α)100% confidence interval for the difference between two
means when n1 G 30, n2 G 30, but σ1 and σ2 are unknown, we simply substitute
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s1 and s2 for σ1 and σ2 and proceed as before. When σ1 and σ2 are unknown and
either or both of the samples are small, the procedure for estimating the difference
between the means of two normal populations is not straightforward unless it can be
assumed that σ1 = σ2. If σ1 = σ2 = σ , then

Z = (X1 − X2)− (μ1 −μ2)

σ

√
1
n1

+ 1
n2

is a random variable having the standard normal distribution, and σ 2 can be esti-
mated by pooling the squared deviations from the means of the two samples. In
Exercise 9 the reader will be asked to verify that the resulting pooled estimator

S2
p = (n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2

is, indeed, an unbiased estimator of σ 2. Now, by the two theorems, “If X and S2

are the mean and the variance of a random sample of size n from a normal pop-
ulation with the mean μ and the standard deviation σ , then 1. X and S2 are inde-

pendent; 2. the random variable
(n − 1)S2

σ 2 has a chi-square distribution with n − 1

degrees of freedom. If X1, X2, . . . , Xn are independent random variables having chi-
square distributions with ν1, ν2, . . . , νn degrees of freedom, then Y = ∑n

i=1 Xi has the
chi-square distribution with ν1 + ν2 + · · · + νn degrees of freedom” the independent
random variables

(n1 − 1)S2
1

σ 2 and
(n2 − 1)S2

2

σ 2

have chi-square distributions with n1 − 1 and n2 − 1 degrees of freedom, and their sum

Y = (n1 − 1)S2
1

σ 2 + (n2 − 1)S2
2

σ 2 = (n1 + n2 − 2)S2
p

σ 2

has a chi-square distribution with n1 + n2 − 2 degrees of freedom. Since it can be
shown that the above random variables Z and Y are independent (see references at
the end of this chapter)

T = Z√
Y

n1 + n2 − 2

= (X1 − X2)− (μ1 −μ2)

Sp

√
1
n1

+ 1
n2

has a t distribution with n1 + n2 − 2 degrees of freedom. Substituting this expression
for T into

P(−tα/2, n−1<T< tα/2, n−1) = 1 −α

we arrive at the following (1 −α)100% confidence interval for μ1 −μ2.
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THEOREM 5. If x1, x2, s1, and s2 are the values of the means and the standard
deviations of independent random samples of sizes n1 and n2 from normal
populations with equal variances, then

(x1 − x2) − tα/2, n1 + n2−2 · sp

√
1
n1

+ 1
n2
<μ1 −μ2

< (x1 − x2)+ tα/2, n1 + n2−2 · sp

√
1
n1

+ 1
n2

is a (1 −α)100% confidence interval for the difference between the two
population means.

Since this confidence-interval formula is used mainly when n1 and/or n2 are
small, less than 30, we refer to it as a small-sample confidence interval for μ1 −μ2.

EXAMPLE 6

A study has been made to compare the nicotine contents of two brands of cigarettes.
Ten cigarettes of Brand A had an average nicotine content of 3.1 milligrams with a
standard deviation of 0.5 milligram, while eight cigarettes of Brand B had an aver-
age nicotine content of 2.7 milligrams with a standard deviation of 0.7 milligram.
Assuming that the two sets of data are independent random samples from normal
populations with equal variances, construct a 95% confidence interval for the differ-
ence between the mean nicotine contents of the two brands of cigarettes.

Solution
First we substitute n1 = 10, n2 = 8, s1 = 0.5, and s2 = 0.7 into the formula for sp, and
we get

sp =
√

9(0.25)+ 7(0.49)
16

= 0.596

Then, substituting this value together with n1 = 10, n2 = 8, x1 = 3.1, x2 = 2.7, and
t0.025,16 = 2.120 (from Table IV of “Statistical Tables”) into the confidence-interval
formula of Theorem 5, we find that the required 95% confidence interval is

(3.1 − 2.7) − 2.120(0.596)

√
1

10
+ 1

8
<μ1 −μ2

< (3.1 − 2.7)+ 2.120(0.596)

√
1
10

+ 1
8

which reduces to

−0.20<μ1 −μ2< 1.00

Thus, the 95% confidence limits are −0.20 and 1.00 milligrams; but observe that since
this includes μ1 −μ2 = 0, we cannot conclude that there is a real difference between
the average nicotine contents of the two brands of cigarettes.
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Exercises
1. If x is a value of a random variable having an exponen-
tial distribution, find k so that the interval from 0 to kx is
a (1 −α)100% confidence interval for the parameter θ .

2. If x1 and x2 are the values of a random sample of size
2 from a population having a uniform density with α = 0
and β = θ , find k so that

0<θ <k(x1 + x2)

is a (1 −α)100% confidence interval for θ when

(a) α F 1
2 ; (b) α > 1

2 .

3. This question has been intentionally omitted for this
edition.

4. Show that the (1 −α)100% confidence interval

x − zα/2 · σ√
n
<μ< x + zα/2 · σ√

n

is shorter than the (1 −α)100% confidence interval

x − z2α/3 · σ√
n
<μ< x + zα/3 · σ√

n

5. Show that among all (1 −α)100% confidence intervals
of the form

x − zkα · σ√
n
<μ< x + z(1−k)α · σ√

n

the one with k = 0.5 is the shortest.

6. Show that if x is used as a point estimate of μ and σ
is known, the probability is 1 −α that |x −μ|, the abso-
lute value of our error, will not exceed a specified amount
e when

n =
[

zα/2 · σ
e

]2

(If it turns out that n< 30, this formula cannot be used
unless it is reasonable to assume that we are sampling a
normal population.)

7. Modify Theorem 1 so that it can be used to appraise
the maximum error when σ 2 is unknown. (Note that
this method can be used only after the data have
been obtained.)

8. State a theorem analogous to Theorem 1, which
enables us to appraise the maximum error in using
x1 − x2 as an estimate of μ1 −μ2 under the conditions of
Theorem 4.

9. Show that S2
p is an unbiased estimator of σ 2 and find its

variance under the conditions of Theorem 5.

10. This question has been intentionally omitted for this
edition.

4 The Estimation of Proportions
In many problems we must estimate proportions, probabilities, percentages, or rates,
such as the proportion of defectives in a large shipment of transistors, the probability
that a car stopped at a road block will have faulty lights, the percentage of schoolchil-
dren with I.Q.’s over 115, or the mortality rate of a disease. In many of these it is
reasonable to assume that we are sampling a binomial population and, hence, that
our problem is to estimate the binomial parameter θ . Thus, we can make use of the
fact that for large n the binomial distribution can be approximated with a normal
distribution; that is,

Z = X − nθ√
nθ(1 − θ)

can be treated as a random variable having approximately the standard normal dis-
tribution. Substituting this expression for Z into

P(−zα/2<Z< zα/2) = 1 −α

we get

P

(
−zα/2<

X − nθ√
nθ(1 − θ) < zα/2

)
= 1 −α
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and the two inequalities

−zα/2<
x − nθ√
nθ(1 − θ) and

x − nθ√
nθ(1 − θ) < zα/2

whose solution will yield (1 −α)100% confidence limits for θ . Leaving the details
of this to the reader in Exercise 11, let us give here instead a large-sample approx-

imation by rewriting P(−zα/2<Z< zα/2) = 1 −α, with
X − nθ√
nθ(1 − θ) substituted for

Z, as

P

(
�̂− zα/2 ·

√
θ(1 − θ)

n
<θ < �̂+ zα/2 ·

√
θ(1 − θ)

n

)
= 1 −α

where �̂ = X
n

. Then, if we substitute θ̂ for θ inside the radicals, which is a further

approximation, we obtain the following theorem.

THEOREM 6. If X is a binomial random variable with the parameters n and
θ , n is large, and θ̂ = x

n
, then

θ̂ − zα/2 ·
√
θ̂ (1 − θ̂ )

n
<θ < θ̂ + zα/2 ·

√
θ̂ (1 − θ̂ )

n

is an approximate (1 −α)100% confidence interval for θ .

EXAMPLE 7

In a random sample, 136 of 400 persons given a flu vaccine experienced some dis-
comfort. Construct a 95% confidence interval for the true proportion of persons who
will experience some discomfort from the vaccine.

Solution
Substituting n = 400, θ̂ = 136

400 = 0.34, and z0.025 = 1.96 into the confidence-interval
formula of Theorem 6, we get

0.34 − 1.96

√
(0.34)(0.66)

400
< θ < 0.34 + 1.96

√
(0.34)(0.66)

400
0.294 < θ < 0.386

or, rounding to two decimals, 0.29<θ < 0.39.

Using the same approximations that led to Theorem 6, we can also obtain the fol-
lowing theorem.
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THEOREM 7. If θ̂ = x
n

is used as an estimate of θ , we can assert with (1 −
α)100% confidence that the error is less than

zα/2 ·
√
θ̂ (1 − θ̂ )

n

EXAMPLE 8

A study is made to determine the proportion of voters in a sizable community who
favor the construction of a nuclear power plant. If 140 of 400 voters selected at
random favor the project and we use θ̂ = 140

400 = 0.35 as an estimate of the actual
proportion of all voters in the community who favor the project, what can we say
with 99% confidence about the maximum error?

Solution
Substituting n = 400, θ̂ = 0.35, and z0.005 = 2.575 into the formula of Theorem 7,
we get

2.575 ·
√
(0.35)(0.65)

400
= 0.061

or 0.06 rounded to two decimals. Thus, if we use θ̂ = 0.35 as an estimate of the actual
proportion of voters in the community who favor the project, we can assert with 99%
confidence that the error is less than 0.06.

5 The Estimation of Differences Between Proportions
In many problems we must estimate the difference between the binomial parameters
θ1 and θ2 on the basis of independent random samples of sizes n1 and n2 from two
binomial populations. This would be the case, for example, if we want to estimate the
difference between the proportions of male and female voters who favor a certain
candidate for governor of Illinois.

If the respective numbers of successes are X1 and X2 and the corresponding

sample proportions are denoted by �̂1 = X1

n1
and �̂2 = X2

n2
, let us investigate the

sampling distribution of �̂1 − �̂2, which is an obvious estimator of θ1 − θ2. Let’s take

E(�̂1 − �̂2) = θ1 − θ2

and

var(�̂1 − �̂2) = θ1(1 − θ1)

n1
+ θ2(1 − θ2)

n2
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and since, for large samples, X1 and X2, and hence also their difference, can be
approximated with normal distributions, it follows that

Z = (�̂1 − �̂2)− (θ1 − θ2)√
θ1(1 − θ1)

n1
+ θ2(1 − θ2)

n2

is a random variable having approximately the standard normal distribution. Sub-
stituting this expression for Z into P(−zα/2<Z< zα/2) = 1 −α, we arrive at the
following result.

THEOREM 8. If X1 is a binomial random variable with the parameters n1
and θ1, X2 is a binomial random variable with the parameters n2 and θ2, n1

and n2 are large, and θ̂1 = x1

n1
and θ̂2 = x2

n2
, then

(θ̂1 − θ̂2)− zα/2 ·
√
θ̂1(1 − θ̂1)

n1
+ θ̂2(1 − θ̂2)

n2
<θ1 − θ2

<(θ̂1 − θ̂2)+ zα/2 ·
√
θ̂1(1 − θ̂1)

n1
+ θ̂2(1 − θ̂2)

n2

is an approximate (1 −α)100% confidence interval for θ1 − θ2.

EXAMPLE 9

If 132 of 200 male voters and 90 of 150 female voters favor a certain candidate
running for governor of Illinois, find a 99% confidence interval for the difference
between the actual proportions of male and female voters who favor the candidate.

Solution
Substituting θ̂1 = 132

200 = 0.66, θ̂2 = 90
150 = 0.60, and z0.005 = 2.575 into the confidence-

interval formula of Theorem 8, we get

(0.66 − 0.60) − 2.575

√
(0.66)(0.34)

200
+ (0.60)(0.40)

150
<θ1 − θ2

<(0.66 − 0.60)+ 2.575

√
(0.66)(0.34)

200
+ (0.60)(0.40)

150

which reduces to
−0.074<θ1 − θ2< 0.194

Thus, we are 99% confident that the interval from −0.074 to 0.194 contains the dif-
ference between the actual proportions of male and female voters who favor the
candidate. Observe that this includes the possibility of a zero difference between the
two proportions.
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Exercises

11. By solving

−zα/2 = x − nθ√
nθ(1 − θ) and

x − nθ√
nθ(1 − θ) = zα/2

for θ , show that

x + 1
2

· z2
α/2 ; zα/2

√
x(n − x)

n
+ 1

4
· z2
α/2

n + z2
α/2

are (1 −α)100% confidence limits for θ .

12. Use the formula of Theorem 7 to demonstrate that
we can be at least (1 −α)100% confident that the error
we make is less than e when we use a sample proportion
θ̂ = x

n
with

n =
z2
α/2

4e2

as an estimate of θ .

13. Find a formula for n analogous to that of Exercise 12
when it is known that θ must lie on the interval from θ ′
to θ ′′.

14. Fill in the details that led from the Z statistic
on the previous page, substituted into P(−zα/2<Z<
zα/2) = 1 −α, to the confidence-interval formula of
Theorem 8.

15. Find a formula for the maximum error analogous to
that of Theorem 7 when we use θ̂1 − θ̂2 as an estimate of
θ1 − θ2.

16. Use the result of Exercise 15 to show that when n1 =
n2 = n, we can be at least (1 −α)100% confident that the
error that we make when using θ̂1 − θ̂2 as an estimate of
θ1 − θ2 is less than e when

n =
z2
α/2

2e2

6 The Estimation of Variances
Given a random sample of size n from a normal population, we can obtain a
(1 −α)100% confidence interval for σ 2 by making use of the theorem referred under
Section 3, according to which

(n − 1)S2

σ 2

is a random variable having a chi-square distribution with n − 1 degrees of free-
dom. Thus,

P

[
χ2

1−α/2, n−1<
(n − 1)S2

σ 2 <χ2
α/2, n−1

]
= 1 −α

P

⎡
⎣ (n − 1)S2

χ2
α/2, n−1

<σ 2<
(n − 1)S2

χ2
1−α/2, n−1

⎤
⎦ = 1 −α

Thus, we obtain the following theorem.

THEOREM 9. If s2 is the value of the variance of a random sample of size n
from a normal population, then

(n − 1)s2

χ2
α/2, n−1

<σ 2<
(n − 1)s2

χ2
1−α/2, n−1

is a (1 −α)100% confidence interval for σ 2.
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Corresponding (1 −α)100% confidence limits for σ can be obtained by taking the
square roots of the confidence limits for σ 2.

EXAMPLE 10

In 16 test runs the gasoline consumption of an experimental engine had a standard
deviation of 2.2 gallons. Construct a 99% confidence interval for σ 2, which measures
the true variability of the gasoline consumption of the engine.

Solution
Assuming that the observed data can be looked upon as a random sample from
a normal population, we substitute n = 16 and s = 2.2, along with χ2

0.005,15 =
32.801 and χ2

0.995,15 = 4.601, obtained from Table V of “Statistical Tables”, into the
confidence-interval formula of Theorem 9, and we get

15(2.2)2

32.801
<σ 2<

15(2.2)2

4.601

or

2.21<σ 2< 15.78

To get a corresponding 99% confidence interval for σ , we take square roots and
get 1.49<σ < 3.97.

7 The Estimation of the Ratio of Two Variances
If S2

1 and S2
2 are the variances of independent random samples of sizes n1 and n2 from

normal populations, then, according to the theorem, “If S2
1 and S2

2 are the variances
of independent random samples of sizes n1 and n2 from normal populations with

the variances σ 2
1 and σ 2

2 , then F = S2
1/σ

2
1

S2
2/σ

2
2

= σ 2
2 S2

1

σ 2
1 S2

2

is a random variable having an F

distribution with n1 − 1 and n2 − 1 degrees of freedom”,

F = σ 2
2 S2

1

σ 2
1 S2

2

is a random variable having an F distribution with n1 − 1 and n2 − 1 degrees of free-
dom. Thus, we can write

P

(
f1−α/2, n1−1, n2−1<

σ 2
2 S2

1

σ 2
1 S2

2

< fα/2, n1−1, n2−1

)
= 1 −α

Since

f1−α/2, n1−1, n2−1 = 1
fα/2, n2−1, n1−1

we have the following result.
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THEOREM 10. If s2
1 and s2

2 are the values of the variances of independent
random samples of sizes n1 and n2 from normal populations, then

s2
1

s2
2

· 1
fα/2, n1−1, n2−1

<
σ 2

1

σ 2
2

<
s2

1

s2
2

· fα/2, n2−1, n1−1

is a (1 −α)100% confidence interval for
σ 2

1

σ 2
2

.

Corresponding (1 −α)100% confidence limits for
σ1

σ2
can be obtained by taking the

square roots of the confidence limits for
σ 2

1

σ 2
2

.

EXAMPLE 11

With reference to Example 6, find a 98% confidence interval for
σ 2

1

σ 2
2

.

Solution
Substituting n1 = 10, n2 = 8, s1 = 0.5, s2 = 0.7, and f0.01,9,7 = 6.72 and f0.01,7,9 = 5.61
from Table VI of “Statistical Tables”, we get

0.25
0.49

· 1
6.72

<
σ 2

1

σ 2
2

<
0.25
0.49

· 5.61

or

0.076<
σ 2

1

σ 2
2

< 2.862

Since the interval obtained here includes the possibility that the ratio is 1, there
is no real evidence against the assumption of equal population variances in
Example 6.

Exercises
17. If it can be assumed that the binomial parameter θ
assumes a value close to zero, upper confidence limits of
the form θ <C are often useful. For a random sample of
size n, the one-sided interval

θ <
1

2n
χ2
α,2(x+1)

has a confidence level closely approximating (1 −α)
100%. Use this formula to find a 99% upper confi-
dence limit for the proportion of defectives produced
by a process if a sample of 200 units contains three
defectives.

18. Fill in the details that led from the probabil-
ity in Section 6 to the confidence-interval formula of
Theorem 10.

19. For large n, the sampling distribution of S is some-
times approximated with a normal distribution having the

mean σ and the variance
σ 2

2n
. Show that this approxi-

mation leads to the following (1 −α)100% large-sample
confidence interval for σ :

s

1 + zα/2√
2n

<σ <
s

1 − zα/2√
2n
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8 The Theory in Practice
In the examples of this chapter we showed a number of details about substitutions
into the various formulas and subsequent calculations. In practice, none of this is
really necessary, because there is an abundance of software that requires only that we
enter the original raw (untreated) data into our computer together with the appro-
priate commands. To illustrate, consider the following example.

EXAMPLE 12

To study the durability of a new paint for white center lines, a highway department
painted test strips across heavily traveled roads in eight different locations, and elec-
tronic counters showed that they deteriorated after having been crossed by (to the
nearest hundred) 142,600, 167,800, 136,500, 108,300, 126,400, 133,700, 162,000, and
149,400 cars. Construct a 95% confidence interval for the average amount of traffic
(car crossings) that this paint can withstand before it deteriorates.

Solution
The computer printout of Figure 1 shows that the desired confidence interval is

124,758<μ< 156,917

car crossings. It also shows the sample size, the mean of the data, their standard
deviation, and the estimated standard error of the mean, SE MEAN, which is given
by

s√
n

.

Figure 1. Computer printout for Example 12.

As used in this example, computers enable us to do more efficiently—faster,
more cheaply, and almost automatically—what was done previously by means of
desk calculators, hand-held calculators, or even by hand. However, dealing with a
sample of size n = 8, the example cannot very well do justice to the power of com-
puters to handle enormous sets of data and perform calculations not even deemed
possible until recent years. Also, our example does not show how computers can
summarize the output as well the input and the results as well as the original data
in various kinds of graphs and charts, which allow for methods of analysis that were
not available in the past.

All this is important, but it does not do justice to the phenomenal impact that
computers have had on statistics. Among other things, computers can be used to
tabulate or graph functions (say, the t, F, or χ2 distributions) and thus give the inves-
tigator a clear understanding of underlying models and make it possible to study the
effects of violations of assumptions. Also important is the use of computers in simu-
lating values of random variables (that is, sampling all kinds of populations) when a
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formal mathematical approach is not feasible. This provides an important tool when
we study the appropriateness of statistical models.

In the applied exercises that follow, the reader is encouraged to use a statistical
computer program as much as possible.

Applied Exercises SECS. 1–3

20. A district official intends to use the mean of a ran-
dom sample of 150 sixth graders from a very large school
district to estimate the mean score that all the sixth
graders in the district would get if they took a cer-
tain arithmetic achievement test. If, based on experience,
the official knows that σ = 9.4 for such data, what
can she assert with probability 0.95 about the maximum
error?

21. With reference to Exercise 20, suppose that the dis-
trict official takes her sample and gets x = 61.8. Use
all the given information to construct a 99% confidence
interval for the mean score of all the sixth graders in
the district.

22. A medical research worker intends to use the mean
of a random sample of size n = 120 to estimate the mean
blood pressure of women in their fifties. If, based on expe-
rience, he knows that σ = 10.5 mm of mercury, what can
he assert with probability 0.99 about the maximum error?

23. With reference to Exercise 22, suppose that the
research worker takes his sample and gets x = 141.8 mm
of mercury. Construct a 98% confidence interval for the
mean blood pressure of women in their fifties.

24. A study of the annual growth of certain cacti showed
that 64 of them, selected at random in a desert region,
grew on the average 52.80 mm with a standard deviation
of 4.5 mm. Construct a 99% confidence interval for the
true average annual growth of the given kind of cactus.

25. To estimate the average time required for certain
repairs, an automobile manufacturer had 40 mechanics, a
random sample, timed in the performance of this task. If
it took them on the average 24.05 minutes with a stan-
dard deviation of 2.68 minutes, what can the manufac-
turer assert with 95% confidence about the maximum
error if he uses x = 24.05 minutes as an estimate of the
actual mean time required to perform the given repairs?

26. This question has been intentionally omitted for this
edition.

27. Use the modification suggested in Exercise 26 to
rework Exercise 21, given that there are 900 sixth graders
in the school district.

28. An efficiency expert wants to determine the average
amount of time it takes a pit crew to change a set of four
tires on a race car. Use the formula for n in Exercise 6
to determine the sample size that is needed so that the

efficiency expert can assert with probability 0.95 that the
sample mean will differ from μ, the quantity to be esti-
mated, by less than 2.5 seconds. It is known from previous
studies that σ = 12.2 seconds.

29. In a study of television viewing habits, it is desired
to estimate the average number of hours that teenagers
spend watching per week. If it is reasonable to assume
that σ = 3.2 hours, how large a sample is needed so that
it will be possible to assert with 95% confidence that the
sample mean is off by less than 20 minutes. (Hint: Refer
to Exercise 6.)

30. The length of the skulls of 10 fossil skeletons of an
extinct species of bird has a mean of 5.68 cm and a stan-
dard deviation of 0.29 cm. Assuming that such measure-
ments are normally distributed, find a 95% confidence
interval for the mean length of the skulls of this species
of bird.

31. A major truck stop has kept extensive records on var-
ious transactions with its customers. If a random sample
of 18 of these records shows average sales of 63.84 gallons
of diesel fuel with a standard deviation of 2.75 gallons,
construct a 99% confidence interval for the mean of the
population sampled.

32. A food inspector, examining 12 jars of a certain brand
of peanut butter, obtained the following percentages of
impurities: 2.3, 1.9, 2.1, 2.8, 2.3, 3.6, 1.4, 1.8, 2.1, 3.2, 2.0,
and 1.9. Based on the modification of Theorem 1 of Exer-
cise 7, what can she assert with 95% confidence about the
maximum error if she uses the mean of this sample as an
estimate of the average percentage of impurities in this
brand of peanut butter?

33. Independent random samples of sizes n1 = 16 and
n2 = 25 from normal populations with σ1 = 4.8 and
σ2 = 3.5 have the means x1 = 18.2 and x2 = 23.4. Find a
90% confidence interval for μ1 −μ2.

34. A study of two kinds of photocopying equipment
shows that 61 failures of the first kind of equipment
took on the average 80.7 minutes to repair with a stan-
dard deviation of 19.4 minutes, whereas 61 failures of
the second kind of equipment took on the average 88.1
minutes to repair with a standard deviation of 18.8
minutes. Find a 99% confidence interval for the dif-
ference between the true average amounts of time it
takes to repair failures of the two kinds of photocopying
equipment.
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35. Twelve randomly selected mature citrus trees of one
variety have a mean height of 13.8 feet with a stan-
dard deviation of 1.2 feet, and 15 randomly selected
mature citrus trees of another variety have a mean
height of 12.9 feet with a standard deviation of 1.5
feet. Assuming that the random samples were selected
from normal populations with equal variances, con-
struct a 95% confidence interval for the difference
between the true average heights of the two kinds of cit-
rus trees.

36. The following are the heat-producing capacities of
coal from two mines (in millions of calories per ton):

Mine A: 8,500, 8,330, 8,480, 7,960, 8,030
Mine B: 7,710, 7,890, 7,920, 8,270, 7,860

Assuming that the data constitute independent random
samples from normal populations with equal variances,
construct a 99% confidence interval for the difference
between the true average heat-producing capacities of
coal from the two mines.

37. To study the effect of alloying on the resistance of
electric wires, an engineer plans to measure the resis-
tance of n1 = 35 standard wires and n2 = 45 alloyed
wires. If it can be assumed that σ1 = 0.004 ohm and
σ2 = 0.005 ohm for such data, what can she assert with
98% confidence about the maximum error if she uses
x1 − x2 as an estimate of μ1 −μ2? (Hint: Use the result of
Exercise 8.)

SECS. 4–5
38. A sample survey at a supermarket showed that 204
of 300 shoppers regularly use coupons. Use the large-
sample confidence-interval formula of Theorem 6 to con-
struct a 95% confidence interval for the corresponding
true proportion.

39. With reference to Exercise 38, what can we say with
99% confidence about the maximum error if we use the
observed sample proportion as an estimate of the propor-
tion of all shoppers in the population sampled who use
coupons?

40. In a random sample of 250 television viewers in a
large city, 190 had seen a certain controversial program.
Construct a 99% confidence interval for the correspond-
ing true proportion using
(a) the large-sample confidence-interval formula of
Theorem 6;
(b) the confidence limits of Exercise 11.

41. With reference to Exercise 40, what can we say with
95% confidence about the maximum error if we use the
observed sample proportion as an estimate of the corre-
sponding true proportion?

42. Among 100 fish caught in a certain lake, 18
were inedible as a result of chemical pollution. Con-
struct a 99% confidence interval for the corresponding
true proportion.

43. In a random sample of 120 cheerleaders, 54 had suf-
fered moderate to severe damage to their voices. With
90% confidence, what can we say about the maximum
error if we use the sample proportion 54

120 = 0.45 as an
estimate of the true proportion of cheerleaders who are
afflicted in this way?

44. In a random sample of 300 persons eating lunch at a
department store cafeteria, only 102 had dessert. If we
use 102

300 = 0.34 as an estimate of the corresponding true
proportion, with what confidence can we assert that our
error is less than 0.05?

45. A private opinion poll is engaged by a politician to
estimate what proportion of her constituents favor the
decriminalization of certain minor narcotics violations.
Use the formula of Exercise 12 to determine how large
a sample the poll will have to take to be at least 95% con-
fident that the sample proportion is off by less than 0.02.

46. Use the result of Exercise 13 to rework Exercise 45,
given that the poll has reason to believe that the true pro-
portion does not exceed 0.30.

47. Suppose that we want to estimate what proportions of
all drivers exceed the legal speed limit on a certain stretch
of road between Los Angeles and Bakersfield. Use the
formula of Exercise 12 to determine how large a sam-
ple we will need to be at least 99% confident that the
resulting estimate, the sample proportion, is off by less
than 0.04.

48. Use the result of Exercise 13 to rework Exercise 47,
given that we have good reason to believe that the pro-
portion we are trying to estimate is at least 0.65.

49. In a random sample of visitors to a famous tourist
attraction, 84 of 250 men and 156 of 250 women bought
souvenirs. Construct a 95% confidence interval for the
difference between the true proportions of men and
women who buy souvenirs at this tourist attraction.

50. Among 500 marriage license applications chosen at
random in a given year, there were 48 in which the woman
was at least one year older than the man, and among 400
marriage license applications chosen at random six years
later, there were 68 in which the woman was at least one
year older than the man. Construct a 99% confidence
interval for the difference between the corresponding
true proportions of marriage license applications in which
the woman was at least one year older than the man.

51. With reference to Exercise 50, what can we say with
98% confidence about the maximum error if we use the
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difference between the observed sample proportions as
an estimate of the difference between the corresponding
true proportions? (Hint: Use the result of Exercise 15.)

52. Suppose that we want to determine the difference
between the proportions of the customers of a donut
chain in North Carolina and Vermont who prefer the
chain’s donuts to those of all its competitors. Use the for-
mula of Exercise 16 to determine the size of the samples
that are needed to be at least 95% confident that the dif-
ference between the two sample proportions is off by less
than 0.05.

SECS. 6–7
53. With reference to Exercise 30, construct a 95% confi-
dence interval for the true variance of the skull length of
the given species of bird.

54. With reference to Exercise 32, construct a 90% con-
fidence interval for the standard deviation of the popula-
tion sampled, that is, for the percentage of impurities in
the given brand of peanut butter.

55. With reference to Exercise 24, use the large-sample
confidence-interval formula of Exercise 19 to construct a
99% confidence interval for the standard deviation of the
annual growth of the given kind of cactus.

56. With reference to Exercise 25, use the large-sample
confidence-interval formula of Exercise 19 to construct a
98% confidence interval for the standard deviation of the
time it takes a mechanic to perform the given task.

57. With reference to Exercise 34, construct a 98% con-
fidence interval for the ratio of the variances of the two
populations sampled.

58. With reference to Exercise 35, construct a 98% con-
fidence interval for the ratio of the variances of the two
populations sampled.

59. With reference to Exercise 36, construct a 90% con-
fidence interval for the ratio of the variances of the two
populations sampled.

SEC. 8
60. Twenty pilots were tested in a flight simulator, and the
time for each to complete a certain corrective action was
measured in seconds, with the following results:

5.2 5.6 7.6 6.8 4.8 5.7 9.0 6.0 4.9 7.4
6.5 7.9 6.8 4.3 8.5 3.6 6.1 5.8 6.4 4.0

Use a computer program to find a 95% confidence inter-
val for the mean time to take corrective action.

61. The following are the compressive strengths (given to
the nearest 10 psi) of 30 concrete samples.

4890 4830 5490 4820 5230 4960 5040 5060 4500 5260
4600 4630 5330 5160 4950 4480 5310 4730 4710 4390
4820 4550 4970 4740 4840 4910 4880 5200 5150 4890

Use a computer program to find a 90% confidence
interval for the standard deviation of these compres-
sive strengths.
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Answers to Odd-Numbered Exercises

1 k = −1
ln(1 −α) .

3 c = 1 ;
√

1 −α
α

.

7 Substitute tα/2,n−1
s√
n

for zα/2
σ√
n

.

9
2σ 4

(n1 + n2 − λ) .

13 n = θ∗(1 − θ∗)
z2
α/2

e2
, where θ∗ is the value on the interval

from θ ′ to θn closest to 1
2 .
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15 E< zα/2

√
θ̂1(1 − θ̂1)

n1
+ θ̂2(1 − θ̂2)

n2
.

17 0.050.
21 59.82<μ< 63.78.
23 139.57<μ< 144.03.
25 0.83 minute.
27 59.99<μ< 63.61.
29 355.
31 61.96<μ< 65.72 gallons.
33 −7.485<μ1 −μ2<−2.915.
35 −1.198<μ1 −μ2< 1.998 feet.
37 0.0023 ohm.
39 0.069.

41 0.053.
43 0.075.
45 n = 2, 401.
47 n = 1, 037.
49 −0.372<θ1 − θ2<−0.204.
51 0.053.
53 0.04<σ 2< 0.28.
55 3.67<σ < 5.83.

57 0.58<
σ 2

1

σ 2
2

< 1.96.

59 0.233<
σ 2

1

σ 2
2

< 9.506.

61 227.7<σ < 352.3.
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1 Introduction If an engineer has to decide on the basis of sample data whether the true average life-
time of a certain kind of tire is at least 42,000 miles, if an agronomist has to decide
on the basis of experiments whether one kind of fertilizer produces a higher yield
of soybeans than another, and if a manufacturer of pharmaceutical products has to
decide on the basis of samples whether 90 percent of all patients given a new med-
ication will recover from a certain disease, these problems can all be translated into
the language of statistical tests of hypotheses. In the first case we might say that the
engineer has to test the hypothesis that θ , the parameter of an exponential popula-
tion, is at least 42,000; in the second case we might say that the agronomist has to
decide whether μ1>μ2, where μ1 and μ2 are the means of two normal populations;
and in the third case we might say that the manufacturer has to decide whether θ , the
parameter of a binomial population, equals 0.90. In each case it must be assumed, of
course, that the chosen distribution correctly describes the experimental conditions;
that is, the distribution provides the correct statistical model.

As in the preceding examples, most tests of statistical hypotheses concern the
parameters of distributions, but sometimes they also concern the type, or nature, of
the distributions themselves. For instance, in the first of our three examples the engi-
neer may also have to decide whether he is actually dealing with a sample from an
exponential population or whether his data are values of random variables having,
say, the Weibull distribution.

DEFINITION 1. STATISTICAL HYPOTHESIS. An assertion or conjecture about the dis-
tribution of one or more random variables is called a statistical hypothesis. If
a statistical hypothesis completely specifies the distribution, it is called a simple
hypothesis; if not, it is referred to as a composite hypothesis.

A simple hypothesis must therefore specify not only the functional form of the
underlying distribution, but also the values of all parameters. Thus, in the third of
the above examples, the one dealing with the effectiveness of the new medication,
the hypothesis θ = 0.90 is simple, assuming, of course, that we specify the sample size
and that the population is binomial. However, in the first of the preceding examples
the hypothesis is composite since θ G 42,000 does not assign a specific value to the
parameter θ .

From Chapter 12 of John E. Freund’s Mathematical Statistics with Applications,
Eighth Edition. Irwin Miller, Marylees Miller. Copyright © 2014 by Pearson Education, Inc.
All rights reserved.
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To be able to construct suitable criteria for testing statistical hypotheses, it is nec-
essary that we also formulate alternative hypotheses. For instance, in the example
dealing with the lifetimes of the tires, we might formulate the alternative hypoth-
esis that the parameter θ of the exponential population is less than 42,000; in the
example dealing with the two kinds of fertilizer, we might formulate the alternative
hypothesis μ1 = μ2; and in the example dealing with the new medication, we might
formulate the alternative hypothesis that the parameter θ of the given binomial pop-
ulation is only 0.60, which is the disease’s recovery rate without the new medication.

The concept of simple and composite hypotheses applies also to alternative
hypotheses, and in the first example we can now say that we are testing the com-
posite hypothesis θ G 42,000 against the composite alternative θ < 42,000, where θ is
the parameter of an exponential population. Similarly, in the second example we are
testing the composite hypothesis μ1>μ2 against the composite alternative μ1 = μ2,
where μ1 and μ2 are the means of two normal populations, and in the third example
we are testing the simple hypothesis θ = 0.90 against the simple alternative θ = 0.60,
where θ is the parameter of a binomial population for which n is given.

Frequently, statisticians formulate as their hypotheses the exact opposite of what
they may want to show. For instance, if we want to show that the students in one
school have a higher average I.Q. than those in another school, we might formulate
the hypothesis that there is no difference: the hypothesis μ1 = μ2. With this hypoth-
esis we know what to expect, but this would not be the case if we formulated the
hypothesis μ1>μ2, at least not unless we specify the actual difference between μ1
and μ2.

Similarly, if we want to show that one kind of ore has a higher percentage con-
tent of uranium than another kind of ore, we might formulate the hypothesis that
the two percentages are the same; and if we want to show that there is a greater vari-
ability in the quality of one product than there is in the quality of another, we might
formulate the hypothesis that there is no difference; that is, σ1 = σ2. In view of the
assumptions of “no difference,” hypotheses such as these led to the term null hypoth-
esis, but nowadays this term is applied to any hypothesis that we may want to test.

Symbolically, we shall use the symbol H0 for the null hypothesis that we want
to test and H1 or HA for the alternative hypothesis. Problems involving more than
two hypotheses, that is, problems involving several alternative hypotheses, tend to
be quite complicated.

2 Testing a Statistical Hypothesis
The testing of a statistical hypothesis is the application of an explicit set of rules
for deciding on the basis of a random sample whether to accept the null hypothesis
or to reject it in favor of the alternative hypothesis. Suppose, for example, that a
statistician wants to test the null hypothesis θ = θ0 against the alternative hypoth-
esis θ = θ1. In order to make a choice, he will generate sample data by conducting
an experiment and then compute the value of a test statistic, which will tell him
what action to take for each possible outcome of the sample space. The test proce-
dure, therefore, partitions the possible values of the test statistic into two subsets: an
acceptance region for H0 and a rejection region for H0.

The procedure just described can lead to two kinds of errors. For instance, if
the true value of the parameter θ is θ0 and the statistician incorrectly concludes that
θ = θ1, he is committing an error referred to as a type I error. On the other hand, if
the true value of the parameter θ is θ1 and the statistician incorrectly concludes that
θ = θ0, he is committing a second kind of error referred to as a type II error.
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DEFINITION 2. TYPE I AND TYPE II ERRORS.

1. Rejection of a null hypothesis when it is true is called a type I error. The
probability of committing a type I error is denoted by �.

2. Acceptance of the null hypothesis when it is false is called a type II error.
The probability of committing a type II error is denoted by �.

Definition 2 is more readily visualized with the aid for the following table:

H0 is true H0 is false

Accept H0 No error Type II error probability = β

Reject H0 Type I error probability = α No error

DEFINITION 3. CRITICAL REGION. It is customary to refer to the rejection region for
H0 as the critical region of a test. The probability of obtaining a value of the test
statistic inside the critical region when H0 is true is called the size of the critical
region. Thus, the size of the critical region is just the probability � of committing
a type I error. This probability is also called the level of significance of the test
(see the last part of Section 5).

EXAMPLE 1

Suppose that the manufacturer of a new medication wants to test the null hypothesis
θ = 0.90 against the alternative hypothesis θ = 0.60. His test statistic is X, the
observed number of successes (recoveries) in 20 trials, and he will accept the null
hypothesis if x> 14; otherwise, he will reject it. Find α and β.

Solution
The acceptance region for the null hypothesis is x = 15, 16, 17, 18, 19, and 20, and,
correspondingly, the rejection region (or critical region) is x = 0, 1, 2, . . . , 14. There-
fore, from the Binomial Probabilities table of “Statistical Tables”,

α = P(X F 14; θ = 0.90) = 0.0114
and

β = P(X > 14; θ = 0.60) = 0.1255

A good test procedure is one in which both α and β are small, thereby giving
us a good chance of making the correct decision. The probability of a type II error
in Example 1 is rather high, but this can be reduced by appropriately changing the
critical region. For instance, if we use the acceptance region x> 15 in this example
so that the critical region is x F 15, it can easily be checked that this would make
α = 0.0433 and β = 0.0509. Thus, although the probability of a type II error is
reduced, the probability of a type I error has become larger. The only way in which
we can reduce the probabilities of both types of errors is to increase the size of the
sample, but as long as n is held fixed, this inverse relationship between the probabil-
ities of type I and type II errors is typical of statistical decision procedures. In other
words, if the probability of one type of error is reduced, that of the other type of
error is increased.
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EXAMPLE 2

Suppose that we want to test the null hypothesis that the mean of a normal popula-
tion with σ 2 = 1 is μ0 against the alternative hypothesis that it is μ1, where μ1>μ0.
Find the value of K such that x>K provides a critical region of size α = 0.05 for a
random sample of size n.

Solution
Referring to Figure 1 and the Standard Normal Distribution table of “Statistical
Tables”, we find that z = 1.645 corresponds to an entry of 0.4500 and hence that

1.645 = K −μ0

1/
√

n

It follows that

K = μ0 + 1.645√
n

m0 m1K

a� 0.05b

�x

Figure 1. Diagram for Examples 2 and 3.

EXAMPLE 3

With reference to Example 2, determine the minimum sample size needed to test the
null hypothesis μ0 = 10 against the alternative hypothesis μ1 = 11 with β F 0.06.

Solution
Since β is given by the area of the ruled region of Figure 1, we get

β = P

(
X < 10 + 1.645√

n
;μ = 11

)

= P

⎡
⎢⎢⎢⎢⎢⎣Z<

(
10 + 1.645√

n

)
− 11

1/
√

n

⎤
⎥⎥⎥⎥⎥⎦

= P(Z<−√
n + 1.645)

and since z = 1.555 corresponds to an entry of 0.5000 − 0.06 = 0.4400 in the Stan-
dard Normal Distribution table of “Statistical Tables”, we set −√

n + 1.645 equal to
−1.555. It follows that

√
n = 1.645 + 1.555 = 3.200 and n = 10.24, or 11 rounded up

to the nearest integer.
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3 Losses and Risks†

The concepts of loss functions and risk functions also play an important part in the
theory of hypothesis testing. In the decision theory approach to testing the null
hypothesis that a population parameter θ equals θ0 against the alternative that it
equals θ1, the statistician either takes the action a0 and accepts the null hypothe-
sis, or takes the action a1 and accepts the alternative hypothesis. Depending on the
true “state of Nature” and the action that she takes, her losses are shown in the
following table:

Statistician
a0 a1

Nature
θ0 L(a0, θ0) L(a1, θ0)

θ1 L(a0, θ1) L(a1, θ1)

These losses can be positive or negative (reflecting penalties or rewards), and the
only condition that we shall impose is that

L(a0, θ0)<L(a1, θ0) and L(a1, θ1)<L(a0, θ1)

that is, in either case the right decision is more profitable than the wrong one.
The statistician’s choice will depend on the outcome of an experiment and the

decision function d, which tells her for each possible outcome what action to take. If
the null hypothesis is true and the statistician accepts the alternative hypothesis, that
is, if the value of the parameter is θ0 and the statistician takes action a1, she commits
a type I error; correspondingly, if the value of the parameter is θ1 and the statistician
takes action a0, she commits a type II error. For the decision function d, we shall let
α(d) denote the probability of committing a type I error and β(d) the probability of
committing a type II error. The values of the risk function are thus

R(d, θ0) = [1 −α(d)]L(a0, θ0)+α(d)L(a1, θ0)

= L(a0, θ0)+α(d)[L(a1, θ0)− L(a0, θ0)]

and

R(d, θ1) = β(d)L(a0, θ1)+ [1 −β(d)]L(a1, θ1)

= L(a1, θ1)+β(d)[L(a0, θ1)− L(a1, θ1)]

where, by assumption, the quantities in brackets are both positive. It is apparent
from this (and should, perhaps, have been obvious from the beginning) that to min-
imize the risks the statistician must choose a decision function that, in some way,
keeps the probabilities of both types of errors as small as possible.

If we could assign prior probabilities to θ0 and θ1 and if we knew the exact values
of all the losses L(aj, θi), we could calculate the Bayes risk and look for the decision
function that minimizes this risk. Alternatively, if we looked upon Nature as a malev-
olent opponent, we could use the minimax criterion and choose the decision function
that minimizes the maximum risk; but this is not a very realistic approach in most
practical situations.

†This section may be omitted.
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4 The Neyman–Pearson Lemma
In the theory of hypothesis testing that is nowadays referred to as “classical” or
“traditional,” the Neyman–Pearson theory, we circumvent the dependence between
probabilities of type I and type II errors by limiting ourselves to test statistics for
which the probability of a type I error is less than or equal to some constant α. In
other words, we restrict ourselves to critical regions of size less than or equal to α.
(We must allow for the critical region to be of size less than α to take care of discrete
random variables, where it may be impossible to find a test statistic for which the size
of the critical region is exactly equal to α.) For all practical purposes, then, we hold
the probability of a type I error fixed and look for the test statistic that minimizes
the probability of a type II error or, equivalently, that maximizes the quantity 1 −β.

DEFINITION 4. THE POWER OF A TEST. When testing the null hypothesis H0: � = �0
against the alternative hypothesis H1: � = �1, the quantity 1 − � is referred to as
the power of the test at � = �1. A critical region for testing a simple null hypothesis
H0: � = �0 against a simple alternative hypothesis H1: � = �1 is said to be a best
critical region or a most powerful critical region if the power of the test is a
maximum at � = �1.

To construct a most powerful critical region in this kind of situation, we refer
to the likelihoods of a random sample of size n from the population under consid-
eration when θ = θ0 and θ = θ1. Denoting these likelihoods by L0 and L1, we
thus have

L0 =
n∏

i=1

f (xi; θ0) and L1 =
n∏

i=1

f (xi; θ1)

Intuitively speaking, it stands to reason that
L0

L1
should be small for sample

points inside the critical region, which lead to type I errors when θ = θ0 and to

correct decisions when θ = θ1; similarly, it stands to reason that
L0

L1
should be large

for sample points outside the critical region, which lead to correct decisions when
θ = θ0 and type II errors when θ = θ1. The fact that this argument does, indeed,
guarantee a most powerful critical region is proved by the following theorem.

THEOREM 1. (Neyman–Pearson Lemma) If C is a critical region of size α
and k is a constant such that

L0

L1
F k inside C

and
L0

L1
G k outside C

then C is a most powerful critical region of size α for testing θ = θ0
against θ = θ1.
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Proof Suppose that C is a critical region satisfying the conditions of the
theorem and that D is some other critical region of size α. Thus,

∫
· · ·
∫

C

L0 dx =
∫

· · ·
∫

D

L0 dx = α

where dx stands for dx1, dx2, . . . , dxn, and the two multiple integrals are
taken over the respective n-dimensional regions C and D. Now, making
use of the fact that C is the union of the disjoint sets C ∩ D and C ∩ D′,
while D is the union of the disjoint sets C ∩ D and C′ ∩ D, we can write

∫
· · ·
∫

C∩D

L0 dx +
∫

· · ·
∫

C∩D′

L0 dx =
∫

· · ·
∫

C∩D

L0 dx +
∫

· · ·
∫

C′∩D

L0 dx = α

and hence ∫
· · ·
∫

C∩D′

L0 dx =
∫

· · ·
∫

C′∩D

L0 dx

Then, since L1 G L0/k inside C and L1 F L0/k outside C, it follows that

∫
· · ·
∫

C∩D′

L1 dx G
∫

· · ·
∫

C∩D′

L0

k
dx =

∫
· · ·
∫

C′∩D

L0

k
dx G

∫
· · ·
∫

C′∩D

L1 dx

and hence that ∫
· · ·
∫

C∩D′

L1 dx G
∫

· · ·
∫

C′∩D

L1 dx

Finally,

∫
· · ·
∫

C

L1 dx =
∫

· · ·
∫

C∩D

L1 dx +
∫

· · ·
∫

C∩D′

L1 dx

G
∫

· · ·
∫

C∩D

L1 dx +
∫

· · ·
∫

C′∩D

L1 dx =
∫

· · ·
∫

D

L1 dx

so that ∫
· · ·
∫

C

L1 dx G
∫

· · ·
∫

D

L1 dx

and this completes the proof of Theorem 1.
The final inequality states that for the critical region C the proba-

bility of not committing a type II error is greater than or equal to the
corresponding probability for any other critical region of size α. (For the
discrete case the proof is the same, with summations taking the place
of integrals.)
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EXAMPLE 4

A random sample of size n from a normal population with σ 2 = 1 is to be used to
test the null hypothesis μ = μ0 against the alternative hypothesis μ = μ1, where
μ1>μ0. Use the Neyman–Pearson lemma to find the most powerful critical region
of size α.

Solution
The two likelihoods are

L0 =
(

1√
2π

)n

· e− 1
2�(xi−μ0)

2
and L1 =

(
1√
2π

)n

· e− 1
2�(xi−μ1)

2

where the summations extend from i = 1 to i = n, and after some simplification their
ratio becomes

L0

L1
= e

n
2 (μ

2
1−μ2

0)+(μ0−μ1)·�xi

Thus, we must find a constant k and a region C of the sample space such that

e
n
2 (μ

2
1−μ2

0)+(μ0−μ1)·�xi F k inside C

e
n
2 (μ

2
1−μ2

0)+(μ0−μ1)·�xi G k outside C

and after taking logarithms, subtracting
n
2
(μ2

1 −μ2
0), and dividing by the negative

quantity n(μ0 −μ1), these two inequalities become

x G K inside C

x F K outside C

where K is an expression in k, n, μ0, and μ1.
In actual practice, constants like K are determined by making use of the size of

the critical region and appropriate statistical theory. In our case (see Example 2) we
obtain K = μ0 + zα · 1√

n
. Thus, the most powerful critical region of size α for testing

the null hypothesis μ = μ0 against the alternative μ = μ1 (with μ1>μ0) for the
given normal population is

x G μ0 + zα · 1√
n

and it should be noted that it does not depend on μ1. This is an important property,
to which we shall refer again in Section 5.

Note that we derived the critical region here without first mentioning that the
test statistic is to be X. Since the specification of a critical region thus defines the
corresponding test statistic, and vice versa, these two terms, “critical region” and
“test statistic,” are often used interchangeably in the language of statistics.
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Exercises
1. Decide in each case whether the hypothesis is
simple or composite:
(a) the hypothesis that a random variable has a gamma
distribution with α = 3 and β = 2;
(b) the hypothesis that a random variable has a gamma
distribution with α = 3 and β Z 2;
(c) the hypothesis that a random variable has an expo-
nential density;
(d) the hypothesis that a random variable has a beta dis-
tribution with the mean μ = 0.50.

2. Decide in each case whether the hypothesis is simple
or composite:
(a) the hypothesis that a random variable has a Poisson
distribution with λ = 1.25;
(b) the hypothesis that a random variable has a Poisson
distribution with λ> 1.25;
(c) the hypothesis that a random variable has a normal
distribution with the mean μ = 100;
(d) the hypothesis that a random variable has a negative
binomial distribution with k = 3 and θ < 0.60.

3. A single observation of a random variable having a
hypergeometric distribution with N = 7 and n = 2 is used
to test the null hypothesis k = 2 against the alternative
hypothesis k = 4. If the null hypothesis is rejected if and
only if the value of the random variable is 2, find the prob-
abilities of type I and type II errors.

4. With reference to Example 1, what would have been
the probabilities of type I and type II errors if the accep-
tance region had been x> 16 and the corresponding
rejection region had been x F 16?

5. A single observation of a random variable having a
geometric distribution is used to test the null hypothesis
θ = θ0 against the alternative hypothesis θ = θ1>θ0. If
the null hypothesis is rejected if and only if the observed
value of the random variable is greater than or equal to
the positive integer k, find expressions for the probabili-
ties of type I and type II errors.

6. A single observation of a random variable having an
exponential distribution is used to test the null hypoth-
esis that the mean of the distribution is θ = 2 against
the alternative that it is θ = 5. If the null hypothesis is
accepted if and only if the observed value of the random
variable is less than 3, find the probabilities of type I and
type II errors.

7. Let X1 and X2 constitute a random sample from a nor-
mal population with σ 2 = 1. If the null hypothesis μ = μ0
is to be rejected in favor of the alternative hypothesis
μ = μ1>μ0 when x>μ0 + 1, what is the size of the criti-
cal region?

8. A single observation of a random variable having a uni-
form density with α = 0 is used to test the null hypothesis
β = β0 against the alternative hypothesis β = β0 + 2.
If the null hypothesis is rejected if and only if the ran-
dom variable takes on a value greater than β0 + 1, find
the probabilities of type I and type II errors.

9. Let X1 and X2 constitute a random sample of size 2
from the population given by

f (x; θ) =
{
θxθ−1 for 0< x< 1
0 elsewhere

If the critical region x1x2 G 3
4 is used to test the null

hypothesis θ = 1 against the alternative hypothesis θ = 2,
what is the power of this test at θ = 2?

10. Show that if μ1<μ0 in Example 4, the Neyman–
Pearson lemma yields the critical region

x F μ0 − zα · 1√
n

11. A random sample of size n from an exponential pop-
ulation is used to test the null hypothesis θ = θ0 against
the alternative hypothesis θ = θ1>θ0. Use the Neyman–
Pearson lemma to find the most powerful critical region
of size α.

12. Use the Neyman–Pearson lemma to indicate how to
construct the most powerful critical region of size α to test
the null hypothesis θ = θ0, where θ is the parameter of a
binomial distribution with a given value of n, against the
alternative hypothesis θ = θ1<θ0.

13. With reference to Exercise 12, if n = 100, θ0 =
0.40, θ1 = 0.30, and α is as large as possible with-
out exceeding 0.05, use the normal approximation to the
binomial distribution to find the probability of commit-
ting a type II error.

14. A single observation of a random variable having
a geometric distribution is to be used to test the null
hypothesis that its parameter equals θ0 against the alter-
native that it equals θ1>θ0. Use the Neyman–Pearson
lemma to find the best critical region of size α.

15. Given a random sample of size n from a normal pop-
ulation with μ = 0, use the Neyman–Pearson lemma
to construct the most powerful critical region of size α
to test the null hypothesis σ = σ0 against the alterna-
tive σ = σ1>σ0.

16. Suppose that in Example 1 the manufacturer of the
new medication feels that the odds are 4 to 1 that with
this medication the recovery rate from the disease is 0.90
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rather than 0.60. With these odds, what are the proba-
bilities that he will make a wrong decision if he uses the
decision function

(a) d1(x) =
{

a0 for x> 14
a1 for x F 14

(b) d2(x) =
{

a0 for x> 15
a1 for x F 15

(c) d3(x) =
{

a0 for x> 16
a1 for x F 16

5 The Power Function of a Test
In Example 1 we were able to give unique values for the probabilities of committing
type I and type II errors because we were testing a simple hypothesis against a simple
alternative. In actual practice, it is relatively rare, however, that simple hypotheses
are tested against simple alternatives; usually one or the other, or both, are compos-
ite. For instance, in Example 1 it might well have been more realistic to test the null
hypothesis that the recovery rate from the disease is θ G 0.90 against the alternative
hypothesis θ < 0.90, that is, the alternative hypothesis that the new medication is not
as effective as claimed.

When we deal with composite hypotheses, the problem of evaluating the merits
of a test criterion, or critical region, becomes more involved. In that case we have
to consider the probabilities α(θ) of committing a type I error for all values of θ
within the domain specified under the null hypothesis H0 and the probabilities β(θ)
of committing a type II error for all values of θ within the domain specified under the
alternative hypothesis H1. It is customary to combine the two sets of probabilities in
the following way.

DEFINITION 5. POWER FUNCTION. The power function of a test of a statistical hypoth-
esis H0 against an alternative hypothesis H1 is given by

π(θ) =
{
α(θ) for values of θ assumed under H0
1 −β(θ) for values of θ assumed under H1

Thus, the values of the power function are the probabilities of rejecting the null
hypothesis H0 for various values of the parameter θ . Observe also that for values of
θ assumed under H0, the power function gives the probability of committing a type
I error, and for values of θ assumed under H1, it gives the probability of not commit-
ting a type II error.

EXAMPLE 5

With reference to Example 1, suppose that we had wanted to test the null hypothesis
θ G 0.90 against the alternative hypothesis θ < 0.90. Investigate the power function
corresponding to the same test criterion as in Exercises 3 and 4, where we accept the
null hypothesis if x> 14 and reject it if x F 14. As before, x is the observed number
of successes (recoveries) in n = 20 trials.

Solution
Choosing values of θ for which the respective probabilities, α(θ) or β(θ), are avail-
able from the Binomial Probabilities table of “Statistical Tables”, we find the
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probabilities α(θ) of getting at most 14 successes for θ = 0.90 and 0.95 and the prob-
abilities β(θ) of getting more than 14 successes for θ = 0.85, 0.80, . . . , 0.50. These are
shown in the following table, together with the corresponding values of the power
function, π(θ):

Probability of Probability of Probability of
type I error type II error rejecting H0

θ α(θ) β(θ) π(θ)

0.95 0.0003 0.0003
0.90 0.0114 0.0114
0.85 0.9326 0.0674
0.80 0.8042 0.1958
0.75 0.6171 0.3829
0.70 0.4163 0.5837
0.65 0.2455 0.7545
0.60 0.1255 0.8745
0.55 0.0553 0.9447
0.50 0.0207 0.9793

The graph of this power function is shown in Figure 2. Of course, it applies only to
the decision criterion of Example 1, the critical region x F 14; but it is of interest to
note how it compares with the power function of a corresponding ideal (infallible)
test criterion, given by the dashed lines of Figure 2.
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Figure 2. Diagram for Example 5.

Power functions play a very important role in the evaluation of statistical tests,
particularly in the comparison of several critical regions that might all be used to
test a given null hypothesis against a given alternative. Incidentally, if we had plot-
ted in Figure 2 the probabilities of accepting H0 (instead of those of rejecting H0),
we would have obtained the operating characteristic curve, OC-curve, of the given
critical region. In other words, the values of the operating characteristic function,
used mainly in industrial applications, are given by 1 −π(θ).

In Section 4 we indicated that in the Neyman–Pearson theory of testing hypo-
theses we hold α, the probability of a type I error, fixed, and this requires that the
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null hypothesis H0 be a simple hypothesis, say, θ = θ0. As a result, the power function
of any test of this null hypothesis will pass through the point (θ0,α), the only point
at which the value of a power function is the probability of making an error. This
facilitates the comparison of the power functions of several critical regions, which
are all designed to test the simple null hypothesis θ = θ0 against a composite alter-
native, say, the alternative hypothesis θ Z θ0. To illustrate, consider Figure 3, giving
the power functions of three different critical regions, or test criteria, designed for
this purpose. Since for each value of θ , except θ0, the values of power functions are
probabilities of making correct decisions, it is desirable to have them as close to 1
as possible. Thus, it can be seen by inspection that the critical region whose power
function is given by the dotted curve of Figure 3 is preferable to the critical region
whose power function is given by the curve that is dashed. The probability of not
committing a type II error with the first of these critical regions always exceeds that
of the second, and we say that the first critical region is uniformly more powerful
than the second; also, the second critical region is said to be inadmissible.

The same clear-cut distinction is not possible if we attempt to compare the
critical regions whose power functions are given by the dotted and solid curves of
Figure 3; in this case the first one is preferable for θ < θ0, while the other is prefer-
able for θ > θ0. In situations like this we need further criteria for comparing power
functions, for instance that of Exercise 27. Note that if the alternative hypothesis
had been θ > θ0, the critical region whose power function is given by the solid curve
would have been uniformly more powerful than the critical region whose power
function is given by the dotted curve.
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Figure 3. Power functions.

In general, when we test a simple hypothesis against a composite alternative, we
specify α, the probability of a type I error, and refer to one critical region of size α as
uniformly more powerful than another if the values of its power function are always
greater than or equal to those of the other, with the strict inequality holding for at
least one value of the parameter under consideration.

DEFINITION 6. UNIFORMLY MOST POWERFUL CRITICAL REGION (TEST). If, for a given
problem, a critical region of size � is uniformly more powerful than any other
critical region of size �, it is said to be a uniformly most powerful critical region,
or a uniformly most powerful test.
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Unfortunately, uniformly most powerful critical regions rarely exist when we
test a simple hypothesis against a composite alternative. Of course, when we test a
simple hypothesis against a simple alternative, a most powerful critical region of size
α, as defined in Section 4, is, in fact, uniformly most powerful.

Until now we have always assumed that the acceptance of H0 is equivalent to
the rejection of H1, and vice versa, but this is not the case, for example, in multistage
or sequential tests, where the alternatives are to accept H0, to accept H1, or to defer
the decision until more data have been obtained. It is also not the case in tests of
significance, where the alternative to rejecting H0 is reserving judgment instead of
accepting H0. For instance, if we want to test the null hypothesis that a coin is per-
fectly balanced against the alternative that this is not the case, and 100 tosses yield 57
heads and 43 tails, this will not enable us to reject the null hypothesis when α = 0.05
(see Exercise 42). However, since we obtained quite a few more heads than the 50
that we can expect for a balanced coin, we may well be reluctant to accept the null
hypothesis as true. To avoid this, we can say that the difference between 50 and 57,
the number of heads that we expected and the number of heads that we obtained,
may reasonably be attributed to chance, or we can say that this difference is not
large enough to reject the null hypothesis. In either case, we do not really commit
ourselves one way or the other, and as long as we do not actually accept the null
hypothesis, we cannot commit a type II error. It is mainly in connection with tests of
this kind that we refer to the probability of a type I error as the level of significance.

6 Likelihood Ratio Tests
The Neyman–Pearson lemma provides a means of constructing most powerful crit-
ical regions for testing a simple null hypothesis against a simple alternative hypoth-
esis, but it does not always apply to composite hypotheses. We shall now present a
general method for constructing critical regions for tests of composite hypotheses
that in most cases have very satisfactory properties. The resulting tests, called likeli-
hood ratio tests, are based on a generalization of the method of Section 4, but they
are not necessarily uniformly most powerful. We shall discuss this method here with
reference to tests concerning one parameter θ and continuous populations, but all
our arguments can easily be extended to the multiparameter case and to discrete
populations.

To illustrate the likelihood ratio technique, let us suppose that X1, X2, . . . , Xn
constitute a random sample of size n from a population whose density at x is f (x; θ)
and that 	 is the set of values that can be taken on by the parameter θ . We often
refer to 	 as the parameter space for θ . The null hypothesis we shall want to test is

H0 : θ ∈ ω

and the alternative hypothesis is

H1 : θ ∈ ω′

where ω is a subset of 	 and ω′ is the complement of ω with respect to 	. Thus,
the parameter space for θ is partitioned into the disjoint sets ω and ω′; according to
the null hypothesis, θ is an element of the first set, and according to the alternative
hypothesis, it is an element of the second set. In most problems 	 is either the set of
all real numbers, the set of all positive real numbers, some interval of real numbers,
or a discrete set of real numbers.
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When H0 and H1 are both simple hypotheses, ω and ω′ each have only one ele-
ment, and in Section 4 we constructed tests by comparing the likelihoods L0 and L1.
In the general case, where at least one of the two hypotheses is composite, we com-
pare instead the two quantities max L0 and max L, where max L0 is the maximum
value of the likelihood function for all values of θ in ω, and max L is the maximum
value of the likelihood function for all values of θ in 	. In other words, if we have a
random sample of size n from a population whose density at x is f (x; θ), θ̂ is the max-
imum likelihood estimate of θ subject to the restriction that θ must be an element of
ω, and ˆ̂θ is the maximum likelihood estimate of θ for all values of θ in 	, then

max L0 =
n∏

i=1

f (xi; θ̂ )

and

max L =
n∏

i=1

f (xi; ˆ̂θ)

These quantities are both values of random variables, since they depend on the
observed values x1, x2, . . . , xn, and their ratio

λ = max L0

max L

is referred to as a value of the likelihood ratio statistic � (capital Greek lambda).
Since max L0 and max L are both values of a likelihood function and therefore

are never negative, it follows that λ G 0; also, since ω is a subset of the parameter
space 	, it follows that λ F 1. When the null hypothesis is false, we would expect
max L0 to be small compared to max L, in which case λ would be close to zero.
On the other hand, when the null hypothesis is true and θ ∈ ω, we would expect
max L0 to be close to max L, in which case λ would be close to 1. A likelihood
ratio test states, therefore, that the null hypothesis H0 is rejected if and only if λ falls
in a critical region of the form λ F k, where 0<k< 1. To summarize, we have the
following definition.

DEFINITION 7. LIKELIHOOD RATIO TEST. If � and �′ are complementary subsets of the
parameter space 	 and if the likelihood ratio statistic

λ = max L0

max L

where max L0 and max L are the maximum values of the likelihood function for
all values of � in � and 	, respectively, then the critical region

λ … k

where 0<k< 1, defines a likelihood ratio test of the null hypothesis � ∈ �
against the alternative hypothesis � ∈ �′.

If H0 is a simple hypothesis, k is chosen so that the size of the critical region
equals α; if H0 is composite, k is chosen so that the probability of a type I error is
less than or equal to α for all θ in ω, and equal to α, if possible, for at least one value
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of θ in ω. Thus, if H0 is a simple hypothesis and g(λ) is the density of� at λ when H0
is true, then k must be such that

P(� F k) =
∫ k

0
g(λ)dλ = α

In the discrete case, the integral is replaced by a summation, and k is taken to be the
largest value for which the sum is less than or equal to α.

EXAMPLE 6

Find the critical region of the likelihood ratio test for testing the null hypothesis

H0 : μ = μ0

against the composite alternative

H1 : μZμ0

on the basis of a random sample of size n from a normal population with the known
variance σ 2.

Solution
Since ω contains only μ0, it follows that μ̂ = μ0, and since 	 is the set of all real
numbers, it follows that ˆ̂μ = x. Thus,

max L0 =
(

1

σ
√

2π

)n

· e− 1
2σ2 ·�(xi−μ0)

2

and

max L =
(

1

σ
√

2π

)n

· e− 1
2σ2 ·�(xi−x)2

where the summations extend from i = 1 to i = n, and the value of the likelihood
ratio statistic becomes

λ = e− 1
2σ2 ·�(xi−μ0)

2

e− 1
2σ2 ·�(xi−x)2

= e− n
2σ2 (x−μ0)

2

after suitable simplifications, which the reader will be asked to verify in Exercise 19.
Hence, the critical region of the likelihood ratio test is

e− n
2σ2 (x−μ0)

2
F k

and, after taking logarithms and dividing by − n
2σ2

, it becomes

(x −μ0)
2 G −2σ 2

n
· ln k
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or
|x −μ0| G K

where K will have to be determined so that the size of the critical region is α. Note
that ln k is negative in view of the fact that 0<k< 1.

Since X has a normal distribution with the mean μ0 and the variance
σ 2

n
, we

find that the critical region of this likelihood ratio test is

|x −μ0| G zα/2 · σ√
n

or, equivalently,
|z| G zα/2

where
z = x −μ0

σ/
√

n

In other words, the null hypothesis must be rejected when Z takes on a value greater
than or equal to zα/2 or a value less than or equal to −zα/2.

In the preceding example it was easy to find the constant that made the size of
the critical region equal to α, because we were able to refer to the known distribution
of X and did not have to derive the distribution of the likelihood ratio statistic �
itself. Since the distribution of� is usually quite complicated, which makes it difficult
to evaluate k, it is often preferable to use the following approximation, whose proof
is referred to at the end of this chapter.

THEOREM 2.† For large n, the distribution of −2 · ln� approaches, under
very general conditions, the chi-square distribution with 1 degree of
freedom.

We should add that this theorem applies only to the one-parameter case; if the
population has more than one unknown parameter upon which the null hypothesis
imposes r restrictions, the number of degrees of freedom in the chi-square approx-
imation to the distribution of −2 · ln� is equal to r. For instance, if we want to test
the null hypothesis that the unknown mean and variance of a normal population are
μ0 and σ 2

0 against the alternative hypothesis that μZμ0 and σ 2 Z σ 2
0 , the number of

degrees of freedom in the chi-square approximation to the distribution of −2 · ln�
would be 2; the two restrictions are μ = μ0 and σ 2 = σ 2

0 .
Since small values of λ correspond to large values of −2 · ln λ, we can use Theo-

rem 2 to write the critical region of this approximate likelihood ratio test as

−2 · ln λ G χ2
α,1

In connection with Example 6 we find that

−2 · ln λ = n
σ 2 (x −μ0)

2 =
(

x −μ0

σ/
√

n

)2

†For a statement of the conditions under which Theorem 2 is true and for a proof of this theorem, see the
references at the end of this chapter.
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which actually is a value of a random variable having the chi-square distribution with
1 degree of freedom.

As we indicated in Section 6, the likelihood ratio technique will generally pro-
duce satisfactory results. That this is not always the case is illustrated by the following
example, which is somewhat out of the ordinary.

EXAMPLE 7

On the basis of a single observation, we want to test the simple null hypothesis that
the probability distribution of X is

x 1 2 3 4 5 6 7

f (x)
1

12
1

12
1

12
1
4

1
6

1
6

1
6

against the composite alternative that the probability distribution is

x 1 2 3 4 5 6 7

g(x)
a
3

b
3

c
3

2
3

0 0 0

where a + b + c = 1. Show that the critical region obtained by means of the likeli-
hood ratio technique is inadmissible.

Solution
The composite alternative hypothesis includes all the probability distributions that
we get by assigning different values from 0 to 1 to a, b, and c, subject only to the
restriction that a + b + c = 1. To determine λ for each value of x, we first let x = 1.
For this value we get max L0 = 1

12 , max L = 1
3 (corresponding to a = 1), and hence

λ = 1
4 . Determining λ for the other values of x in the same way, we get the results

shown in the following table:

x 1 2 3 4 5 6 7

λ
1
4

1
4

1
4

3
8

1 1 1

If the size of the critical region is to be α = 0.25, we find that the likelihood ratio
technique yields the critical region for which the null hypothesis is rejected when
λ = 1

4 , that is, when x = 1, x = 2, or x = 3; clearly, f (1)+ f (2)+ f (3) = 1
12 + 1

12 + 1
12 =

0.25. The corresponding probability of a type II error is given by g(4)+ g(5)+ g(6)+
g(7), and hence it equals 2

3 .
Now let us consider the critical region for which the null hypothesis is rejected

only when x = 4. Its size is also α = 0.25 since f (4) = 1
4 , but the corresponding

probability of a type II error is

g(1)+ g(2)+ g(3)+ g(5)+ g(6)+ g(7) = a
3

+ b
3

+ c
3

+ 0 + 0 + 0

= 1
3

Since this is less than 2
3 , the critical region obtained by means of the likelihood ratio

technique is inadmissible.
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Exercises
17. With reference to Exercise 3, suppose that we had
wanted to test the null hypothesis k F 2 against the alter-
native hypothesis k> 2. Find the probabilities of
(a) type I errors for k = 0, 1, and 2;
(b) type II errors for k = 4, 5, 6, and 7.
Also plot the graph of the corresponding power function.

18. With reference to Example 5, suppose that we reject
the null hypothesis if x F 15 and accept it if x> 15. Cal-
culate π(θ) for the same values of θ as in the table in
Section 5 and plot the graph of the power function of this
test criterion.

19. In the solution of Example 6, verify the step that
led to

λ = e− n
2σ2 (x−μ0)

2

20. The number of successes in n trials is to be used to
test the null hypothesis that the parameter θ of a bino-
mial population equals 1

2 against the alternative that it
does not equal 1

2 .
(a) Find an expression for the likelihood ratio statistic.
(b) Use the result of part (a) to show that the critical
region of the likelihood ratio test can be written as

x · ln x + (n − x) · ln(n − x) G K

where x is the observed number of successes.
(c) Study the graph of f (x) = x · ln x + (n − x) · ln(n − x),
in particular its minimum and its symmetry, to show that
the critical region of this likelihood ratio test can also be
written as ∣∣∣∣x − n

2

∣∣∣∣ G K

where K is a constant that depends on the size of the crit-
ical region.

21. A random sample of size n is to be used to test the
null hypothesis that the parameter θ of an exponential
population equals θ0 against the alternative that it does
not equal θ0.
(a) Find an expression for the likelihood ratio statistic.
(b) Use the result of part (a) to show that the critical
region of the likelihood ratio test can be written as

x · e−x/θ0 F K

22. This question has been intentionally omitted for this
edition.

23. For the likelihood ratio statistic of Exercise 22, show
that −2 · ln λ approaches t2 as n →q. [Hint: Use the infi-
nite series for ln(1 + x).]

24. Given a random sample of size n from a normal pop-
ulation with unknown mean and variance, find an expres-
sion for the likelihood ratio statistic for testing the null

hypothesis σ = σ0 against the alternative hypothesis
σ Z σ0.

25. Independent random samples of sizes n1, n2, . . . , and
nk from k normal populations with unknown means and
variances are to be used to test the null hypothesis σ 2

1 =
σ 2

2 = · · · = σ 2
k against the alternative that these variances

are not all equal.
(a) Show that under the null hypothesis the maximum
likelihood estimates of the means μ1 and the variances
σ 2

i are

μ̂i = xi and σ̂ 2
i =

k∑
i=1

(ni − 1)s2
i

n

where n =
k∑

i=1
ni, while without restrictions the maximum

likelihood estimates of the means μi and the variances
σ 2

i are

ˆ̂μi = xi and ˆ̂σ 2
i = (ni − 1)s2

i

ni

(b) Using the results of part (a), show that the likelihood
ratio statistic can be written as

λ =

k∏
i=1

[
(ni − 1)s2

i

ni

]ni/2

⎡
⎣ k∑

i=1

(ni − 1)s2
i

n

⎤
⎦

n/2

26. Show that for k = 2 the likelihood ratio statistic of
Exercise 25 can be expressed in terms of the ratio of the
two sample variances and that the likelihood ratio test
can, therefore, be based on the F distribution.

27. When we test a simple null hypothesis against a com-
posite alternative, a critical region is said to be unbiased if
the corresponding power function takes on its minimum
value at the value of the parameter assumed under the
null hypothesis. In other words, a critical region is unbi-
ased if the probability of rejecting the null hypothesis
is least when the null hypothesis is true. Given a single
observation of the random variable X having the density

f (x) =
⎧⎨
⎩1 + θ2

(
1
2

− x
)

for 0< x< 1

0 elsewhere

where −1 F θ F 1, show that the critical region x F α

provides an unbiased critical region of size α for testing
the null hypothesis θ = 0 against the alternative hypoth-
esis θ Z 0.
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7 The Theory in Practice
The applied exercises that follow are intended to give the reader some practical
experience with the theory of this chapter.

Applied Exercises SECS. 1–4

28. An airline wants to test the null hypothesis that 60
percent of its passengers object to smoking inside the
plane. Explain under what conditions they would be com-
mitting a type I error and under what conditions they
would be committing a type II error.

29. A doctor is asked to give an executive a thorough
physical checkup to test the null hypothesis that he will be
able to take on additional responsibilities. Explain under
what conditions the doctor would be committing a type I
error and under what conditions he would be committing
a type II error.

30. The average drying time of a manufacturer’s paint is
20 minutes. Investigating the effectiveness of a modifica-
tion in the chemical composition of her paint, the manu-
facturer wants to test the null hypothesis μ = 20 minutes
against a suitable alternative, where μ is the average dry-
ing time of the modified paint.
(a) What alternative hypothesis should the manufacturer
use if she does not want to make the modification in the
chemical composition of the paint unless it decreases the
drying time?
(b) What alternative hypothesis should the manufacturer
use if the new process is actually cheaper and she wants to
make the modification unless it increases the drying time
of the paint?

31. A city police department is considering replacing the
tires on its cars with a new brand tires. If μ1 is the average
number of miles that the old tires last and μ2 is the aver-
age number of miles that the new tires will last, the null
hypothesis to be tested is μ1 = μ2.
(a) What alternative hypothesis should the department
use if it does not want to use the new tires unless they
are definitely proved to give better mileage? In other
words, the burden of proof is put on the new tires, and
the old tires are to be kept unless the null hypothesis can
be rejected.
(b) What alternative hypothesis should the department
use if it is anxious to get the new tires unless they actually
give poorer mileage than the old tires? Note that now the
burden of proof is on the old tires, which will be kept only
if the null hypothesis can be rejected.
(c) What alternative hypothesis should the department
use so that rejection of the null hypothesis can lead
either to keeping the old tires or to buying the new
ones?

32. A botanist wishes to test the null hypothesis that the
average diameter of the flowers of a particular plant is
9.6 cm. He decides to take a random sample of size n = 80
and accept the null hypothesis if the mean of the sam-
ple falls between 9.3 cm and 9.9 cm; if the mean of this
sample falls outside this interval, he will reject the null
hypothesis. What decision will he make and will it be in
error if
(a) he gets a sample mean of 10.2 cm and μ = 9.6 cm;
(b) he gets a sample mean of 10.2 cm and μ = 9.8 cm;
(c) he gets a sample mean of 9.2 cm and μ = 9.6 cm;
(d) he gets a sample mean of 9.2 cm and μ = 9.8 cm?

33. An education specialist is considering the use of
instructional material on compact discs for a special class
of third-grade students with reading disabilities. Students
in this class are given a standardized test in May of the
school year, andμ1 is the average score obtained on these
tests after many years of experience. Let μ2 be the aver-
age score for students using the discs, and assume that
high scores are desirable.
(a) What null hypothesis should the education special-
ist use?
(b) What alternative hypothesis should be used if the spe-
cialist does not want to adopt the new discs unless they
improve the standardized test scores?
(c) What alternative hypothesis should be used if the spe-
cialist wants to adopt the new discs unless they worsen
the standardized test scores?

34. Suppose that we want to test the null hypothesis that
an antipollution device for cars is effective.
(a) Explain under what conditions we would commit a
type I error and under what conditions we would commit
a type II error.
(b) Whether an error is a type I error or a type II
error depends on how we formulate the null hypothe-
sis. Rephrase the null hypothesis so that the type I error
becomes a type II error, and vice versa.

35. A biologist wants to test the null hypothesis that the
mean wingspan of a certain kind of insect is 12.3 mm
against the alternative that it is not 12.3 mm. If she
takes a random sample and decides to accept the null
hypothesis if and only if the mean of the sample falls
between 12.0 mm and 12.6 mm, what decision will she
make if she gets x = 12.9 mm and will it be in error if

(a) μ = 12.5 mm; (b) μ = 12.3 mm?
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36. An employee of a bank wants to test the null hypoth-
esis that on the average the bank cashes 10 bad checks per
day against the alternative that this figure is too small. If
he takes a random sample and decides to reject the null
hypothesis if and only if the mean of the sample exceeds
12.5, what decision will he make if he gets x = 11.2, and
will it be in error if
(a) λ = 11.5; (b) λ = 10.0?
Here λ is the mean of the Poisson population being
sampled.

37. Rework Example 3 with

(a) β = 0.03; (b) β = 0.01.

38. Suppose that we want to test the null hypothesis that
a certain kind of tire will last, on the average, 35,000 miles
against the alternative hypothesis that it will last, on the
average, 45,000 miles. Assuming that we are dealing with
a random variable having an exponential distribution, we
specify the sample size and the probability of a type I
error and use the Neyman–Pearson lemma to construct
a critical region. Would we get the same critical region if
we change the alternative hypothesis to

(a) θ1 = 50,000 miles; (b) θ1> 35,000 miles?

SECS. 5–6
39. A single observation is to be used to test the null
hypothesis that the mean waiting time between tremors
recorded at a seismological station (the mean of an expo-
nential population) is θ = 10 hours against the alternative
that θ Z 10 hours. If the null hypothesis is to be rejected if
and only if the observed value is less than 8 or greater
than 12, find
(a) the probability of a type I error;
(b) the probabilities of type II errors when θ = 2, 4, 6, 8,
12, 16, and 20.
Also plot the power function of this test criterion.

40. A random sample of size 64 is to be used to test the
null hypothesis that for a certain age group the mean
score on an achievement test (the mean of a normal pop-
ulation with σ 2 = 256) is less than or equal to 40.0 against
the alternative that it is greater than 40.0. If the null
hypothesis is to be rejected if and only if the mean of the
random sample exceeds 43.5, find

(a) the probabilities of type I errors when μ = 37.0, 38.0,
39.0, and 40.0;
(b) the probabilities of type II errors when μ = 41.0, 42.0,
43.0, 44.0, 45.0, 46.0, 47.0, and 48.0.
Also plot the power function of this test criterion.

41. The sum of the values obtained in a random sample
of size n = 5 is to be used to test the null hypothesis
that on the average there are more than two accidents per
week at a certain intersection (that λ> 2 for this Poisson
population) against the alternative hypothesis that on the
average the number of accidents is two or less. If the null
hypothesis is to be rejected if and only if the sum of the
observations is five or less, find
(a) the probabilities of type I errors when λ = 2.2, 2.4, 2.6,
2.8, and 3.0;
(b) the probabilities of type II errors when λ = 2.0, 1.5,
1.0, and 0.5.
Also, plot the graph of the power function of this test
criterion.

42. Verify the statement in Section 5 that 57 heads and 43
tails in 100 flips of a coin do not enable us to reject the null
hypothesis that the coin is perfectly balanced (against the
alternative that it is not perfectly balanced) at the 0.05
level of significance. (Hint: Use the normal approxima-
tion to the binomial distribution.)

43. To compare the variations in weight of four breeds
of dogs, researchers took independent random samples
of sizes n1 = 8, n2 = 10, n3 = 6, and n4 = 8, and got
s2

1 = 16, s2
2 = 25, s2

3 = 12, and s2
4 = 24. Assuming that the

populations sampled are normal, use the formula of part
(b) of Exercise 25 to calculate −2 · ln λ and test the null
hypothesis σ 2

1 = σ 2
2 = σ 2

3 = σ 2
4 at the 0.05 level of signifi-

cance. Explain why the number of degrees of freedom for
this approximate chi-square test is 3.

44. The times to failure of certain electronic components
in accelerate environment tests are 15, 28, 3, 12, 42, 19,
20, 2, 25, 30, 62, 12, 18, 16, 44, 65, 33, 51, 4, and 28 min-
utes. Looking upon these data as a random sample from
an exponential population, use the results of Exercise 21
and Theorem 2 to test the null hypothesis θ = 15 min-
utes against the alternative hypothesis θ Z 15 minutes at
the 0.05 level of significance. (Use ln 1.763 = 0.570.)
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Answers to Odd-Numbered Exercises

1 (a) Simple; (b) composite; (c) composite;
(d) composite.

3 α = 1
21 and β = 5

7 .

5 α = (1 − θ0)k−1 and β = 1 − (1 − θ1)k−1.
7 α = 0.08.
9 1 −β = 0.114.

11
n∑

i=1

xi Ú K, where K can be determined by making use of

the fact that
n∑

i=1

Xi has the gamma distribution with α = n

and β = θ0.
13 β = 0.37.

15
n∑

i=1

x2
i Ú K, where K can be determined by making use of

the formula for the sum of n terms of a geometric distribu-
tion.

17 (a) 0, 0, 1
21 ; (b) 5

7 , 11
21 , 2

7 , 0.

21 (a) λ =
(

x
θ0

)n

e−(nx/θ0+n)

31 (a) The alternative hypothesis is μ2>μ1; (b) The alter-
native hypothesis isμ1>μ2. (c) The alternative hypothesis
is μ1 Zμ2.
33 (a) The null hypothesis is μ1 = μ2. (b) The alterna-
tive hypothesis is μ2>μ1. (c) The alternative hypothesis is
μ2<μ1.
35 (a) Correctly reject the null hypothesis. (b) Erro-
neously reject the null hypothesis.
39 (a) 0.852; (b) 0.016, 0.086, 0.129, 0.145, 0.144, 0.134, and
0.122.
41 (a) 0.0375, 0.0203, 0.0107, 0.0055, and 0.0027;
(b) 0.9329, 0.7585, 0.3840, and 0.0420.
43 −2 · ln λ = 1.424; the null hypothesis cannot be rejected.
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1 Introduction In this chapter we shall present some of the standard tests that are most widely
used in applications. Most of these tests, at least those based on known population
distributions, can be obtained by the likelihood ratio technique.

DEFINITION 1. TEST OF SIGNIFICANCE. A statistical test which specifies a simple null
hypothesis, the size of the critical region, �, and a composite alternative hypoth-
esis is called a test of significance. In such a test, � is referred to as the level of
significance.

To explain the terminology we shall use, let us first consider a situation in which
we want to test the null hypothesis H0: θ = θ0 against the two-sided alternative
hypothesis H1: θ Z θ0. Since it appears reasonable to accept the null hypothesis when
our point estimate θ̂ of θ is close to θ0 and to reject it when θ̂ is much larger or
much smaller than θ0, it would be logical to let the critical region consist of both
tails of the sampling distribution of our test statistic �̂. Such a test is referred to as a
two-tailed test.

On the other hand, if we are testing the null hypothesis H0: θ = θ0 against the
one-sided alternative H1: θ < θ0, it would seem reasonable to reject H0 only when θ̂
is much smaller than θ0. Therefore, in this case it would be logical to let the critical
region consist only of the left-hand tail of the sampling distribution of �̂. Likewise, in
testing H0: θ = θ0 against the one-sided alternative H1: θ > θ0, we reject H0 only for
large values of θ̂ , and the critical region consists only of the right tail of the sampling
distribution of �̂. Any test where the critical region consists only of one tail of the
sampling distribution of the test statistic is called a one-tailed test.

For instance, for the two-sided alternative μZμ0, the likelihood ratio technique
leads to a two-tailed test with the critical region

|x −μ0| G zα/2 · σ√
n

From Chapter 13 of John E. Freund’s Mathematical Statistics with Applications,
Eighth Edition. Irwin Miller, Marylees Miller. Copyright © 2014 by Pearson Education, Inc.
All rights reserved.
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Reject H0 Reject H0Accept H0

m0

a/2 a/2

x
m0 za/2

s

n
m0 za/2

s

n

Figure 1. Critical region for two-tailed test.

or

x F μ0 − zα/2 · σ√
n

and x G μ0 + zα/2 · σ√
n

As pictured in Figure 1, the null hypothesis μ = μ0 is rejected if X takes on a value
falling in either tail of its sampling distribution. Symbolically, this critical region can
be written as z F −zα/2 or z G zα/2, where

z = x −μ0

σ/
√

n

Had we used the one-sided alternative μ>μ0, the likelihood ratio technique
would have led to the one-tailed test whose critical region is pictured in Figure 2, and
if we had used the one-sided alternativeμ<μ0, the likelihood ratio technique would
have led to the one-tailed test whose critical region is pictured in Figure 3. It stands
to reason that in the first case we would reject the null hypothesis only for values of
X falling into the right-hand tail of its sampling distribution, and in the second case
we would reject the null hypothesis only for values of X falling into the left-hand

a

m0

Accept H0 Reject H0

x
m0 za

s

n

Figure 2. Critical region for one-tailed test (H1:μ>μ0).
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a

m0

Accept H0Reject H0

x
m0 za

s

n

Figure 3. Critical region for one-tailed test (H1:μ<μ0).

tail of its sampling distribution. Symbolically, the corresponding critical regions can
be written as z G zα and as z F −zα , where z is as defined before. Although there
are exceptions to this rule (see Exercise 1), two-sided alternatives usually lead to
two-tailed tests and one-sided alternatives usually lead to one-tailed tests.

Traditionally, it has been the custom to outline tests of hypotheses by means of
the following steps:

1. Formulate H0 and H1, and specify α.

2. Using the sampling distribution of an appropriate test statistic, determine a
critical region of size α.

3. Determine the value of the test statistic from the sample data.

4. Check whether the value of the test statistic falls into the critical region and,
accordingly, reject the null hypothesis, or reserve judgment. (Note that we do
not accept the null hypothesis because β, the probability of false acceptance, is
not specified in a test of significance.)

In Figures 1, 2, and 3, the dividing lines of the test criteria (that is, the boundaries
of the critical regions, or the critical values) require knowledge of zα or zα/2. These
values are readily available from Table III of “Statistical Tables” (or more detailed
tables of the standard normal distribution) for any level of significance α, but the
problem is not always this simple. For instance, if the sampling distribution of the test
statistic happens to be a t distribution, a chi-square distribution, or an F distribution,
the usual tables will provide the necessary values of tα , tα/2,χ2

α ,χ2
α/2, Fα , or Fα/2, but

only for a few values of α. Mainly for this reason, it has been the custom to base
tests of statistical hypotheses almost exclusively on the level of significance α = 0.05
or α = 0.01. This may seem very arbitrary, and of course it is, and this accounts for
the current preference for using P-values (see Definition 2). Alternatively, we could
use a decision-theory approach and thus take into account the consequences of all
possible actions. However, “there are many problems in which it is difficult, if not
impossible, to assign numerical values to the consequences of one’s actions and to
the probabilities of all eventualities.”

With the advent of computers and the general availability of statistical software,
the four steps outlined on this page may be modified to allow for more freedom in
the choice of the level of significance α. With reference to the test for which the
critical region is shown in Figure 2, we compare the shaded region of Figure 4 with

361



Tests of Hypothesis Involving Means, Variances, and Proportions

P-value

�x

Figure 4. Diagram for definition of P-values.

α instead of comparing the observed value of X with the boundary of the critical
region or the value of

Z = X −μ0

σ/
√

n

with zα/2. In other words, we reject the null hypothesis if the shaded region of
Figure 4 is less than or equal to α. This shaded region is referred to as the P-value,
the prob-value, the tail probability, or the observed level of significance correspond-
ing to x, the observed value of X. In fact, it is the probability P(X G x) when the null
hypothesis is true.

Correspondingly, when the alternative hypothesis is μ<μ0 and the critical region
is the one of Figure 3, the P-value is the probability P(X F x) when the null hypoth-
esis is true; and when the alternative hypothesis is μZμ0 and the critical region is
the one of Figure 1, the P-value is 2P(X G x) or 2P(X F x), depending on whether
x falls into the right-hand tail or the left-hand tail of the sampling distribution of X.
Here again we act as if the null hypothesis is true, or we withhold judgment.

More generally, we define P-values as follows.

DEFINITION 2. P-VALUE. Corresponding to an observed value of a test statistic, the
P-value is the lowest level of significance at which the null hypothesis could have
been rejected.

With regard to this alternative approach to testing hypotheses, the first of the
four steps on the previous page remains unchanged, the second step becomes

2′. Specify the test statistic.

the third step becomes

3′. Determine the value of the test statistic and the corresponding P-value from
the sample data.

and the fourth step becomes

4′. Check whether the P-value is less than or equal to α and, accordingly, reject
the null hypothesis, or reserve judgment.

As we pointed out earlier, this allows for more freedom in the choice of the
level of significance, but it is difficult to conceive of situations in which we could
justify using, say, α = 0.04 rather than α = 0.05 or α = 0.015 rather than α = 0.01. In
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practice, it is virtually impossible to avoid some element of arbitrariness, and in most
cases we judge subjectively, at least in part, whether α = 0.05 or α = 0.01 reflects
acceptable risks. Of course, when a great deal is at stake and it is practical, we might
use a level of significance much smaller than α = 0.01.

In any case, it should be understood that the two methods of testing hypotheses,
the four steps given earlier and the four steps described here, are equivalent. This
means that no matter which method we use, the ultimate decision—rejecting the null
hypothesis, or reserving judgment—will be the same. In practice, we use whichever
method is most convenient, and this may depend on the sampling distribution of the
test statistic, the availability of statistical tables or computer software, and the nature
of the problem (see, for instance, Example 8 and Exercise 57).

There are statisticians who prefer to avoid all problems relating to the choice of
the level of significance. Limiting their role to data analysis, they do not specify α
and omit step 4′. Of course, it is always desirable to have input from others (research
workers or management) in formulating hypotheses and specifying α, but it would
hardly seem reasonable to dump P-values into the laps of persons without adequate
training in statistics and let them take it from there. To compound the difficulties,
consider the temptation one might be exposed to when choosing α after having seen
the P-value with which it is to be compared. Suppose, for instance, that an experi-
ment yields a P-value of 0.036. If we are anxious to reject the null hypothesis and
thus prove our point, it would be tempting to choose α = 0.05; if we are anxious to
accept the null hypothesis and thus prove our point, it would be tempting to choose
α = 0.01.

Nevertheless, in exploratory data analysis, where we are not really concerned
with making inferences, P-values can be used as measures of the strength of evi-
dence. Suppose, for instance, that in cancer research with two drugs, scientists get
P-values of 0.0735 and 0.0021 for the effectiveness of these drugs in reducing the size
of tumors. This suggests that there is more supporting evidence for the effectiveness
of the second drug, or that the second drug “looks much more promising.”

2 Tests Concerning Means
In this section we shall discuss the most widely used tests concerning the mean
of a population, and in Section 3 we shall discuss the corresponding tests concern-
ing the means of two populations. All the tests in this section are based on normal
distribution theory, assuming either that the samples come from normal populations
or that they are large enough to justify normal approximations; there are also some
nonparametric alternatives to these tests, which do not require knowledge about the
population or populations from which the samples are obtained.

Suppose that we want to test the null hypothesis μ = μ0 against one of the alter-
natives μZμ0, μ>μ0, or μ<μ0 on the basis of a random sample of size n from a
normal population with the known variance σ 2. The critical regions for the respec-
tive alternatives are |z| G zα/2, z G zα , and z F −zα , where

z = x −μ0

σ/
√

n

As we indicated in Section 1, the most commonly used levels of significance are 0.05
and 0.01, and as the reader can verify from Table III of “Statistical Tables”, the cor-
responding values of zα and zα/2 are z0.05 = 1.645, z0.01 = 2.33, z0.025 = 1.96, and
z0.005 = 2.575.
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EXAMPLE 1

Suppose that it is known from experience that the standard deviation of the weight
of 8-ounce packages of cookies made by a certain bakery is 0.16 ounce. To check
whether its production is under control on a given day, that is, to check whether the
true average weight of the packages is 8 ounces, employees select a random sample
of 25 packages and find that their mean weight is x = 8.091 ounces. Since the bakery
stands to lose money when μ> 8 and the customer loses out when μ< 8, test the
null hypothesis μ = 8 against the alternative hypothesis μ Z 8 at the 0.01 level of
significance.

Solution

1. H0: μ = 8
H1: μ Z 8
α = 0.01

2. Reject the null hypothesis if z F −2.575 or z G 2.575, where

z = x −μ0

σ/
√

n

3. Substituting x = 8.091,μ0 = 8, σ = 0.16, and n = 25, we get

z = 8.091 − 8

0.16/
√

25
= 2.84

4. Since z = 2.84 exceeds 2.575, the null hypothesis must be rejected and suitable
adjustments should be made in the production process.

Had we used the alternative approach described in Section 1, we would have
obtained a P-value of 0.0046 (see Exercise 21), and since 0.0046 is less than 0.01, the
conclusion would have been the same.

It should be noted that the critical region z G zα can also be used to test the
null hypothesis μ = μ0 against the simple alternative μ = μ1>μ0 or the composite
null hypothesis μ F μ0 against the composite alternative μ>μ0. In the first case we
would be testing a simple hypothesis against a simple alternative, and in the second
case α would be the maximum probability of committing a type I error for any value
of μ assumed under the null hypothesis. Of course, similar arguments apply to the
critical region z F −zα .

When we are dealing with a large sample of size n G 30 from a population
that need not be normal but has a finite variance, we can use the central limit theo-
rem to justify using the test for normal populations, and even when σ 2 is unknown
we can approximate its value with s2 in the computation of the test statistic. To
illustrate the use of such an approximate large-sample test, consider the following
example.

EXAMPLE 2

Suppose that 100 high-performance tires made by a certain manufacturer lasted
on the average 21,819 miles with a standard deviation of 1,295 miles. Test the null
hypothesis μ = 22,000 miles against the alternative hypothesis μ< 22,000 miles at
the 0.05 level of significance.
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Solution

1. H0: μ = 22,000
H1: μ< 22,000
α = 0.05

2. Reject the null hypothesis if z F −1.645, where

z = x −μ0

σ/
√

n

3. Substituting x = 21,819, μ0 = 22,000, s = 1,295 for σ , and n = 100, we get

z = 21,819 − 22,000

1,295/
√

100
= −1.40

4. Since z = −1.40 is greater than −1.645, the null hypothesis cannot be rejected;
there is no convincing evidence that the tires are not as good as assumed under
the null hypothesis.

Had we used the alternative approach described in Section 1, we would have
btained a P-value of 0.0808 (see Exercise 22), which exceeds 0.05. As should
have been expected, the conclusion is the same: The null hypothesis cannot be
rejected.

When n< 30 and σ 2 is unknown, the test we have been discussing in this section
cannot be used. However, for random samples from normal populations, the likeli-
hood ratio technique yields a corresponding test based on

t = x −μ0

s/
√

n

which is a value of a random variable having the t distribution with n − 1 degrees of
freedom. Thus, critical regions of size α for testing the null hypothesisμ = μ0 against
the alternatives μZμ0, μ>μ0, or μ<μ0 are, respectively, |t| G tα/2, n−1, t G tα, n−1,
and t F −tα,n−1. Note that the comments made on the previous page in connection
with the alternative hypothesis μ1>μ0 and the test of the null hypothesis μ F μ0
against the alternative μ>μ0 apply also in this case.

To illustrate this one-sample t test, as it is usually called, consider the follow-
ing example.

EXAMPLE 3

The specifications for a certain kind of ribbon call for a mean breaking strength
of 185 pounds. If five pieces randomly selected from different rolls have breaking
strengths of 171.6, 191.8, 178.3, 184.9, and 189.1 pounds, test the null hypothesis
μ = 185 pounds against the alternative hypothesis μ< 185 pounds at the 0.05 level
of significance.

Solution

1. H0: μ = 185
H1: μ< 185
α = 0.05
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2. Reject the null hypothesis if t F −2.132, where t is determined by means of the
formula given above and 2.132 is the value of t0.05,4.

3. First we calculate the mean and the standard deviation, getting x = 183.1 and
s = 8.2. Then, substituting these values together with μ0 = 185 and n = 5 into
the formula for t, we get

t = 183.1 − 185

8.2/
√

5
= −0.51

4. Since t = −0.49 is greater than −2.132, the null hypothesis cannot be rejected.
If we went beyond this and concluded that the rolls of ribbon from which the
sample was selected meet specifications, we would, of course, be exposed to
the unknown risk of committing a type II error.

3 Tests Concerning Differences Between Means
In many problems in applied research, we are interested in hypotheses concerning
differences between the means of two populations. For instance, we may want to
decide upon the basis of suitable samples whether men can perform a certain task
as fast as women, or we may want to decide on the basis of an appropriate sample
survey whether the average weekly food expenditures of families in one city exceed
those of families in another city by at least $10.00.

Let us suppose that we are dealing with independent random samples of sizes
n1 and n2 from two normal populations having the means μ1 and μ2 and the known
variances σ 2

1 and σ 2
2 and that we want to test the null hypothesis μ1 −μ2 = δ, where

δ is a given constant, against one of the alternatives μ1 −μ2 Z δ,μ1 −μ2>δ, or
μ1 −μ2<δ. Applying the likelihood ratio technique, we will arrive at a test based
on x1 − x2, and the respective critical regions can be written as |z| G zα/2, z G zα , and
z F −zα , where

z = x1 − x2 − δ√
σ 2

1

n1
+ σ 2

2

n2

When we deal with independent random samples from populations with
unknown variances that may not even be normal, we can still use the test that we
have just described with s1 substituted for σ1 and s2 substituted for σ2 as long as
both samples are large enough to invoke the central limit theorem.

EXAMPLE 4

An experiment is performed to determine whether the average nicotine content of
one kind of cigarette exceeds that of another kind by 0.20 milligram. If n1 = 50
cigarettes of the first kind had an average nicotine content of x1 = 2.61 milligrams
with a standard deviation of s1 = 0.12 milligram, whereas n2 = 40 cigarettes of the
other kind had an average nicotine content of x2 = 2.38 milligrams with a standard
deviation of s2 = 0.14 milligram, test the null hypothesis μ1 −μ2 = 0.20 against
the alternative hypothesis μ1 −μ2 Z 0.20 at the 0.05 level of significance. Base the
decision on the P-value corresponding to the value of the appropriate test statistic.
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Solution

1. H0: μ1 −μ2 = 0.20
H1: μ1 −μ2 Z 0.20
α = 0.05

2′. Use the test statistic Z, where

z = x1 − x2 − δ√
σ 2

1

n1
+ σ 2

2

n2

3′. Substituting x1 = 2.61, x2 = 2.38, δ = 0.20, s1 = 0.12 for σ1, s2 = 0.14 for
σ2, n1 = 50, and n2 = 40 into this formula, we get

z = 2.61 − 2.38 − 0.20√
(0.12)2

50
+ (0.14)2

40

= 1.08

The corresponding P-value is 2(0.5000 − 0.3599) = 0.2802, where 0.3599 is the
entry in Table III of “Statistical Tables” for z = 1.08.

4′. Since 0.2802 exceeds 0.05, the null hypothesis cannot be rejected; we say that
the difference between 2.61 − 2.38 = 0.23 and 0.20 is not significant. This
means that the difference may well be attributed to chance.

When n1 and n2 are small and σ1 and σ2 are unknown, the test we have been
discussing cannot be used. However, for independent random samples from two
normal populations having the same unknown variance σ 2, the likelihood ratio tech-
nique yields a test based on

t = x1 − x2 − δ

sp

√
1
n1

+ 1
n2

where

s2
p = (n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2

Under the given assumptions and the null hypothesisμ1 −μ2 = δ, this expression for
t is a value of a random variable having the t distribution with n1 + n2 − 2 degrees of
freedom. Thus, the appropriate critical regions of size α for testing the null hypoth-
esis μ1 −μ2 = δ against the alternatives μ1 −μ2 Z δ,μ1 −μ2>δ, or μ1 −μ2<δ

under the given assumptions are, respectively, |t| G tα/2, n1+n2−2, t G tα, n1+n2−2, and
t F −tα, n1+n2−2. To illustrate this two-sample t test, consider the following problem.

EXAMPLE 5

In the comparison of two kinds of paint, a consumer testing service finds that four
1-gallon cans of one brand cover on the average 546 square feet with a standard
deviation of 31 square feet, whereas four 1-gallon cans of another brand cover on
the average 492 square feet with a standard deviation of 26 square feet. Assuming
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that the two populations sampled are normal and have equal variances, test the null
hypothesis μ1 −μ2 = 0 against the alternative hypothesis μ1 −μ2 > 0 at the 0.05
level of significance.

Solution

1. H0: μ1 −μ2 = 0
H1: μ1 −μ2 > 0
α = 0.05

2. Reject the null hypothesis if t G 1.943, where t is calculated according to the
formula given on the previous page and 1.943 is the value of t0.05,6.

3. First calculating sp, we get

sp =
√

3(31)2 + 3(26)2

4 + 4 − 2
= 28.609

and then substituting its value together with x1 = 546, x2 = 492, δ = 0, and
n1 = n2 = 4 into the formula for t, we obtain

t = 546 − 492

28.609

√
1
4

+ 1
4

= 2.67

4. Since t = 2.67 exceeds 1.943, the null hypothesis must be rejected; we
conclude that on the average the first kind of paint covers a greater area than
the second.

Note that n1 = n2 in this example, so the formula for s2
p becomes

s2
p = 1

2
(s2

1 + s2
2)

Use of this formula would have simplified the calculations in this special case.
In Exercise 41 the reader will be asked to use suitable computer software to

show that the P-value would have been 0.0185 in this example, and the conclusion
would, of course, have been the same.

If the assumption of equal variances is untenable in a problem of this kind, there
are several possibilities. A relatively simple one consists of randomly pairing the val-
ues obtained in the two samples and then looking upon their differences as a random
sample of size n1 or n2, whichever is smaller, from a normal population that, under
the null hypothesis, has the mean μ = δ. Then we test this null hypothesis against
the appropriate alternative by means of the methods of Section 2. This is a good rea-
son for having n1 = n2, but there exist alternative techniques for handling the case
where n1 Z n2 (one of these, the Smith–Satterthwaite test, is mentioned among the
references at the end of the chapter).

So far we have limited our discussion to random samples that are independent,
and the methods we have introduced in this section cannot be used, for example,
to decide on the basis of weights “before and after” whether a certain diet is really
effective or whether an observed difference between the average I.Q.’s of husbands
and their wives is really significant. In both of these examples the samples are not
independent because the data are actually paired. A common way of handling this
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kind of problem is to proceed as in the preceding paragraph, that is, to work with
the differences between the paired measurements or observations. If n is large, we
can then use the test described in Section 2 to test the null hypothesis μ1 −μ2 = δ

against the appropriate alternative, and if n is small, we can use the t test described
also in Section 2 provided the differences can be looked upon as a random sample
from a normal population.

Exercises

1. Given a random sample of size n from a normal pop-
ulation with the known variance σ 2, show that the null
hypothesis μ = μ0 can be tested against the alternative
hypothesis μ Z μ0 with the use of a one-tailed criterion
based on the chi-square distribution.

2. Suppose that a random sample from a normal popula-
tion with the known variance σ 2 is to be used to test the
null hypothesis μ = μ0 against the alternative hypothe-
sis μ = μ1, where μ1>μ0, and that the probabilities of
type I and type II errors are to have the preassigned val-
ues α and β. Show that the required size of the sample is
given by

n = σ 2(zα + zβ)2

(μ1 −μ0)
2

3. With reference to the preceding exercise, find the
required size of the sample when σ = 9, μ0 = 15, μ1 =
20, α = 0.05, and β = 0.01.

4. Suppose that independent random samples of size n
from two normal populations with the known variances
σ 2

1 and σ 2
2 are to be used to test the null hypothesis μ1 −

μ2 = δ against the alternative hypothesis μ1 −μ2 = δ′
and that the probabilities of type I and type II errors are
to have the preassigned values α and β. Show that the
required size of the sample is given by

n = (σ 2
1 + σ 2

2 )(zα + zβ)2

(δ− δ′)2
5. With reference to Exercise 4, find the required size of
the samples when σ1 = 9, σ2 = 13, δ = 80, δ′ = 86,α =
0.01, and β = 0.01.

4 Tests Concerning Variances
There are several reasons why it is important to test hypotheses concerning the vari-
ances of populations. As far as direct applications are concerned, a manufacturer
who has to meet rigid specifications will have to perform tests about the variability
of his product, a teacher may want to know whether certain statements are true
about the variability that he or she can expect in the performance of a student,
and a pharmacist may have to check whether the variation in the potency of a
medicine is within permissible limits. As far as indirect applications are concerned,
tests about variances are often prerequisites for tests concerning other parameters.
For instance, the two-sample t test described in Section 3 requires that the two pop-
ulation variances be equal, and in practice this means that we may have to check
on the reasonableness of this assumption before we perform the test concerning
the means.

The tests that we shall study in this section include a test of the null hypothesis
that the variance of a normal population equals a given constant and the likelihood
ratio test of the equality of the variances of two normal populations.

Given a random sample of size n from a normal population, we shall want to
test the null hypothesis σ 2 = σ 2

0 against one of the alternatives σ 2 Z σ 2
0 , σ 2>σ 2

0 , or
σ 2<σ 2

0 , and the likelihood ratio technique leads to a test based on s2, the value of
the sample variance. Based on theorem “If X1 and X2 are independent random vari-
ables, X1 has a chi-square distribution with ν1 degrees of freedom, and X1 + X2 has
a chi-square distribution with ν > ν1 degrees of freedom, then X2 has a chi-square
distribution with ν− ν1 degrees of freedom”, we can thus write the critical regions
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for testing the null hypothesis against the two one-sided alternatives as χ2 G χ2
α, n−1

and χ2 F χ2
1−α, n−1, where

χ2 = (n − 1)s2

σ 2
0

As far as the two-sided alternative is concerned, we reject the null hypothesis if
χ2 G χ2

α/2, n−1 or χ2 F χ2
1−α/2, n−1, and the size of all these critical regions is, of

course, equal to α.

EXAMPLE 6

Suppose that the uniformity of the thickness of a part used in a semiconductor is
critical and that measurements of the thickness of a random sample of 18 such
parts have the variance s2 = 0.68, where the measurements are in thousandths
of an inch. The process is considered to be under control if the variation of the
thicknesses is given by a variance not greater than 0.36. Assuming that the mea-
surements constitute a random sample from a normal population, test the null
hypothesis σ 2 = 0.36 against the alternative hypothesis σ 2> 0.36 at the 0.05 level of
significance.

Solution

1. H0: σ 2 = 0.36
H1: σ 2 > 0.36
α = 0.05

2. Reject the null hypothesis if χ2 G 27.587, where

χ2 = (n − 1)s2

σ 2
0

and 27.587 is the value of χ2
0.05,17.

3. Substituting s2 = 0.68, σ 2
0 = 0.36, and n = 18, we get

χ2 = 17(0.68)
0.36

= 32.11

4. Since χ2 = 32.11 exceeds 27.587, the null hypothesis must be rejected and the
process used in the manufacture of the parts must be adjusted.

Note that if α had been 0.01 in the preceding example, the null hypothesis could
not have been rejected, since χ2 = 32.11 does not exceed χ2

0.01,17 = 33.409. This
serves to indicate again that the choice of the level of significance is something that
must always be specified in advance, so we will be spared the temptation of choosing
a value that happens to suit our purpose (see also Section 1).

The likelihood ratio statistic for testing the equality of the variances of two nor-
mal populations can be expressed in terms of the ratio of the two sample variances.
Given independent random samples of sizes n1 and n2 from two normal popula-
tions with the variances σ 2

1 and σ 2
2 , we thus find from the theorem “If S2

1 and S2
2

are the variances of independent random samples of sizes n1 and n2 from normal
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populations with the variances σ 2
1 and σ 2

2 , then F = S2
1/σ

2
1

S2
2/σ

2
2

= σ 2
2 S2

1

σ 2
1 S2

2

is a random

variable having an F distribution with n1 − 1 and n2 − 1 degrees of freedom” that
corresponding critical regions of size α for testing the null hypothesis σ 2

1 = σ 2
2

against the one-sided alternatives σ 2
1 >σ

2
2 or σ 2

1 <σ
2
2 are, respectively,

s2
1

s2
2

G fα, n1−1, n2−1 and
s2

2

s2
1

G fα, n2−1, n1−1

The appropriate critical region for testing the null hypothesis against the two-sided
alternative σ 2

1 Z σ 2
2 is

s2
1

s2
2

G fα/2, n1−1, n2−1 if s2
1 G s2

2

and
s2

2

s2
1

G fα/2, n2−1, n1−1 if s2
1 < s2

2

Note that this test is based entirely on the right-hand tail of the F distribution, which
is made possible by the fact that if the random variable X has an F distribution with

ν1 and ν2 degrees of freedom, then
1
X

has an F distribution with ν2 and ν1 degrees

of freedom.

EXAMPLE 7

In comparing the variability of the tensile strength of two kinds of structural steel, an
experiment yielded the following results: n1 = 13, s2

1 = 19.2, n2 = 16, and s2
2 = 3.5,

where the units of measurement are 1,000 pounds per square inch. Assuming that
the measurements constitute independent random samples from two normal popu-
lations, test the null hypothesis σ 2

1 = σ 2
2 against the alternative σ 2

1 Z σ 2
2 at the 0.02

level of significance.

Solution

1. H0: σ 2
1 = σ 2

2

H1: σ 2
1 Z σ 2

2
α = 0.02

2. Since s2
1 G s2

2, reject the null hypothesis if
s2

1

s2
2

G 3.67, where 3.67 is the value of

f0.01,12,15.

3. Substituting s2
1 = 19.2 and s2

2 = 3.5, we get

s2
1

s2
2

= 19.2
3.5

= 5.49

4. Since f = 5.49 exceeds 3.67, the null hypothesis must be rejected; we con-
clude that the variability of the tensile strength of the two kinds of steel is not
the same.
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Exercises
6. Making use of the fact that the chi-square distribution
can be approximated with a normal distribution when ν,
the number of degrees of freedom, is large, show that for
large samples from normal populations

s2 G σ 2
0

⎡
⎣1 + zα

√
2

n − 1

⎤
⎦

is an approximate critical region of size α for testing the
null hypothesis σ 2 = σ 2

0 against the alternative σ 2>σ 2
0 .

Also construct corresponding critical regions for testing
this null hypothesis against the alternatives σ 2<σ 2

0 and
σ 2 Z σ 2

0 .

7. This question has been intentionally omitted for this
edition.

5 Tests Concerning Proportions
If an outcome of an experiment is the number of votes that a candidate receives in a
poll, the number of imperfections found in a piece of cloth, the number of children
who are absent from school on a given day, . . ., we refer to such data as count data.
Appropriate models for the analysis of count data are the binomial distribution, the
Poisson distribution, the multinomial distribution, and some of the other discrete
distributions. In this section we shall present one of the most common tests based
on count data, a test concerning the parameter θ of the binomial distribution. Thus,
we might test on the basis of a sample whether the true proportion of cures from
a certain disease is 0.90 or whether the true proportion of defectives coming off an
assembly line is 0.02.

Let’s take that the most powerful critical region for testing the null hypothesis
θ = θ0 against the alternative hypothesis θ = θ1<θ0, where θ is the parameter of a
binomial population, is based on the value of X, the number of “successes” obtained
in n trials. When it comes to composite alternatives, the likelihood ratio technique
also yields tests based on the observed number of successes. In fact, if we want to
test the null hypothesis θ = θ0 against the one-sided alternative θ > θ0, the critical
region of size α of the likelihood ratio criterion is

x G kα

where kα is the smallest integer for which

n∑
y=kα

b(y; n, θ0) F α

and b(y; n, θ0) is the probability of getting y successes in n binomial trials when
θ = θ0. The size of this critical region, as well as the ones that follow, is thus as
close as possible to α without exceeding it.

The corresponding critical region for testing the null hypothesis θ = θ0 against
the one-sided alternative θ < θ0 is

x F k′
α

where k′
α is the largest integer for which

k′
α∑

y=0

b(y; n, θ0) F α
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and, finally, the critical region for testing the null hypothesis θ = θ0 against the
two-sided alternative θ Z θ0 is

x G kα/2 or x F k′
α/2

We shall not illustrate this method of determining critical regions for tests
concerning the binomial parameter θ because, in actual practice, it is much less
tedious to base the decisions on P-values.

EXAMPLE 8

If x = 4 of n = 20 patients suffered serious side effects from a new medication, test
the null hypothesis θ = 0.50 against the alternative hypothesis θ Z 0.50 at the 0.05
level of significance. Here θ is the true proportion of patients suffering serious side
effects from the new medication.

Solution

1. H0: θ = 0.50
H1: θ Z 0.50
α = 0.05

2′. Use the test statistic X, the observed number of successes.

3′. x = 4, and since P(X F 4) = 0.0059, the P-value is 2(0.0059) = 0.0118.

4′. Since the P-value, 0.0118, is less than 0.05, the null hypothesis must be rejected;
we conclude that θ Z 0.50.

The tests we have described require the use of a table of binomial probabilities,
regardless of whether we use the four steps discussed in Section 1. For n F 20 we
can use Table I of “Statistical Tables”, and for values of n up to 100 we can use the
tables in Tables of the Binomial Probability Distribution and Binomial Tables. Alter-
natively, for large values of n we can use the normal approximation to the binomial
distribution and treat

z = x − nθ√
nθ(1 − θ)

as a value of a random variable having the standard normal distribution. For large n,
we can thus test the null hypothesis θ = θ0 against the alternatives θ Z θ0, θ > θ0, or
θ < θ0 using, respectively, the critical regions |z| G zα/2, z G zα , and z F −zα , where

z = x − nθ0√
nθ0(1 − θ0)

or

z =
(

x ; 1
2

)
− nθ0

√
nθ0(1 − θ0)

if we use the continuity correction. We use the minus sign when x exceeds nθ0 and
the plus sign when x is less than nθ0.
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EXAMPLE 9

An oil company claims that less than 20 percent of all car owners have not tried its
gasoline. Test this claim at the 0.01 level of significance if a random check reveals
that 22 of 200 car owners have not tried the oil company’s gasoline.

Solution

1. H0: θ = 0.20
H1: θ < 0.20
α = 0.01

2. Reject the null hypothesis of z F −2.33, where (without the continuity correction)

z = x − nθ0√
nθ0(1 − θ0)

3. Substituting x = 22, n = 200, and θ0 = 0.20, we get

z = 22 − 200(0.20)√
200(0.20)(0.80)

= −3.18

4. Since z = −3.18 is less than −2.33, the null hypothesis must be rejected; we
conclude that, as claimed, less than 20 percent of all car owners have not tried
the oil company’s gasoline.

Note that if we had used the continuity correction in the preceding example, we
would have obtained z = −3.09 and the conclusion would have been the same.

6 Tests Concerning Differences Among k Proportions
In many problems in applied research, we must decide whether observed differences
among sample proportions, or percentages, are significant or whether they can be
attributed to chance. For instance, if 6 percent of the frozen chickens in a sample
from one supplier fail to meet certain standards and only 4 percent in a sample from
another supplier fail to meet the standards, we may want to investigate whether
the difference between these two percentages is significant. Similarly, we may want
to judge on the basis of sample data whether equal proportions of voters in four
different cities favor a certain candidate for governor.

To indicate a general method for handling problems of this kind, suppose that
x1, x2, . . . , xk are observed values of k independent random variables X1, X2, . . . , Xk
having binomial distributions with the parameters n1 and θ1, n2 and θ2, . . . , nk and
θk. If the n’s are sufficiently large, we can approximate the distributions of the inde-
pendent random variables

Zi = Xi − niθi√
niθi(1 − θi)

for i = 1, 2, . . . , k

with standard normal distributions, and, according to the theorem “If X1, X2, . . . , Xn
are independent random variables having standard normal distributions, then Y =∑n

i=1 X2
i has the chi-square distribution with ν = n degrees of freedom”, we can then

look upon
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χ2 =
k∑

i=1

(xi − niθi)
2

niθi(1 − θi)

as a value of a random variable having the chi-square distribution with k degrees of
freedom. To test the null hypothesis, θ1 = θ2 = · · · = θk = θ0 (against the alternative
that at least one of the θ ’s does not equal θ0), we can thus use the critical region
χ2 G χ2

α,k, where

χ2 =
k∑

i=1

(xi − niθ0)
2

niθ0(1 − θ0)

When θ0 is not specified, that is, when we are interested only in the null hypoth-
esis θ1 = θ2 = · · · = θk, we substitute for θ the pooled estimate

θ̂ = x1 + x2 + · · · + xk

n1 + n2 + · · · + nk

and the critical region becomes χ2 G χ2
α,k−1, where

χ2 =
k∑

i=1

(xi − niθ̂ )
2

niθ̂ (1 − θ̂ )

The loss of 1 degree of freedom, that is, the change in the critical region from χ2
α,k to

χ2
α,k−1, is due to the fact that an estimate is substituted for the unknown parameter θ .

Let us now present an alternative formula for the chi-square statistic immedi-
ately above, which, as we shall see in Section 7, lends itself more rapidly to other
applications. If we arrange the data as in the following table, let us refer to its entries
as the observed cell frequencies fij, where the first subscript indicates the row and
the second subscript indicates the column of this k * 2 table.

Successes Failures

Sample 1 x1 n1 − x1

Sample 2 x2 n2 − x2

· · · · · ·
Sample k xk nk − xk

Under the null hypothesis θ1 = θ2 = · · · = θk = θ0 the expected cell frequencies
for the first column are niθ0 for i = 1, 2, . . . , k, and those for the second column are
ni(1 − θ0). When θ0 is not known, we substitute for it, as before, the pooled estimate
θ̂ , and estimate the expected cell frequencies as

ei1 = niθ̂ and ei2 = ni(1 − θ̂ )

for i = 1, 2, . . . , k. It will be left to the reader to show in Exercise 8 that the chi-
square statistic

χ2 =
k∑

i=1

(xi − niθ̂ )
2

niθ̂ (1 − θ̂ )
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can also be written as

χ2 =
k∑

i=1

2∑
j=1

(fij − eij)
2

eij

EXAMPLE 10

Determine, on the basis of the sample data shown in the following table, whether
the true proportion of shoppers favoring detergent A over detergent B is the same
in all three cities:

Number favoring Number favoring
detergent A detergent B

Los Angeles 232 168 400

San Diego 260 240 500

Fresno 197 203 400

Use the 0.05 level of significance.

Solution

1. H0: θ1 = θ2 = θ3
H1: θ1, θ2, and θ3 are not all equal.
α = 0.05

2. Reject the null hypothesis if χ2 G 5.991, where

χ2 =
3∑

i=1

2∑
j=1

(fij − eij)
2

eij

and 5.991 is the value of χ2
0.05,2.

3. Since the pooled estimate of θ is

θ̂ = 232 + 260 + 197
400 + 500 + 400

= 689
1,300

= 0.53

the expected cell frequencies are

e11 = 400(0.53) = 212 and e12 = 400(0.47) = 188

e21 = 500(0.53) = 265 and e22 = 500(0.47) = 235

e31 = 400(0.53) = 212 and e32 = 400(0.47) = 188

and substitution into the formula for χ2 given previously yields

χ2 = (232 − 212)2

212
+ (260 − 265)2

265
+ (197 − 212)2

212

+ (168 − 188)2

188
+ (240 − 235)2

235
+ (203 − 188)2

188
= 6.48

376



Tests of Hypothesis Involving Means, Variances, and Proportions

4. Since χ2 = 6.48 exceeds 5.991, the null hypothesis must be rejected; in other
words, the true proportions of shoppers favoring detergent A over detergent B
in the three cities are not the same.

Exercises

8. Show that the two formulas for χ2 in Section 6 are
equivalent.

9. Modify the critical regions in Section 5 so that they
can be used to test the null hypothesis λ = λ0
against the alternative hypotheses λ>λ0, λ<λ0, and
λZ λ0 on the basis of n observations. Here λ is the param-
eter of the Poisson distribution.

10. With reference to Exercise 9, use Table II of “Statis-
tical Tables” to find values corresponding to k0.025 and
k′

0.025 to test the null hypothesis λ = 3.6 against the
alternative hypothesis λ Z 3.6 on the basis of five obser-
vations. Use the 0.05 level of significance.

11. For k = 2, show that the χ2 formula can be written as

χ2 = (n1 + n2)(n2x1 − n1x2)
2

n1n2(x1 + x2)[(n1 + n2)− (x1 + x2)]

12. Given large random samples from two binomial pop-
ulations, show that the null hypothesis θ1 = θ2 can be
tested on the basis of the statistic

z =
x1

n1
− x2

n2√
θ̂ (1 − θ̂ )

(
1
n1

+ 1
n2

)

where θ̂ = x1 + x2

n1 + n2
.

13. Show that the square of the expression for z in Exer-
cise 12 equals

χ2 =
2∑

i=1

(xi − niθ̂ )
2

niθ̂ (1 − θ̂ )

so that the two tests are actually equivalent when
the alternative hypothesis is θ1 Z θ2. Note that the test
described in Exercise 12, but not the one based on the
χ2 statistic, can be used when the alternative hypothesis
is θ1<θ2 or θ1>θ2.

7 The Analysis of an r * c Table
The method we shall describe in this section applies to two kinds of problems, which
differ conceptually but are analyzed in the same way. In the first kind of problem
we deal with samples from r multinomial populations, with each trial permitting c
possible outcomes. This would be the case, for instance, when persons interviewed
in five different precincts are asked whether they are for a candidate, against her, or
undecided. Here r = 5 and c = 3.

It would also have been the case in Example 10 if each shopper had been asked
whether he or she favors detergent A, favors detergent B, or does not care one way
or the other. We might thus have obtained the results shown in the following 3 *
3 table:

Number favoring Number favoring Number
detergent A detergent B indifferent

Los Angeles 174 93 133 400

San Diego 196 124 180 500

Fresno 148 105 147 400
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The null hypothesis we would want to test in a problem like this is that we are
sampling r identical multinomial populations. Symbolically, if θij is the probability of
the jth outcome for the ith population, we would want to test the null hypothesis

θ1j = θ2j = · · · = θrj

for j = 1, 2, . . . , c. The alternative hypothesis would be that θ1j, θ2j, . . . , and θrj are
not all equal for at least one value of j.

In the preceding example we dealt with three samples, whose fixed sizes were
given by the row totals, 400, 500, and 400; on the other hand, the column totals were
left to chance. In the other kind of problem where the method of this section applies,
we are dealing with one sample and the row totals as well as the column totals are
left to chance.

To give an example, let us consider the following table obtained in a study of the
relationship, if any, of the I.Q.’s of persons who have gone through a large company’s
job-training program and their subsequent performance on the job:

Performance
Poor Fair Good

Below average 67 64 25 156

I.Q. Average 42 76 56 174

Above average 10 23 37 70

119 163 118 400

Here there is one sample of size 400, and the row totals as well as the column totals
are left to chance.

DEFINITION 3. CONTINGENCY TABLE. A table having r rows and c columns where
each row represents c values of a non-numerical variable and each column repre-
sents r values of a different nonnumerical variable is called a contingency table.
In such a table, the entries are count data (positive integers) and both the row and
the column totals are left to chance. Such a table is assembled for the purpose of
testing whether the row variable and the column variable are independent.

The null hypothesis we shall want to test by means of the preceding table is that
the on-the-job performance of persons who have gone through the training program
is independent of their I.Q. Symbolically, if θij is the probability that an item will fall
into the cell belonging to the ith row and the jth column, θi· is the probability that an
item will fall into the ith row, and θ·j is the probability that an item will fall into the
jth column, the null hypothesis we want to test is

θij = θi· · θ·j

for i = 1, 2, . . ., r and j = 1, 2, . . ., c. Correspondingly, the alternative hypothesis is
θij Z θi· · θ·j for at least one pair of values of i and j.

Since the method by which we analyze an r * c table is the same regardless of
whether we are dealing with r samples from multinomial populations with c different
outcomes or one sample from a multinomial population with rc different outcomes,
let us discuss it here with regard to the latter. In Exercise 15 the reader will be asked
to parallel the work for the first kind of problem.
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In what follows, we shall denote the observed frequency for the cell in the ith
row and the jth column by fij, the row totals by fi·, the column totals by f·j, and the
grand total, the sum of all the cell frequencies, by f . With this notation, we estimate
the probabilities θi· and θ·j as

θ̂i· = fi·
f

and θ̂·j = f·j
f

and under the null hypothesis of independence we get

eij = θ̂i· · θ̂·j · f = fi·
f

· f·j
f

· f = fi· · f·j
f

for the expected frequency for the cell in the ith row and the jth column. Note that
eij is thus obtained by multiplying the total of the row to which the cell belongs by the
total of the column to which it belongs and then dividing by the grand total.

Once we have calculated the eij, we base our decision on the value of

χ2 =
r∑

i=1

c∑
j=1

(fij − eij)
2

eij

and reject the null hypothesis if it exceeds χ2
α,(r−1)(c−1).

The number of degrees of freedom is (r − 1)(c − 1), and in connection with this
let us make the following observation: Whenever expected cell frequencies in chi-
square formulas are estimated on the basis of sample count data, the number of
degrees of freedom is s − t − 1, where s is the number of terms in the summation
and t is the number of independent parameters replaced by estimates. When testing
for differences among k proportions with the chi-square statistic of Section 6, we
had s = 2k and t = k, since we had to estimate the k parameters θ1, θ2, . . ., θk,
and the number of degrees of freedom was 2k − k − 1 = k − 1. When testing for
independence with an r * c contingency table, we have s = rc and t = r + c − 2, since
the r parameters θi· and the c parameters θ·j are not all independent: Their respective
sums must equal 1. Thus, we get s − t − 1 = rc − (r + c − 2)− 1 = (r − 1)(c − 1).

Since the test statistic that we have described has only approximately a chi-
square distribution with (r − 1)(c − 1) degrees of freedom, it is customary to use
this test only when none of the eij is less than 5; sometimes this requires that we
combine some of the cells with a corresponding loss in the number of degrees of
freedom.

EXAMPLE 11

Use the data shown in the following table to test at the 0.01 level of significance
whether a person’s ability in mathematics is independent of his or her interest in
statistics.

Ability in mathematics
Low Average High

Low 63 42 15

Interest in statistics Average 58 61 31

High 14 47 29
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Solution

1. H0: Ability in mathematics and interest in statistics are independent.
H1: Ability in mathematics and interest in statistics are not independent.
α = 0.01

2. Reject the null hypothesis if χ2 G 13.277, where

χ2 =
r∑

i=1

c∑
j=1

(fij − eij)
2

eij

and 13.277 is the value of χ2
0.01,4.

3. The expected frequencies for the first row are
120 · 135

360
= 45.0,

120 · 150
360

=
50.0, and 120 − 45.0 − 50.0 = 25.0, where we made use of the fact that for each
row or column the sum of the expected cell frequencies equals the sum of the
corresponding observed frequencies (see Exercise 14). Similarly, the expected
frequencies for the second row are 56.25, 62.5, and 31.25, and those for the
third row (all obtained by subtraction from the column totals) are 33.75, 37.5,
and 18.75. Then, substituting into the formula for χ2 yields

χ2 = (63 − 45.0)2

45.0
+ (42 − 50.0)2

50.0
+ · · · + (29 − 18.75)2

18.75
= 32.14

4. Since χ2 = 32.14 exceeds 13.277, the null hypothesis must be rejected; we
conclude that there is a relationship between a person’s ability in mathematics
and his or her interest in statistics.

A shortcoming of the chi-square analysis of an r * c table is that it does not
take into account a possible ordering of the rows and/or columns. For instance, in
Example 11, ability in mathematics, as well as interest in statistics, is ordered from
low to average to high, and the value we get for χ2 would remain the same if the
rows and/or columns were interchanged among themselves. Also, the columns of
the table in Section 7 reflect a definite ordering from favoring B (not favoring A) to
being indifferent to favoring A, but in this case there is no specific ordering of the
rows.

8 Goodness of Fit
The goodness-of-fit test considered here applies to situations in which we want to
determine whether a set of data may be looked upon as a random sample from a
population having a given distribution. To illustrate, suppose that we want to decide
on the basis of the data (observed frequencies) shown in the following table whether
the number of errors a compositor makes in setting a galley of type is a random
variable having a Poisson distribution:
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Observed Poisson Expected
Number of frequencies probabilities frequencies

errors fi with λ = 3 ei

0 18 0.0498 21.9
1 53 0.1494 65.7
2 103 0.2240 98.6
3 107 0.2240 98.6
4 82 0.1680 73.9
5 46 0.1008 44.4
6 18 0.0504 22.2
7 10 0.0216 9.5
8 2

}
3

0.0081 3.6
}

5.3
9 1 0.0038 1.7

Note that we have combined the last two classes in this table to create a new class
with an expected frequency greater than 5.

To determine a corresponding set of expected frequencies for a random sam-
ple from a Poisson population, we first use the mean of the observed distribution

to estimate the Poisson parameter λ, getting λ̂ = 1,341
440

= 3.05 or, approximately,

λ̂ = 3. Then, copying the Poisson probabilities for λ = 3 from Table II of “Statistical
Tables” (with the probability of 9 or more used instead of the probability of 9) and
multiplying by 440, the total frequency, we get the expected frequencies shown in
the right-hand column of the table. To test the null hypothesis that the observed fre-
quencies constitute a random sample from a Poisson population, we must judge how
good a fit, or how close an agreement, we have between the two sets of frequencies.
In general, to test the null hypothesis H0 that a set of observed data comes from a
population having a specified distribution against the alternative that the population
has some other distribution, we compute

χ2 =
m∑

i=1

(fi − ei)
2

ei

and reject H0 at the level of significance α if χ2 G χ2
α, m−t−1, where m is the number

of terms in the summation and t is the number of independent parameters estimated
on the basis of the sample data (see the discussion in Section 7). In the above illus-
tration, t = 1 since only one parameter is estimated on the basis of the data, and the
number of degrees of freedom is m − 2.

EXAMPLE 12

For the data in the table on this page, test at the 0.05 level of significance whether
the number of errors the compositor makes in setting a galley of type is a random
variable having a Poisson distribution.

Solution
(Since the expected frequencies corresponding to eight and nine errors are less than
5, the two classes are combined.)

1. H0: Number of errors is a Poisson random variable.
H1: Number of errors is not a Poisson random variable.
α = 0.05
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2. Reject the null hypothesis if χ2 G 14.067, where

χ2 =
m∑

i=1

(fi − ei)
2

ei

and 14.067 is the value of χ2
0.05, 7.

3. Substituting into the formula for χ2, we get

χ2 = (18 − 21.9)2

21.9
+ (53 − 65.7)2

65.7
+ · · · + (3 − 5.3)2

5.3

= 6.83

4. Since χ2 = 6.83 is less than 14.067, the null hypothesis cannot be rejected;
indeed, the close agreement between the observed and expected frequencies
suggests that the Poisson distribution provides a “good fit.”

Exercises

14. Verify that if the expected cell frequencies are calcu-
lated in accordance with the rule in Section 7, their sum
for any row or column equals the sum of the correspond-
ing observed frequencies.

15. Show that the rule in Section 7 for calculating the
expected cell frequencies applies also when we test the
null hypothesis that we are sampling r populations with
identical multinomial distributions.

16. Show that the following computing formula for χ2 is
equivalent to the formula in Section 7:

χ2 =
r∑

i=1

c∑
j=1

f 2
ij

eij
− f

17. Use the formula of Exercise 16 to recalculate χ2 for
Example 10.

18. If the analysis of a contingency table shows that there
is a relationship between the two variables under consid-
eration, the strength of this relationship may be measured
by means of the contingency coefficient

C =
√

χ2

χ2 + f

where χ2 is the value obtained for the test statistic, and f
is the grand total as defined in Section 7. Show that
(a) for a 2 * 2 contingency table the maximum value of C
is 1

2

√
2;

(b) for a 3 * 3 contingency table the maximum value of C
is 1

3

√
6.

9 The Theory in Practice
Computer software exists for all the tests that we have discussed. Again, we have
only to enter the original raw (untreated) data into our computer together with the
appropriate command. To illustrate, consider the following example.

EXAMPLE 13

The following random samples are measurements of the heat-producing capacity (in
millions of calories per ton) of specimens of coal from two mines:

Mine 1: 8,400 8,230 8,380 7,860 7,930
Mine 2: 7,510 7,690 7,720 8,070 7,660
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Use the 0.05 level of significance to test whether the difference between the means
of these two samples is significant.

Solution
The MINITAB computer printout in Figure 5 shows that the value of the test statistic
is t = 2.95, the number of degrees of freedom is 7, and the P-value is 0.021.

Since 0.021 is less than 0.05, we conclude that the difference between the means
of the two samples is significant at the 0.05 level of significance.

Figure 5. Computer printout for Example 13.

The impact of computers on statistics goes for Example 13, but we wanted to
make the point that there exists software for all the standard testing procedures that
we have discussed. The use of appropriate statistical computer software is recom-
mended for many of the applied exercises that follow.

Applied Exercises SECS. 1–3

19. Based on certain data, a null hypothesis is rejected at
the 0.05 level of significance. Would it also be rejected
at the
(a) 0.01 level of significance;
(b) 0.10 level of significance?

20. In the test of a certain hypothesis, the P-value cor-
responding to the test statistic is 0.0316. Can the null
hypothesis be rejected at the
(a) 0.01 level of significance;
(b) 0.05 level of significance;
(c) 0.10 level of significance?

21. With reference to Example 1, verify that the
P-value corresponding to the observed value of the test
statistic is 0.0046.

22. With reference to Example 2, verify that the
P-value corresponding to the observed value of the test
statistic is 0.0808.

23. With reference to Example 3, use suitable statistical
software to find the P-value that corresponds to t =
−0.49, where t is a value of a random variable having the

t distribution with 4 degrees of freedom. Use this P-value
to rework the example.

24. Test at the 0.05 level of significance whether the mean
of a random sample of size n = 16 is “significantly less
than 10” if the distribution from which the sample was
taken is normal, x = 8.4, and σ = 3.2. What are the null
and alternative hypotheses for this test?

25. According to the norms established for a reading
comprehension test, eighth graders should average 84.3
with a standard deviation of 8.6. If 45 randomly selected
eighth graders from a certain school district averaged
87.8, use the four steps in the initial part of Section 1 to
test the null hypothesis μ = 84.3 against the alternative
μ> 84.3 at the 0.01 level of significance.

26. Rework Exercise 25, basing the decision on the
P-value corresponding to the observed value of the
test statistic.

27. The security department of a factory wants to know
whether the true average time required by the night
guard to walk his round is 30 minutes. If, in a ran-
dom sample of 32 rounds, the night guard averaged 30.8
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minutes with a standard deviation of 1.5 minutes, deter-
mine whether this is sufficient evidence to reject the null
hypothesis μ = 30 minutes in favor of the alternative
hypothesis μ Z 30 minutes. Use the four steps in the ini-
tial part of Section 1 and the 0.01 level of significance.

28. Rework Exercise 27, basing the decision on the
P-value corresponding to the observed value of the
test statistic.

29. In 12 test runs over a marked course, a newly designed
motorboat averaged 33.6 seconds with a standard devia-
tion of 2.3 seconds. Assuming that it is reasonable to treat
the data as a random sample from a normal population,
use the four steps in the initial part of Section 1 to test
the null hypothesis μ = 35 against the alternative μ< 35
at the 0.05 level of significance.

30. Five measurements of the tar content of a certain
kind of cigarette yielded 14.5, 14.2, 14.4, 14.3, and 14.6
mg/cigarette. Assuming that the data are a random sam-
ple from a normal population, use the four steps in the
initial part of Section 1 to show that at the 0.05 level of
significance the null hypothesis μ = 14.0 must be rejected
in favor of the alternative μ Z 14.0.

31. With reference to Exercise 30, show that if the first
measurement is recorded incorrectly as 16.0 instead of
14.5, this will reverse the result. Explain the appar-
ent paradox that even though the difference between
the sample mean and μ0 has increased, it is no longer
significant.

32. With reference to Exercise 30, use suitable statisti-
cal software to find the P-value that corresponds to the
observed value of the test statistic. Use this P-value to
rework the exercise.

33. If the same hypothesis is tested often enough, it is
likely to be rejected at least once, even if it is true. A pro-
fessor of biology, attempting to demonstrate this fact, ran
white mice through a maze to determine if white mice
ran the maze faster than the norm established by many
previous tests involving various colors of mice.
(a) If the professor conducts this experiment once with
several mice (using the 0.05 level of significance), what is
the probability that he will come up with a “significant”
result even if the color of the mouse does not affect its
speed in running the maze?
(b) If the professor repeats the experiment with a new set
of white mice, what is the probability that at least one
of the experiments will yield a “significant” result even
if the color of a mouse does not affect its maze-running
speed?
(c) If the professor has 30 of his students independently
run the same experiment, each with a different group
of white mice, what is the probability that at least one
of these experiments will come up “significant” even if
mouse color plays no role in their maze-running speed?

34. An epidemiologist is trying to discover the cause of a
certain kind of cancer. He studies a group of 10,000 peo-
ple for five years, measuring 48 different “factors” involv-
ing eating habits, drinking habits, smoking, exercise, and
so on. His object is to determine if there are any differ-
ences in the means of these factors (variables) between
those who developed the given cancer and those who did
not. He assumes that these variables are independent,
even though there may be evidence to the contrary. In
an effort to be cautiously conservative, he uses the 0.01
level of significance in all his statistical tests.
(a) What is the probability that one of these factors will
be “associated with” the cancer, even if none of them is a
causative factor?
(b) What is the probability that more than one of these
factors will be associated with the cancer, even if none of
them is a causative factor?

35. With reference to Example 4, for what values of x1 −
x2 would the null hypothesis have been rejected? Also
find the probabilities of type II errors with the given cri-
terion if

(a) μ1 −μ2 = 0.12; (b) μ1 −μ2 = 0.16;
(c) μ1 −μ2 = 0.24; (d) μ1 −μ2 = 0.28.

36. A study of the number of business lunches that exec-
utives in the insurance and banking industries claim as
deductible expenses per month was based on random
samples and yielded the following results:

n1 = 40 x1 = 9.1 s1 = 1.9

n2 = 50 x2 = 8.0 s2 = 2.1

Use the four steps in the initial part of Section 1 and the
0.05 level of significance to test the null hypothesis μ1 −
μ2 = 0 against the alternative hypothesis μ1 −μ2 Z 0.

37. Rework Exercise 36, basing the decision on the
P-value corresponding to the observed value of the
test statistic.

38. Sample surveys conducted in a large county in a cer-
tain year and again 20 years later showed that originally
the average height of 400 ten-year-old boys was 53.8
inches with a standard deviation of 2.4 inches, whereas
20 years later the average height of 500 ten-year-old boys
was 54.5 inches with a standard deviation of 2.5 inches.
Use the four steps in the initial part of Section 1 and
the 0.05 level of significance to test the null hypothesis
μ1 −μ2 = −0.5 against the alternative hypothesis μ1 −
μ2<−0.5.

39. Rework Exercise 38, basing the decision on the
P-value corresponding to the observed value of the
test statistic.

40. To find out whether the inhabitants of two South
Pacific islands may be regarded as having the same
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racial ancestry, an anthropologist determines the cephalic
indices of six adult males from each island, getting
x1 = 77.4 and x2 = 72.2 and the corresponding stan-
dard deviations s1 = 3.3 and s2 = 2.1. Use the four steps
in the initial part of Section 1 and the 0.01 level of sig-
nificance to see whether the difference between the two
sample means can reasonably be attributed to chance.
Assume that the populations sampled are normal and
have equal variances.

41. With reference to Example 5, use suitable statistical
software to show that the P-value corresponding to t =
2.67 is 0.0185.

42. To compare two kinds of front-end designs, six of each
kind were installed on a certain make of compact car.
Then each car was run into a concrete wall at 5 miles
per hour, and the following are the costs of the repairs
(in dollars):

Design 1: 127 168 143 165 122 139
Design 2: 154 135 132 171 153 149

Use the four steps in the initial part of Section 1 to test
at the 0.01 level of significance whether the difference
between the means of these two samples is significant.

43. With reference to Exercise 42, use suitable statisti-
cal software to find the P-value corresponding to the
observed value of the test statistic. Use this P-value to
rework the exercise.

44. In a study of the effectiveness of certain exercises in
weight reduction, a group of 16 persons engaged in these
exercises for one month and showed the following results:

Weight Weight Weight Weight
before after before after

211 198 172 166
180 173 155 154
171 172 185 181
214 209 167 164
182 179 203 201
194 192 181 175
160 161 245 233
182 182 146 142

Use the 0.05 level of significance to test the null hypoth-
esis μ1 −μ2 = 0 against the alternative hypothesis
μ1 −μ2> 0, and thus judge whether the exercises are
effective in weight reduction.

45. The following are the average weekly losses of work-
hours due to accidents in 10 industrial plants before and
after a certain safety program was put into operation:

45 and 36, 73 and 60, 46 and 44, 124 and 119, 33 and 35,

57 and 51, 83 and 77, 34 and 29, 26 and 24, and 17 and 11

Use the four steps in the initial part of Section 1 and the
0.05 level of significance to test whether the safety pro-
gram is effective.

46. With reference to Exercise 45, use suitable statisti-
cal software to find the P-value that corresponds to the
observed value of the test statistic. Use this P-value to
rework the exercise.

SEC. 4
47. Nine determinations of the specific heat of iron had a
standard deviation of 0.0086. Assuming that these deter-
minations constitute a random sample from a normal
population, test the null hypothesis σ = 0.0100 against
the alternative hypothesis σ < 0.0100 at the 0.05 level of
significance.

48. In a random sample, the weights of 24 Black Angus
steers of a certain age have a standard deviation of 238
pounds. Assuming that the weights constitute a random
sample from a normal population, test the null hypothesis
σ = 250 pounds against the two-sided alternative σ Z 250
pounds at the 0.01 level of significance.

49. In a random sample, s = 2.53 minutes for the amount
of time that 30 women took to complete the written test
for their driver’s licenses. At the 0.05 level of significance,
test the null hypothesis σ = 2.85 minutes against the
alternative hypothesis σ < 2.85 minutes. (Use the method
described in the text.)

50. Use the method of Exercise 7 to rework Exercise 49.

51. Past data indicate that the standard deviation of
measurements made on sheet metal stampings by expe-
rienced inspectors is 0.41 square inch. If a new inspector
measures 50 stampings with a standard deviation of 0.49
square inch, use the method of Exercise 7 to test the
null hypothesis σ = 0.41 square inch against the alterna-
tive hypothesis σ > 0.41 square inch at the 0.05 level of
significance.

52. With reference to Exercise 51, find the P-value cor-
responding to the observed value of the test statistic and
use it to decide whether the null hypothesis could have
been rejected at the 0.015 level of significance.

53. With reference to Example 5, test the null hypothesis
σ1 − σ2 = 0 against the alternative hypothesis σ1 − σ2> 0
at the 0.05 level of significance.

54. With reference to Exercise 40, test at the 0.10 level of
significance whether it is reasonable to assume that the
two populations sampled have equal variances.

55. With reference to Exercise 42, test at the 0.02 level
of significance whether it is reasonable to assume
that the two populations sampled have equal vari-
ances.

385



Tests of Hypothesis Involving Means, Variances, and Proportions

SECS. 5–6
56. With reference to Example 8, show that the critical
region is x F 5 or x G 15 and that, corresponding to
this critical region, the level of significance is actually
0.0414.

57. It has been claimed that more than 40 percent of all
shoppers can identify a highly advertised trademark. If,
in a random sample, 10 of 18 shoppers were able to iden-
tify the trademark, test at the 0.05 level of significance
whether the null hypothesis θ = 0.40 can be rejected
against the alternative hypothesis θ > 0.40.

58. With reference to Exercise 57, find the critical region
and the actual level of significance corresponding to this
critical region.

59. A doctor claims that less than 30 percent of all per-
sons exposed to a certain amount of radiation will feel
any ill effects. If, in a random sample, only 1 of 19 per-
sons exposed to such radiation felt any ill effects, test the
null hypothesis θ = 0.30 against the alternative hypothe-
sis θ < 0.30 at the 0.05 level of significance.

60. With reference to Exercise 59, find the critical region
and the actual level of significance corresponding to this
critical region.

61. In a random sample, 12 of 14 industrial accidents were
due to unsafe working conditions. Use the 0.01 level of
significance to test the null hypothesis θ = 0.40 against
the alternative hypothesis θ Z 0.40.

62. With reference to Exercise 61, find the critical region
and the actual level of significance corresponding to this
critical region.

63. In a random survey of 1,000 households in the United
States, it is found that 29 percent of the households con-
tained at least one member with a college degree. Does
this finding refute the statement that the proportion of all
such U.S. households is at least 35 percent? (Use the 0.05
level of significance.)

64. In a random sample of 12 undergraduate business
students, 6 said that they will take advanced work in
accounting. Use the 0.01 level of significance to test
the null hypothesis θ = 0.20, that is, 20 percent of
all undergraduate business students will take advanced
work in accounting, against the alternative hypothesis
θ > 0.20.

65. A food processor wants to know whether the prob-
ability is really 0.60 that a customer will prefer a new
kind of packaging to the old kind. If, in a random sam-
ple, 7 of 18 customers prefer the new kind of packaging
to the old kind, test the null hypothesis θ = 0.60 against
the alternative hypothesis θ Z 0.60 at the 0.05 level of
significance.

66. In a random sample of 600 cars making a right turn
at a certain intersection, 157 pulled into the wrong lane.
Use the 0.05 level of significance to test the null hypoth-
esis that the actual proportion of drivers who make this
mistake at the given intersection is θ = 0.30 against the
alternative hypothesis θ Z 0.30.

67. The manufacturer of a spot remover claims that his
product removes 90 percent of all spots. If, in a random
sample, only 174 of 200 spots were removed with the man-
ufacturer’s product, test the null hypothesis θ = 0.90
against the alternative hypothesis θ < 0.90 at the 0.05
level of significance.

68. In random samples, 74 of 250 persons who watched
a certain television program on a small TV set and 92 of
250 persons who watched the same program on a large set
remembered 2 hours later what products were advertised.
Use the χ2 statistic to test the null hypothesis θ1 = θ2
against the alternative hypothesis θ1 Z θ2 at the 0.01 level
of significance.

69. Use the statistic of Exercise 12 to rework Exercise 68.

70. In random samples, 46 of 400 tulip bulbs from one
nursery failed to bloom and 18 of 200 tulip bulbs from
another nursery failed to bloom. Use the χ2 statistic to
test the null hypothesis θ1 = θ2 against the alternative
hypothesis θ1 Z θ2 at the 0.05 level of significance.

71. Use the statistic of Exercise 12 to rework
Exercise 70, and verify that the square of the value
obtained for z equals the value obtained for χ2.

72. In a random sample of 200 persons who skipped
breakfast, 82 reported that they experienced midmorning
fatigue, and in a random sample of 300 persons who ate
breakfast, 87 reported that they experienced midmorn-
ing fatigue. Use the method of Exercise 12 and the 0.05
level of significance to test the null hypothesis that there
is no difference between the corresponding population
proportions against the alternative hypothesis that mid-
morning fatigue is more prevalent among persons who
skip breakfast.

73. If 26 of 200 tires of brand A failed to last 30,000 miles,
whereas the corresponding figures for 200 tires of brands
B, C, and D were 23, 15, and 32, test the null hypothe-
sis that there is no difference in the durability of the four
kinds of tires at the 0.05 level of significance.

74. In random samples of 250 persons with low incomes,
200 persons with average incomes, and 150 persons with
high incomes, there were, respectively, 155, 118, and 87
who favor a certain piece of legislation. Use the 0.05
level of significance to test the null hypothesis θ1 =
θ2 = θ3 (that the proportion of persons favoring the
legislation is the same for all three income groups) against
the alternative hypothesis that the three θ ’s are not
all equal.
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SECS. 7–8
75. Samples of an experimental material are produced by
three different prototype processes and tested for com-
pliance to a strength standard. If the tests showed the
following results, can it be said at the 0.01 level of signifi-
cance that the three processes have the same probability
of passing this strength standard?

Process A Process B Process C

Number passing test 45 58 49

Number failing test 21 15 35

76. In a study of parents’ feelings about a required course
in sex education, 360 parents, a random sample, are clas-
sified according to whether they have one, two, or three
or more children in the school system and also whether
they feel that the course is poor, adequate, or good. Based
on the results shown in the following table, test at the
0.05 level of significance whether there is a relationship
between parents’ reaction to the course and the number
of children that they have in the school system:

Number of children
1 2 3 or more

Poor 48 40 12

Adequate 55 53 29

Good 57 46 20

77. Tests of the fidelity and the selectivity of 190 radios
produced the results shown in the following table:

Fidelity
Low Average High

Low 7 12 31

Selectivity Average 35 59 18

High 15 13 0

Use the 0.01 level of significance to test the null hypothe-
sis that fidelity is independent of selectivity.

78. The following sample data pertain to the shipments
received by a large firm from three different vendors:

Number Number imperfect Number
rejected but acceptable perfect

Vendor A 12 23 89

Vendor B 8 12 62

Vendor C 21 30 119

Test at the 0.01 level of significance whether the three
vendors ship products of equal quality.

79. Analyze the 3 * 3 table in the initial part of Section 1,
which pertains to the responses of shoppers in three dif-
ferent cities with regard to two detergents. Use the 0.05
level of significance.

80. Four coins were tossed 160 times and 0, 1, 2, 3, or 4
heads showed, respectively, 19, 54, 58, 23, and 6 times.
Use the 0.05 level of significance to test whether it is
reasonable to suppose that the coins are balanced and
randomly tossed.

81. It is desired to test whether the number of gamma rays
emitted per second by a certain radioactive substance is
a random variable having the Poisson distribution with
λ = 2.4. Use the following data obtained for 300 1-second
intervals to test this null hypothesis at the 0.05 level of
significance:

Number of
gamma rays Frequency

0 19
1 48
2 66
3 74
4 44
5 35
6 10

7 or more 4

82. Each day, Monday through Saturday, a baker bakes
three large chocolate cakes, and those not sold on the
same day are given away to a food bank. Use the data
shown in the following table to test at the 0.05 level of
significance whether they may be looked upon as values
of a binomial random variable:

Number of Number of
cakes sold days

0 1
1 16
2 55
3 228

83. The following is the distribution of the readings
obtained with a Geiger counter of the number of parti-
cles emitted by a radioactive substance in 100 successive
40-second intervals:

Number of
particles Frequency

5–9 1
10–14 10
15–19 37
20–24 36
25–29 13
30–34 2
35–39 1

387



Tests of Hypothesis Involving Means, Variances, and Proportions

(a) Verify that the mean and the standard deviation of
this distribution are x = 20 and s = 5.
(b) Find the probabilities that a random variable having
a normal distribution with μ = 20 and σ = 5 will take on
a value less than 9.5, between 9.5 and 14.5, between 14.5
and 19.5, between 19.5 and 24.5, between 24.5 and 29.5,
between 29.5 and 34.5, and greater than 34.5.
(c) Find the expected normal curve frequencies for the
various classes by multiplying the probabilities obtained
in part (b) by the total frequency, and then test at the 0.05
level of significance whether the data may be looked upon
as a random sample from a normal population.

SEC. 9
84. The following are the hours of operation to failure of
38 light bulbs.

150 389 345 310 20 310 175 376 334 340
332 331 327 344 328 341 325 2 311 320
256 315 55 345 111 349 245 367 81 327
355 309 375 316 336 278 396 287

Use a suitable statistical computer program to test
whether the mean failure time of such light bulbs is sig-
nificantly less than 300 hours. Use the 0.01 level of signif-
icance.

85. The following are the drying times (minutes) of 40
sheets coated with polyurethane under two different
ambient conditions.

Condition 1: 55.6 56.1 61.8 55.9 51.4 59.9 54.3 62.8 58.5 55.8
58.3 60.2 54.2 50.1 57.1 57.5 63.6 59.3 60.9 61.8

Condition 2: 55.1 43.5 51.2 46.2 56.7 52.5 53.5 60.5 52.1 47.0
53.0 53.8 51.6 53.6 42.9 52.0 55.1 57.1 62.8 54.8

Use a suitable statistical computer program to test
whether there is a significant difference between the
mean drying times under the two ambient conditions. Use
the 0.05 level of significance.

86. Samples of three materials under consideration for
the housing of machinery on a seagoing vessel are tested
by means of a salt-spray test. Any sample that leaks when
subject to a power spray is considered to have failed. The
following are the test results:

Material A Material B Material C

Number leaked 36 22 18

Number not leaked 63 45 29

Use a suitable statistical computer program to test at the
0.05 level of significance if the three materials have the
same probability of leaking in this test.
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Answers to Odd-Numbered Exercises

1 Use the critical region
n(x −μ0)

2

σ 2
Úχ2

α,1

3 n = 52.
5 n = 151.
9 The alternative hypothesis is λ>λ0; reject the null hypoth-

esis if
n∑

i=1

xi Ú kα where kα is the smallest integer for which

q∑
y=kα

p(y; n, λ0)…α.

19 (a) No; (b) yes.
23 P-value = 0.3249; the null hypothesis cannot be rejected.
25 z = 2.73; the null hypothesis must be rejected.
27 z = 3.02; the null hypothesis must be rejected.
29 t = −2.11; the null hypothesis must be rejected.
31 s has also increased to 0.742.
33 (a) P(reject H0|H0 is true) = 0.05; (b) P(reject H0
on experiment 1 or experiment 2 or both |H0 is true) =
0.0975; (c) P(reject H0 on one or more of 30 experiments
|H0 is true) = 0.79.
35 (a) β = 0.18; (b) β = 0.71; (c) β = 0.71;
(d) β = 0.18.
37 The P-value is 0.0094; the null hypothesis must be
rejected.
39 The P-value is 0.1112; the null hypothesis cannot be
rejected.
43 The P-value is 0.61; the null hypothesis cannot be
rejected.

45 t = 4.03; the null hypothesis must be rejected.
47 χ2 = 5.92; the null hypothesis cannot be rejected.
49 χ2 = 22.85; the null hypothesis cannot be rejected.
51 z = 1.93; the null hypothesis must be rejected.
53 f = 1.42; the null hypothesis cannot be rejected.
55 f = 1.80; the null hypothesis cannot be rejected.
57 The P-value is 0.1348; the null hypothesis cannot be
rejected.
59 The P-value is 0.0104; the null hypothesis must be
rejected.
61 The P-value is 0.0012; the null hypothesis must be
rejected.
63 z = −3.98; the null hypothesis must be rejected; thus the
statement is refuted.
65 The P-value is 0.1154; the null hypothesis cannot be
rejected.
69 z = −1.71; the null hypothesis cannot be rejected.
73 χ2 = 7.10; the null hypothesis cannot be rejected.

75 χ2 = 8.03; the null hypothesis cannot be rejected.
77 χ2 = 52.7; the null hypothesis must be rejected.

79 χ2 = 3.71; the null hypothesis cannot be rejected.
81 χ2 = 28.9; the null hypothesis must be rejected.
83 (b) The probabilities are 0.0179, 0.1178, 0.3245, 0.3557,
0.1554, 0.0268, and 0.0019. (c) The expected frequencies
are 1.8, 11.8, 32.4, 35.6, 15.5, 2.7, and 0.2; χ2 = 1.46; the null
hypothesis cannot be rejected.
85 t = 3.61; the P-value = 0.0009; thus, the difference is sig-
nificant at the 0.005 level of significance.
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Regression
and Correlation

1 Introduction
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5 Normal Correlation Analysis
6 Multiple Linear Regression
7 Multiple Linear Regression (Matrix Notation)
8 The Theory in Practice

1 Introduction A major objective of many statistical investigations is to establish relationships that
make it possible to predict one or more variables in terms of others. Thus, studies are
made to predict the potential sales of a new product in terms of its price, a patient’s
weight in terms of the number of weeks he or she has been on a diet, family expen-
ditures on entertainment in terms of family income, the per capita consumption of
certain foods in terms of their nutritional values and the amount of money spent
advertising them on television, and so forth.

Although it is, of course, desirable to be able to predict one quantity exactly in
terms of others, this is seldom possible, and in most instances we have to be sat-
isfied with predicting averages or expected values. Thus, we may not be able to
predict exactly how much money Mr. Brown will make 10 years after graduating
from college, but, given suitable data, we can predict the average income of a col-
lege graduate in terms of the number of years he has been out of college. Similarly,
we can at best predict the average yield of a given variety of wheat in terms of data
on the rainfall in July, and we can at best predict the average performance of students
starting college in terms of their I.Q.’s.

Formally, if we are given the joint distribution of two random variables X and
Y, and X is known to take on the value x, the basic problem of bivariate regression
is that of determining the conditional mean μY|x, that is, the “average” value of Y
for the given value of X. The term “regression,” as it is used here, dates back to
Francis Galton, who employed it to indicate certain relationships in the theory of
heredity. In problems involving more than two random variables, that is, in multiple
regression, we are concerned with quantities such as μZ|x,y, the mean of Z for given
values of X and Y, μX4|x1, x2, x3 , the mean of X4 for given values of X1, X2, and X3,
and so on.

DEFINITION 1. BIVARIATE REGRESSION; REGRESSION EQUATION. If f(x, y) is the value of
the joint density of two random variables X and Y, bivariate regression consists
of determining the conditional density of Y, given X = x and then evaluating the
integral

μY|x = E(Y|x) =
∫ q

−q
y · w(y|x)dy

From Chapter 14 of John E. Freund’s Mathematical Statistics with Applications,
Eighth Edition. Irwin Miller, Marylees Miller. Copyright © 2014 by Pearson Education,
Inc. All rights reserved.
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The resulting equation is called the regression equation of Y on X. Alternately,
the regression equation of X on Y is given by

μX|y = E(X|y) =
∫ q

−q
x · f (x|y)dy

In the discrete case, when we are dealing with probability distributions instead of
probability densities, the integrals in the two regression equations given in
Definition 1 are simply replaced by sums. When we do not know the joint probability
density or distribution of the two random variables, or at least not all its parameters,
the determination of μY|x or μX|y becomes a problem of estimation based on sample
data; this is an entirely different problem, which we shall discuss in Sections 3 and 4.

EXAMPLE 1

Given the two random variables X and Y that have the joint density

f (x, y) =
⎧⎨
⎩x · e−x(1+y) for x> 0 and y> 0

0 elsewhere

find the regression equation of Y on X and sketch the regression curve.

Solution
Integrating out y, we find that the marginal density of X is given by

g(x) =
⎧⎨
⎩e−x for x> 0

0 elsewhere

and hence the conditional density of Y given X = x is given by

w(y|x) = f (x, y)
g(x)

= x · e−x(1+y)

e−x = x · e−xy

for y> 0 and w(y|x) = 0 elsewhere, which we recognize as an exponential density

with θ = 1
x

. Hence, by evaluating

μY|x =
∫ q

0
y · x · e−xy dy

or by referring to the corollary of a theorem given here “The mean and the variance
of the exponential distribution are given by μ = θ and σ 2 = θ2,” we find that the
regression equation of Y on X is given by

μY|x = 1
x

The corresponding regression curve is shown in Figure 1.
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Figure 1. Regression curve of Example 1.

EXAMPLE 2

If X and Y have the multinomial distribution

f (x, y) =
(

n
x, y, n − x − y

)
· θx

1 θ
y
2 (1 − θ1 − θ2)

n−x−y

for x = 0, 1, 2, . . . , n, and y = 0, 1, 2, . . . , n, with x + y F n, find the regression equa-
tion of Y on X.

Solution
The marginal distribution of X is given by

g(x) =
n−x∑
y=0

(
n

x, y, n − x − y

)
· θx

1 θ
y
2 (1 − θ1 − θ2)

n−x−y

=
(

n
x

)
θx

1 (1 − θ1)
n−x

for x = 0, 1, 2, . . . , n, which we recognize as a binomial distribution with the parame-
ters n and θ1. Hence,

w(y|x) = f (x, y)
g(x)

=

(
n − x

y

)
θ

y
2 (1 − θ1 − θ2)

n−x−y

(1 − θ1)
n−x

for y = 0, 1, 2, . . . , n − x, and, rewriting this formula as

w(y|x) =
(

n − x
y

)(
θ2

1 − θ1

)y (1 − θ1 − θ2

1 − θ1

)n−x−y
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we find by inspection that the conditional distribution of Y given X = x is a binomial

distribution with the parameters n − x and
θ2

1 − θ1
, so that the regression equation of

Y on X is

μY|x = (n − x)θ2

1 − θ1

With reference to the preceding example, if we let X be the number of times
that an even number comes up in 30 rolls of a balanced die and Y be the number of
times that the result is a 5, then the regression equation becomes

μY|x =
(30 − x)

1
6

1 − 1
2

= 1
3
(30 − x)

This stands to reason, because there are three equally likely possibilities, 1, 3, or 5,
for each of the 30 − x outcomes that are not even.

EXAMPLE 3

If the joint density of X1, X2, and X3 is given by

f (x1, x2, x3) =
⎧⎨
⎩(x1 + x2)e−x3 for 0< x1< 1, 0< x2< 1, x3> 0

0 elsewhere

find the regression equation of X2 on X1 and X3.

Solution
The joint marginal density of X1 and X3 is given by

m(x1, x3) =

⎧⎪⎨
⎪⎩
(

x1 + 1
2

)
e−x3 for 0< x1< 1, x3> 0

0 elsewhere

Therefore,

μX2|x1, x3 =
∫ q

−q
x2 · f (x1, x2, x3)

m(x1, x3)
dx2 =

∫ 1

0

x2(x1 + x2)(
x1 + 1

2

) dx2

=
x1 + 2

3
2x1 + 1
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Note that the conditional expectation obtained in the preceding example
depends on x1 but not on x3. This could have been expected, since there is a pairwise
independence between X2 and X3.

2 Linear Regression
An important feature of Example 2 is that the regression equation is linear; that is,
it is of the form

μY|x = α+βx

where α and β are constants, called the regression coefficients. There are several
reasons why linear regression equations are of special interest: First, they lend them-
selves readily to further mathematical treatment; then, they often provide good
approximations to otherwise complicated regression equations; and, finally, in the
case of the bivariate normal distribution, the regression equations are, in fact, linear.

To simplify the study of linear regression equations, let us express the regression
coefficients α and β in terms of some of the lower moments of the joint distribution
of X and Y, that is, in terms of E(X) = μ1, E(Y) = μ2, var(X) = σ 2

1 , var(Y) = σ 2
2 ,

and cov(X, Y) = σ12. Then, also using the correlation coefficient

ρ = σ12

σ1σ2

we can prove the following results.

THEOREM 1. If the regression of Y on X is linear, then

μY|x = μ2 + ρ σ2

σ1
(x −μ1)

and if the regression of X on Y is linear, then

μX|y = μ1 + ρ σ1

σ2
(y −μ2)

Proof Since μY|x = α+βx, it follows that

∫
y · w(y|x)dy = α+βx

and if we multiply the expression on both sides of this equation by g(x),
the corresponding value of the marginal density of X, and integrate on x,
we obtain∫∫

y · w(y|x)g(x)dy dx = α

∫
g(x)dx +β

∫
x · g(x)dx

or
μ2 = α+βμ1
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since w(y|x)g(x) = f (x, y). If we had multiplied the equation for μY|x on
both sides by x · g(x) before integrating on x, we would have obtained∫∫

xy · f (x, y)dy dx = α

∫
x · g(x)dx +β

∫
x2 · g(x)dx

or

E(XY) = αμ1 +βE(X2)

Solving μ2 = α+βμ1 and E(XY) = αμ1 +βE(X2) for α and β and mak-
ing use of the fact that E(XY) = σ12 +μ1μ2 and E(X2) = σ 2

1 +μ2
1, we

find that

α = μ2 − σ12

σ 2
1

·μ1 = μ2 − ρ σ2

σ1
·μ1

and

β = σ12

σ 2
1

= ρ
σ2

σ1

This enables us to write the linear regression equation of Y on X as

μY|x = μ2 + ρ σ2

σ1
(x −μ1)

When the regression of X on Y is linear, similar steps lead to the equation

μX|y = μ1 + ρ σ1

σ2
(y −μ2)

It follows from Theorem 1 that if the regression equation is linear and ρ = 0,
then μY|x does not depend on x (or μX|y does not depend on y). When ρ = 0 and
hence σ12 = 0, the two random variables X and Y are uncorrelated, and we can say
that if two random variables are independent, they are also uncorrelated, but if two
random variables are uncorrelated, they are not necessarily independent; the latter
is again illustrated in Exercise 9.

The correlation coefficient and its estimates are of importance in many statistical
investigations, and they will be discussed in some detail in Section 5. At this time,
let us again point out that −1 F ρ F +1, as the reader will be asked to prove in
Exercise 11, and the sign of ρ tells us directly whether the slope of a regression line
is upward or downward.

3 The Method of Least Squares
In the preceding sections we have discussed the problem of regression only in con-
nection with random variables having known joint distributions. In actual practice,
there are many problems where a set of paired data gives the indication that the
regression is linear, where we do not know the joint distribution of the random vari-
ables under consideration but, nevertheless, want to estimate the regression
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coefficients α and β. Problems of this kind are usually handled by the method of
least squares, a method of curve fitting suggested early in the nineteenth century by
the French mathematician Adrien Legendre.

To illustrate this technique, let us consider the following data on the number of
hours that 10 persons studied for a French test and their scores on the test:

Hours studied Test score
x y

4 31
9 58

10 65
14 73

4 37
7 44

12 60
22 91

1 21
17 84

Plotting these data as in Figure 2, we get the impression that a straight line pro-
vides a reasonably good fit. Although the points do not all fall exactly on a straight
line, the overall pattern suggests that the average test score for a given number of
hours studied may well be related to the number of hours studied by means of an
equation of the form μY|x = α+βx.
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Figure 2. Data on hours studied and test scores.
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Once we have decided in a given problem that the regression is approximately
linear and the joint density of x and y is unknown, we face the problem of estimating
the coefficients α and β from the sample data. In other words, we face the problem
of obtaining estimates α̂ and β̂ such that the estimated regression line ŷ = α̂+ β̂x in
some sense provides the best possible fit to the given data.

Denoting the vertical deviation from a point to the estimated regression line by
ei, as indicated in Figure 3, the least squares criterion on which we shall base this
“goodness of fit” is defined as follows:

DEFINITION 2. LEAST SQUARES ESTIMATE. If we are given a set of paired data

{(xi, yi); i = 1, 2, . . . , n}

The least squares estimates of the regression coefficients in bivariate linear regres-
sion are those that make the quantity

q =
n∑

i=1

e2
i =

n∑
i=1

[yi − (α̂+ β̂xi)]2

a minimum with respect to �̂ and �̂.
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Figure 3. Least squares criterion.
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Finding the minimum by differentiating partially with respect to α̂ and β̂ and
equating these partial derivatives to zero, we obtain

�q
�α̂

=
n∑

i=1

(−2)[yi − (α̂+ β̂xi)] = 0

and

�q

�β̂
=

n∑
i=1

(−2)xi[yi − (α̂+ β̂xi)] = 0

which yield the system of normal equations

n∑
i=1

yi = α̂n + β̂ ·
n∑

i=1

xi

n∑
i=1

xiyi = α̂ ·
n∑

i=1

xi + β̂ ·
n∑

i=1

x2
i

Solving this system of equations by using determinants or the method of elimi-
nation, we find that the least squares estimate of β is

β̂ =
n

⎛
⎝ n∑

i=1

xiyi

⎞
⎠−

⎛
⎝ n∑

i=1

xi

⎞
⎠
⎛
⎝ n∑

i=1

yi

⎞
⎠

n

⎛
⎝ n∑

i=1

x2
i

⎞
⎠−

⎛
⎝ n∑

i=1

xi

⎞
⎠

2

Then we can write the least squares estimate of α as

α̂ =

n∑
i=1

yi − β̂ ·
n∑

i=1

xi

n

by solving the first of the two normal equations for α̂. This formula for α̂ can be
simplified as

α̂ = y − β̂ · x

To simplify the formula for β̂ as well as some of the formulas we shall meet in
Sections 4 and 5, let us introduce the following notation:

Sxx =
n∑

i=1

(xi − x)2 =
n∑

i=1

x2
i − 1

n

⎛
⎝ n∑

i=1

xi

⎞
⎠

2

Syy =
n∑

i=1

(yi − y)2 =
n∑

i=1

y2
i − 1

n

⎛
⎝ n∑

i=1

yi

⎞
⎠

2
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and

Sxy =
n∑

i=1

(xi − x)(yi − y) =
n∑

i=1

xiyi − 1
n

⎛
⎝ n∑

i=1

xi

⎞
⎠
⎛
⎝ n∑

i=1

yi

⎞
⎠

We can thus write the following theorem.

THEOREM 2. Given the sample data {(xi, yi); i = 1, 2, . . . , n}, the coefficients
of the least squares line ŷ = α̂+ β̂x are

β̂ = Sxy

Sxx

and
α̂ = y − β̂ · x

EXAMPLE 4

With reference to the data in the table in Section 3,

(a) find the equation of the least squares line that approximates the regression of
the test scores on the number of hours studied;

(b) predict the average test score of a person who studied 14 hours for the test.

Solution

(a) Omitting the limits of summation for simplicity, we get n = 10, �x = 100,
�x2 = 1,376, �y = 564, and �xy = 6,945 from the data. Thus

Sxx = 1,376 − 1
10
(100)2 = 376

and

Sxy = 6,945 − 1
10
(100)(564) = 1,305

Thus, β̂ = 1,305
376

= 3.471 and α̂ = 564
10

− 3.471 · 100
10

= 21.69, and the equation

of the least squares line is

ŷ = 21.69 + 3.471x

(b) Substituting x = 14 into the equation obtained in part (a), we get

ŷ = 21.69 + 3.471(14) = 70.284

or ŷ = 70, rounded to the nearest unit.

Since we did not make any assumptions about the joint distribution of the ran-
dom variables with which we were concerned in the preceding example, we cannot
judge the “goodness” of the prediction obtained in part (b); also, we cannot judge
the “goodness” of the estimates α̂ = 21.69 and β̂ = 3.471 obtained in part (a).
Problems like this will be discussed in Section 4.
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The least squares criterion, or, in other words, the method of least squares, is
used in many problems of curve fitting that are more general than the one treated in
this section. Above all, it will be used in Sections 6 and 7 to estimate the coefficients
of multiple regression equations of the form

μY|x1,..., xk = β0 +β1x1 + · · · +βkxk

Exercises
1. With reference to Example 1, show that the regression
equation of X on Y is

μX|y = 2
1 + y

Also sketch the regression curve.

2. Given the joint density

f (x, y) =

⎧⎪⎪⎨
⎪⎪⎩

2
5
(2x + 3y) for 0< x< 1 and 0< y< 1

0 elsewhere

find μY|x and μX|y.

3. Given the joint density

f (x, y) =
{

6x for 0< x< y< 1
0 elsewhere

find μY|x and μX|y.

4. Given the joint density

f (x, y) =

⎧⎪⎪⎨
⎪⎪⎩

2x
(1 + x + xy)3

for x> 0 and y> 0

0 elsewhere

show that μY|x = 1 + 1
x

and that var(Y|x) does not exist.

5. This question has been intentionally omitted for this
edition.

6. This question has been intentionally omitted for this
edition.

7. Given the joint density

f (x, y) =
{

2 for 0< y< x< 1
0 elsewhere

show that

(a) μY|x = x
2

and μX|y = 1 + y
2

;

(b) E(XmYn) = 2
(n + 1)(m + n + 2)

.

Also,
(c) verify the results of part (a) by substituting the val-
ues of μ1, μ2, σ1, σ2, and ρ, obtained with the formula of
part (b), into the formulas of Theorem 1.

8. Given the joint density

f (x, y) =
{

24xy for x> 0, y> 0, and x + y< 1
0 elsewhere

show that μY|x = 2
3 (1 − x) and verify this result by deter-

mining the values of μ1, μ2, σ1, σ2, and ρ and by substi-
tuting them into the first formula of Theorem 1.

9. Given the joint density

f (x, y) =
{

1 for −y< x< y and 0< y< 1
0 elsewhere

show that the random variables X and Y are uncorrelated
but not independent.

10. Show that if μY|x is linear in x and var(Y|x) is con-
stant, then var(Y|x) = σ 2

2 (1 − ρ2).

11. This question has been intentionally omitted for this
edition.

12. Given the random variables X1, X2, and X3 having
the joint density f (x1, x2, x3), show that if the regression
of X3 on X1 and X2 is linear and written as

μX3|x1, x2 = α+β1(x1 −μ1)+β2(x2 −μ2)

then
α = μ3

β1 = σ13σ
2
2 − σ12σ23

σ 2
1 σ

2
2 − σ 2

12

β2 = σ23σ
2
1 − σ12σ13

σ 2
1 σ

2
2 − σ 2

12

where μi = E(Xi), σ 2
i = var(Xi), and σij = cov(Xi, Xj).

[Hint: Proceed as in Section 2, multiplying by (x1 −μ1)

and (x2 −μ2), respectively, to obtain the second and
third equations.]
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13. Find the least squares estimate of the parameter β in
the regression equation μY|x = βx.

14. Solve the normal equations in Section 3 simultane-
ously to show that

α̂ =

⎛
⎝ n∑

i=1

x2
i

⎞
⎠
⎛
⎝ n∑

i=1

yi

⎞
⎠−

⎛
⎝ n∑

i=1

xi

⎞
⎠
⎛
⎝ n∑

i=1

xiyi

⎞
⎠

n

⎛
⎝ n∑

i=1

x2
i

⎞
⎠−

⎛
⎝ n∑

i=1

xi

⎞
⎠

2

15. When the x’s are equally spaced, the calculation of
α̂ and β̂ can be simplified by coding the x’s by assign-
ing them the values . . . , −3, −2, −1, 0, 1, 2, 3, . . . when n

is odd, or the values . . . , −5, −3, −1, 1, 3, 5, . . . when n is
even. Show that with this coding the formulas for α̂ and
β̂ become

α̂ =

n∑
i=1

yi

n
and β̂ =

n∑
i=1

xiyi

n∑
i=1

x2
i

16. The method of least squares can be used to fit curves
to data. Using the method of least squares, find the nor-
mal equations that provide least squares estimates of
α,β, and γ when fitting a quadratic curve of the form
y = a + bx + γ x2 to paired data.

4 Normal Regression Analysis
When we analyze a set of paired data {(xi, yi); 1, 2, . . . , n} by regression analysis, we
look upon the xi as constants and the yi as values of corresponding independent
random variables Yi. This clearly differs from correlation analysis, which we shall
take up in Section 5, where we look upon the xi and the yi as values of correspond-
ing random variables Xi and Yi. For example, if we want to analyze data on the
ages and prices of used cars, treating the ages as known constants and the prices as
values of random variables, this is a problem of regression analysis. On the other
hand, if we want to analyze data on the height and weight of certain animals, and
height and weight are both looked upon as random variables, this is a problem of
correlation analysis.

This section will be devoted to some of the basic problems of normal regression
analysis, where it is assumed that for each fixed xi the conditional density of the
corresponding random variable Yi is the normal density

w(yi|xi) = 1

σ
√

2π
· e

− 1
2

[
yi−(α.+βxi)

σ

]2

−q< yi<q

where α, β, and σ are the same for each i. Given a random sample of such paired
data, normal regression analysis concerns itself mainly with the estimation of σ
and the regression coefficients α and β, with tests of hypotheses concerning these
three parameters, and with predictions based on the estimated regression equation
ŷ = α̂+ β̂x, where α̂ and β̂ are estimates of α and β.

To obtain maximum likelihood estimates of the parameters α, β, and σ , we par-
tially differentiate the likelihood function (or its logarithm, which is easier) with
respect to α, β, and σ , equate the expressions to zero, and then solve the resulting
system of equations. Thus, differentiating

ln L = −n · ln σ − n
2

· ln 2π − 1
2σ 2 ·

n∑
i=1

[yi − (α+βxi)]2

partially with respect to α, β, and σ and equating the expressions that we obtain to
zero, we get
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� ln L
�α

= 1
σ 2 ·

n∑
i=1

[yi − (α+βxi)] = 0

� ln L
�β

= 1
σ 2 ·

n∑
i=1

xi[yi − (α+βxi)] = 0

� ln L
�σ

= − n
σ

+ 1
σ 3 ·

n∑
i=1

[yi − (α+βxi)]2 = 0

Since the first two equations are equivalent to the two normal equations in an
earlier page, the maximum likelihood estimates of α and β are identical with the
least squares estimate of Theorem 2. Also, if we substitute these estimates of α and

β into the equation obtained by equating
� ln L

�σ
to zero, it follows immediately that

the maximum likelihood estimate of σ is given by

σ̂ =
√√√√1

n
·

n∑
i=1

[yi − (α̂+ β̂xi)]2

This can also be written as

σ̂ =
√

1
n
(Syy − β̂ · Sxy)

as the reader will be asked to verify in Exercise 17.
Having obtained maximum likelihood estimators of the regression coefficients,

let us now investigate their use in testing hypotheses concerning α and β and in con-
structing confidence intervals for these two parameters. Since problems concerning
β are usually of more immediate interest than problems concerning α (β is the slope
of the regression line, whereas α is merely the y-intercept; also, the null hypothesis
β = 0 is equivalent to the null hypothesis ρ = 0), we shall discuss here some of the
sampling theory relating to B̂, where B is the capital Greek letter beta. Correspond-
ing theory relating to Â, where A is the capital Greek letter alpha, will be treated in
Exercises 20 and 22.

To study the sampling distribution of B̂, let us write

B̂ = SxY

Sxx
=

n∑
i=1

(xi − x)(Yi − Y)

Sxx

=
n∑

i=1

(
xi − x

Sxx

)
Yi

which is seen to be a linear combination of the n independent normal random vari-
ables Yi. B̂ itself has a normal distribution with the mean

E(B̂) =
n∑

i=1

[
xi − x

Sxx

]
· E(Yi|xi)

=
n∑

i=1

[
xi − x

Sxx

]
(α+βxi) = β
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and the variance

var(B̂) =
n∑

i=1

[
xi − x

Sxx

]2

· var(Yi|xi)

=
n∑

i=1

[
xi − x

Sxx

]2

· σ 2 = σ 2

Sxx

In order to apply this theory to test hypotheses about β or construct confidence
intervals for β, we shall have to use the following theorem.

THEOREM 3. Under the assumptions of normal regression analysis,
nσ̂ 2

σ 2 is

a value of a random variable having the chi-square distribution with n − 2
degrees of freedom. Furthermore, this random variable and B̂ are inde-
pendent.

A proof of this theorem is referred to at the end of this chapter.
Making use of this theorem as well as the result proved earlier that B̂ has a

normal distribution with the mean β and the variance
σ 2

Sxx
, we find that the definition

of the t distribution leads to the following theorem.

THEOREM 4. Under the assumptions of normal regression analysis,

t =
β̂ −β
σ/

√
Sxx√

nσ̂ 2

σ 2 /(n − 2)

= β̂ −β
σ̂

√
(n − 2)Sxx

n

is a value of a random variable having the t distribution with n − 2 degrees
of freedom.

Based on this statistic, let us now test a hypothesis about the regression
coefficient β.

EXAMPLE 5

With reference to the data in the table in Section 3 pertaining to the amount of time
that 10 persons studied for a certain test and the scores that they obtained, test the
null hypothesis β = 3 against the alternative hypothesis β > 3 at the 0.01 level of
significance.

Solution

1. H0: β = 3
H1: β > 3
α = 0.01

2. Reject the null hypothesis if t G 2.896, where t is determined in accordance
with Theorem 4 and 2.896 is the value of t0.01,8 obtained from the Table IV of
“Statistical Tables.”
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3. Calculating
∑

y2 = 36,562 from the original data and copying the other quan-
tities from Section 3, we get

Syy = 36,562 − 1
10
(564)2 = 4,752.4

and

σ̂ =
√

1
10

[4,752.4 − (3.471)(1,305)] = 4.720

so that

t = 3.471 − 3
4.720

√
8 · 376

10
= 1.73

4. Since t = 1.73 is less than 2.896, the null hypothesis cannot be rejected; we
cannot conclude that on the average an extra hour of study will increase the
score by more than 3 points.

Letting �̂ be the random variable whose values are σ̂ , we have

P

(
−tα/2, n−2<

B̂ −β
�̂

√
(n − 2)Sxx

n
< tα/2, n−2

)
= 1 −α

according to Theorem 4. Writing this as

P

[
B̂ − tα/2, n−2 · �̂

√
n

(n − 2)Sxx
<β < B̂ + tα/2, n−2 · �̂

√
n

(n − 2)Sxx

]
= 1 −α

we arrive at the following confidence interval formula.

THEOREM 5. Under the assumptions of normal regression analysis,

β̂ − tα/2, n−2 · σ̂
√

n
(n − 2)Sxx

<β < β̂ + tα/2, n−2 · σ̂
√

n
(n − 2)Sxx

is a (1 −α)100% confidence interval for the parameter β.

EXAMPLE 6

With reference to the same data as in Example 5, construct a 95% confidence inter-
val for β.

Solution
Copying the various quantities from Example 4 and Section 4 and substituting them
together with t0.025,8 = 2.306 into the confidence interval formula of Theorem 5,
we get

3.471 − (2.306)(4.720)

√
10

8(376)
<β < 3.471 + (2.306)(4.720)

√
10

8(376)

or
2.84<β < 4.10
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Since most realistically complex regression problems require fairly extensive cal-
culations, they are virtually always done nowadays by using appropriate computer
software. A printout obtained for our illustration using MINITAB software is shown
in Figure 4; as can be seen, it provides not only the values of α̂ and β̂ in the column
headed COEFFICIENT, but also estimates of the standard deviations of the sam-
pling distributions of Â and B̂ in the column headed ST. DEV. OF COEF. Had we
used this printout in Example 5, we could have written the value of the t statistic
directly as

t = 3.471 − 3
0.2723

= 1.73

and in Example 6 we could have written the confidence limits directly as 3.471 ;
(2.306)(0.2723).

MTB  > NAME C1 = 'X'
MTB  > NAME C2 = 'Y'
MTB  > SET C1
DATA > 4  9  10/  14  4  7  12  22  1  17
MTB  > SET C2
DATA > 31  58  65  73  37  44  60/  91  21  84
MTB  > REGR C2 1 C1

  THE REGRESSION EQUATION IS
  Y = 21.7 + 3.47 X

                               ST. DEV.    T–RATIO =
  COLUMN     COEFFICIENT       OF COEF.    COEF/S.D.
             21.693              3.194         6.79
  X           3.470/7             0/.2723       12.74

Figure 4. Computer printout for Examples 4, 5, and 6.

Exercises

17. Making use of the fact that α̂ = y − β̂x and β̂ = Sxy

Sxx
,

show that
n∑

i=1

[yi − (α̂+ β̂xi)]2 = Syy − β̂Sxy

18. Show that
(a) �̂2, the random variable corresponding to σ̂ 2, is not
an unbiased estimator of σ 2;

(b) S2
e = n · �̂2

n − 2
is an unbiased estimator of σ 2.

The quantity se is often referred to as the standard error
of estimate.

19. Using se (see Exercise 18) instead of σ̂ , rewrite
(a) the expression for t in Theorem 4;
(b) the confidence interval formula of Theorem 5.

20. Under the assumptions of normal regression analysis,
show that
(a) the least squares estimate of α in Theorem 2 can be
written in the form

α̂ =
n∑

i=1

[
Sxx + nx2 − nxxi

nSxx

]
yi

(b) Â has a normal distribution with

E(Â) = α and var(Â) = (Sxx + nx2)σ 2

nSxx

21. This question has been intentionally omitted for this
edition.

22. Use the result of part (b) of Exercise 20 to show that

z = (α̂−α)√nSxx

σ
√

Sxx + nx2

is a value of a random variable having the standard
normal distribution. Also, use the first part of Theorem

3 and the fact that Â and
n�̂2

σ 2 are independent to

show that
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t = (α̂−α)√(n − 2)Sxx

σ̂
√

Sxx + nx2

is a value of a random variable having the t distribution
with n − 2 degrees of freedom.

23. Use the results of Exercises 20 and 21 and the fact that

E(B̂) = β and var(B̂) = σ 2

Sxx
to show that Ŷ0 = Â + B̂x0

is a random variable having a normal distribution with
the mean

α+βx0 = μY|x0

and the variance

σ 2

[
1
n

+ (x0 − x)2

Sxx

]

Also, use the first part of Theorem 3 as well as the fact

that Ŷ0 and
n�̂2

σ 2 are independent to show that

t = (ŷ0 −μY|x0)
√

n − 2

σ̂

√
1 + n(x0 − x)2

Sxx

is a value of a random variable having the t distribution
with n − 2 degrees of freedom.

24. Derive a (1 −α)100% confidence interval for μY|x0 ,
the mean of Y at x = x0, by solving the double inequal-
ity −tα/2, n−2< t< tα/2, n−2 with t given by the formula of
Exercise 23.

25. Use the results of Exercises 20 and 21 and the fact that

E(B̂) = β and var(B̂) = σ 2

Sxx
to show that Y0 − (Â + B̂x0)

is a random variable having a normal distribution with
zero mean and the variance

σ 2

[
1 + 1

n
+ (x0 − x)2

Sxx

]

Here Y0 has a normal distribution with the mean α+βx0
and the variance σ 2; that is, Y0 is a future observation
of Y corresponding to x = x0. Also, use the first part of
Theorem 3 as well as the fact that Y0 − (Â + B̂x0) and
n�̂2

σ 2 are independent to show that

t = [y0 − (α̂+ β̂x0)]
√

n − 2

σ̂

√
1 + n + n(x0 − x)2

Sxx

is a value of a random variable having the t distribution
with n − 2 degrees of freedom.

26. Solve the double inequality −tα/2,n−2< t< tα/2,n−2
with t given by the formula of Exercise 25 so that the mid-
dle term is y0 and the two limits can be calculated without
knowledge of y0. Note that although the resulting double
inequality may be interpreted like a confidence interval,
it is not designed to estimate a parameter; instead, it pro-
vides limits of prediction for a future observation of Y
that corresponds to the (given or observed) value x0.

5 Normal Correlation Analysis
In normal correlation analysis we drop the assumption that the xi are fixed constants,
analyzing the set of paired data {(xi, yi); i = 1, 2, . . . , n}, where the xi’s and yi’s are
values of a random sample from a bivariate normal population with the parameters
μ1, μ2, σ1, σ2, and ρ. To estimate these parameters by the method of maximum
likelihood, we shall have to maximize the likelihood

L =
n∏

i=1

f (xi, yi)

and to this end we shall have to differentiate L, or ln L, partially with respect to μ1,
μ2, σ1, σ2, and ρ, equate the resulting expressions to zero, and then solve the result-
ing system of equations for the five parameters. Leaving the details to the reader, let

us merely state that when
� ln L
�μ1

and
� ln L
�μ2

are equated to zero, we get
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−

n∑
i=1

(xi −μ1)

σ 2
1

+
ρ

n∑
i=1

(yi −μ2)

σ1σ2
= 0

and

−
ρ

n∑
i=1

(xi −μ1)

σ1σ2
+

n∑
i=1

(yi −μ2)

σ 2
2

= 0

Solving these two equations for μ1 and μ2, we find that the maximum likelihood
estimates of these two parameters are

μ̂1 = x and μ̂2 = y

that is, the respective sample means. Subsequently, equating
� ln L
�σ1

,
� ln L
�σ2

, and
� ln L

�ρ
to zero and substituting x and y forμ1 andμ2, we obtain a system of equations whose
solution is

σ̂1 =

√√√√√√
n∑

i=1

(xi − x)2

n
, σ̂2 =

√√√√√√
n∑

i=1

(yi − y)2

n

ρ̂ =

n∑
i=1

(xi − x)(yi − y)

√√√√ n∑
i=1

(xi − x)2

√√√√ n∑
i=1

(yi − y)2

(A detailed derivation of these maximum likelihood estimates is referred to at the
end of this chapter.) It is of interest to note that the maximum likelihood estimates
of σ1 and σ2 are identical with the one obtained for the standard deviation of the
univariate normal distribution; they differ from the respective sample standard devi-

ations s1 and s2 only by the factor

√
n − 1

n
.

The estimate ρ̂, called the sample correlation coefficient, is usually denoted by
the letter r, and its calculation is facilitated by using the following alternative, but
equivalent, computing formula.

THEOREM 6. If {(xi, yi); i = 1, 2, . . . , n} are the values of a random sample
from a bivariate population, then

r = Sxy√
Sxx · Syy

Since ρ measures the strength of the linear relationship between X and Y, there
are many problems in which the estimation of ρ and tests concerning ρ are of special
interest. When ρ = 0, the two random variables are uncorrelated, and, as we have
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already seen, in the case of the bivariate normal distribution this means that they are
also independent. When ρ equals +1 or −1, it follows from the relationship

σ 2
Y|x = σ 2 = σ 2

2 (1 − ρ2)

where σ = 0, and this means that there is a perfect linear relationship between X and
Y. Using the invariance property of maximum likelihood estimators, we can write

σ̂ 2 = σ̂ 2
2 (1 − r2)

which not only provides an alternative computing formula for finding σ̂ 2, but also
serves to tie together the concepts of regression and correlation. From this formula
for σ̂ 2 it is clear that when σ̂ 2 = 0, that is, when the set of data points {(xi, yi);
i = 1, 2, . . . , n} fall on a straight line, then r will equal +1 or −1. We take r = +1
when the line has a positive slope and r = −1 when it has a negative slope. In order to
interpret values of r between 0 and +1 or 0 and −1, we solve the preceding equation
for r2 and multiply by 100, getting

100r2 = σ̂ 2
2 − σ̂ 2

σ̂ 2
2

· 100

where σ̂ 2
2 measures the total variation of the y’s, σ̂ 2 measures the conditional varia-

tion of the y’s for fixed values of x, and hence σ̂ 2
2 − σ̂ 2 measures that part of the total

variation of the y’s that is accounted for by the relationship with x. Thus, 100r2 is the
percentage of the total variation of the y’s that is accounted for by the relationship with
x. For instance, when r = 0.5, then 25 percent of the variation of the y’s is accounted
for by the relationship with x; when r = 0.7, then 49 percent of the variation of the
y’s is accounted for by the relationship with x; and we might thus say that a correla-
tion of r = 0.7 is almost “twice as strong” as a correlation of r = 0.5. Similarly, we
might say that a correlation of r = 0.6 is “nine times as strong” as a correlation of
r = 0.2.

EXAMPLE 7

Suppose that we want to determine on the basis of the following data whether there
is a relationship between the time, in minutes, it takes a secretary to complete a
certain form in the morning and in the late afternoon:

Morning Afternoon
x y

8.2 8.7
9.6 9.6
7.0 6.9
9.4 8.5

10.9 11.3
7.1 7.6
9.0 9.2
6.6 6.3
8.4 8.4

10.5 12.3

Compute and interpret the sample correlation coefficient.
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Solution
From the data we get n = 10, �x = 86.7, �x2 = 771.35, �y = 88.8, �y2 = 819.34,
and �xy = 792.92, so

Sxx = 771.35 − 1
10
(86.7)2 = 19.661

Syy = 819.34 − 1
10
(88.8)2 = 30.796

Sxy = 792.92 − 1
10
(86.7)(88.8) = 23.024

and

r = 23.024√
(19.661)(30.796)

= 0.936

This is indicative of a positive association between the time it takes a secretary to
perform the given task in the morning and in the late afternoon, and this is also
apparent from the scattergram of Figure 5. Since 100r2 = 100(0.936)2 = 87.6, we
can say that almost 88 percent of the variation of the y’s is accounted for by the
implicit linear relationship with x.

y
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Figure 5. Scattergram of data of Example 7.

Since the sampling distribution of R for random samples from bivariate normal
populations is rather complicated, it is common practice to base confidence intervals
for ρ and tests concerning ρ on the statistic
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1
2

· ln
1 + R
1 − R

whose distribution can be shown to be approximately normal with the mean
1
2

· ln
1 + ρ
1 − ρ and the variance

1
n − 3

. Thus,

z =
1
2

· ln
1 + r
1 − r

− 1
2

· ln
1 + ρ
1 − ρ

1√
n − 3

=
√

n − 3
2

· ln
(1 + r)(1 − ρ)
(1 − r)(1 + ρ)

can be looked upon as a value of a random variable having approximately the stan-
dard normal distribution. Using this approximation, we can test the null hypothesis
ρ = ρ0 against an appropriate alternative, as illustrated in Example 8, or we can
calculate confidence intervals for ρ by the method suggested in Exercise 31.

EXAMPLE 8

With reference to Example 7, test the null hypothesis ρ = 0 against the alternative
hypothesis ρ Z 0 at the 0.01 level of significance.

Solution

1. H0: ρ = 0
H1: ρ Z 0
α = 0.01

2. Reject the null hypothesis if z F −2.575 or z G 2.575, where

z =
√

n − 3
2

· ln
1 + r
1 − r

3. Substituting n = 10 and r = 0.936, we get

z =
√

7
2

· ln
1.936
0.064

= 4.5

4. Since z = 4.5 exceeds 2.575, the null hypothesis must be rejected; we con-
clude that there is a linear relationship between the time it takes a secretary to
complete the form in the morning and in the late afternoon.

Exercises
27. Verify the maximum likelihood estimates of
μ1,μ2, σ1, σ2, and ρ given in Section 5.

28. Verify that the formula for t of Theorem 4 can be writ-
ten as

t =
(

1 − β

β̂

)
r
√

n − 2√
1 − r2

29. Use the formula for t of Exercise 28 to derive the fol-
lowing (1 −α)100% confidence limits for β:

β̂

⎡
⎣1 ; tα/2, n−2 ·

√
1 − r2

r
√

n − 2

⎤
⎦

30. Use the formula for t of Exercise 28 to show that if
the assumptions underlying normal regression analysis
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are met and β = 0, then R2 has a beta distribution with

the mean
1

n − 1
.

31. By solving the double inequality −zα/2 F z F zα/2
(with z given by the formula in the previous page) for ρ,
derive a (1 −α)100% confidence interval formula for ρ.

32. In a random sample of n pairs of values of X and Y,
(xi, yj) occurs fij times for i = 1, 2, . . . , r and j = 1, 2, . . . , c.
Letting fi· denote the number of pairs where X takes on
the value xi and f·j the number of pairs where Y takes
on the value yj, write a formula for the coefficient of
correlation.

6 Multiple Linear Regression
Although there are many problems in which one variable can be predicted quite
accurately in terms of another, it stands to reason that predictions should improve
if one considers additional relevant information. For instance, we should be able to
make better predictions of the performance of newly hired teachers if we consider
not only their education, but also their years of experience and their personality.
Also, we should be able to make better predictions of a new textbook’s success if
we consider not only the quality of the work, but also the potential demand and the
competition.

Although many different formulas can be used to express regression relation-
ships among more than two variables (see, for instance, Example 3), the most widely
used are linear equations of the form

μY|x1, x2,..., xk = β0 +β1x1 +β2x2 + · · · +βkxk

This is partly a matter of mathematical convenience and partly due to the fact that
many relationships are actually of this form or can be approximated closely by lin-
ear equations.

In the preceding equation, Y is the random variable whose values we want to
predict in terms of given values of the independent variables x1, x2, . . . , and xk, and
the multiple regression coefficients β0, β1, β2, . . . , and βk are numerical constants
that must be determined from observed data.

To illustrate, consider the following equation, which was obtained in a study of
the demand for different meats:

ŷ = 3.489 − 0.090x1 + 0.064x2 + 0.019x3

Here ŷ denotes the estimated family consumption of federally inspected beef and
pork in millions of pounds, x1 denotes a composite retail price of beef in cents per
pound, x2 denotes a composite retail price of pork in cents per pound, and x3 denotes
family income as measured by a certain payroll index.

As in Section 3, where there was only one independent variable x, multiple
regression coefficients are usually estimated by the method of least squares. For n
data points

{(xi1, xi2, . . . , xik, yi); i = 1, 2, . . . , n}

the least squares estimates of the β’s are the values β̂0, β̂1, β̂2, . . . , and β̂k for which
the quantity

q =
n∑

i=1

[yi − (β̂0 + β̂1xi1 + β̂2xi2 + · · · + β̂kxik)]2

is a minimum. In this notation, xi1 is the ith value of the variable x1, xi2 is the ith
value of the variable x2, and so on.
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So, we differentiate partially with respect to the β̂’s, and equating these partial
derivatives to zero, we get

�q

�β̂0
=

n∑
i=1

(−2)[yi − (β̂0 + β̂1xi1 + β̂2xi2 + · · · + β̂kxik)] = 0

�q

�β̂1
=

n∑
i=1

(−2)xi1[yi − (β̂0 + β̂1xi1 + β̂2xi2 + · · · + β̂kxik)] = 0

�q

�β̂2
=

n∑
i=1

(−2)xi2[yi − (β̂0 + β̂1xi1 + β̂2xi2 + · · · + β̂kxik)] = 0

· · ·
�q

�β̂k
=

n∑
i=1

(−2)xik[yi − (β̂0 + β̂1xi1 + β̂2xi2 + · · · + β̂kxik)] = 0

and finally the k + 1 normal equations

�y = β̂0 · n + β̂1 ·�x1 + β̂2 ·�x2 + · · · + β̂k ·�xk

�x1y = β̂0 ·�x1 + β̂1 ·�x2
1 + β̂2 ·�x1x2 + · · · + β̂k ·�x1xk

�x2y = β̂0 ·�x2 + β̂1 ·�x2x1 + β̂2 ·�x2
2 + · · · + β̂k ·�x2xk

· · ·
�xky = β̂0 ·�xk + β̂1 ·�xkx1 + β̂2 ·�xkx2 + · · · + β̂k ·�x2

k

Here we abbreviated our notation by writing
n∑

i=1

xi1 as
∑

x1,
n∑

i=1

xi1xi2 as
∑

x1x2,

and so on.

EXAMPLE 9

The following data show the number of bedrooms, the number of baths, and the
prices at which a random sample of eight one-family houses sold in a certain large
housing development:

Number of
bedrooms

Number of
baths

Price
(dollars)

x1 x2 y

3 2 292,000
2 1 264,600
4 3 317,500
2 1 265,500
3 2 302,000
2 2 275,500
5 3 333,000
4 2 307,500

Use the method of least squares to fit a linear equation that will enable us to pre-
dict the average sales price of a one-family house in the given housing development
in terms of the number of bedrooms and the number of baths.
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Solution
The quantities we need to substitute into the three normal equations are:

∑
x1y = 7,558,200 and

∑
x2y = 4,835,600

and we get

n = 8,
∑

x1 = 25,
∑

x2 = 16,
∑

y = 2,357,600,
∑

x2
1 = 87,

∑
x1x2 = 55,

∑
x2

2 = 36

2,357,600 = 8β̂0 + 25β̂1 + 16β̂2

7,558,200 = 25β̂0 + 87β̂1 + 55β̂2

4,835,600 = 16β̂0 + 55β̂1 + 36β̂2

We could solve these equations by the method of elimination or by using deter-
minants, but in view of the rather tedious calculations, such work is usually left
to computers. Let us refer to the printout of Figure 6, which shows in the column
headed “Coef” that β̂0 = 224,929, β̂1 = 15,314, and β̂2 = 10,957. The least squares
equation becomes

ŷ = 224,929 + 15,314x1 + 10,957x2

and this tells us that (in the given housing development and at the time of this study)
each bedroom adds on the average $15,314 and each bath adds $10,957 to the sales
price of a house.

Regression Analysis: C3 versus C1, C2

The regression equation is

C3 = 224929 + 15314 C1 + 10957 C2

Predictor Coef SE Coef T P

Constant 224929 5016 44.84 0.000

C1 15314 2743 5.58 0.003

C2 10957 4086 2.68 0.044

S = 4444.45 R-Sq = 97.7% R-Sq(adj) = 96.8%

Figure 6. Computer printout for Example 9.

EXAMPLE 10

Based on the result obtained in Example 9, predict the sales price of a three-bedroom
house with two baths in the subject housing development.

Solution
Substituting x1 = 3 and x2 = 2 into the least squares equation obtained in the
preceding example, we get

ŷ = 224,929 + 15,314 · 3 + 10,957 · 2

= $292,785
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Printouts like those of Figure 6 also provide information that is needed to make
inferences about the multiple regression coefficients and to judge the merits of esti-
mates or predictions based on the least squares equations. This corresponds to the
work of Section 4, but we shall defer it until Section 7, where we shall study the
whole problem of multiple linear regression in a much more compact notation.

7 Multiple Linear Regression (Matrix Notation)†

The model we are using in multiple linear regression lends itself uniquely to a unified
treatment in matrix notation. This notation makes it possible to state general results
in compact form and to utilize many results of matrix theory to great advantage. As
is customary, we shall denote matrices by capital letters in boldface type.

We could introduce the matrix approach by expressing the sum of squares q
(which we minimized in the preceding section by differentiating partially with respect
to the β̂’s) in matrix notation and take it from there, but leaving this to the reader in
Exercise 33, let us begin here with the normal equations given earlier.

To express the normal equations in matrix notation, let us define the following
three matrices:

X =

⎛
⎜⎜⎜⎜⎝

1 x11 x12 · · · x1k

1 x21 x22 · · · x2k
. . . . . . . . . . . . . . . . . . .
1 xn1 xn2 · · · xnk

⎞
⎟⎟⎟⎟⎠

Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

y1

y2

#
#
#

yn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

β̂0

β̂1

#
#
#
β̂k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The first one, X, is an n * (k + 1) matrix consisting essentially of the given values of
the x’s, with the column of 1’s appended to accommodate the constant terms. Y is an
n * 1 matrix (or column vector) consisting of the observed values of Y, and B is a
(k + 1) * 1 matrix (or column vector) consisting of the least squares estimates of the
regression coefficients.

Using these matrices, we can now write the following symbolic solution of the
normal equations.

THEOREM 7. The least squares estimates of the multiple regression coeffi-
cients are given by

B = (X′X)−1X′Y

where X′ is the transpose of X and (X′X)−1 is the inverse of X′X.

†It is assumed for this section that the reader is familiar with the material ordinarily covered in a first course on
matrix algebra.

415



Regression and Correlation

Proof First we determine X′X, X′XB, and X′Y, getting

X′X =

⎛
⎜⎜⎜⎜⎜⎜⎝

n �x1 �x2 · · · �xk

�x1 �x2
1 �x1x2 · · · �x1xk

�x2 �x2x1 �x2
2 · · · �x2xk

· · ·
�xk �xkx1 �xkx2 · · · �x2

k

⎞
⎟⎟⎟⎟⎟⎟⎠

X′XB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

β̂0 · n + β̂1 ·�x1 + β̂2 ·�x2 + · · · + β̂k ·�xk

β̂0 ·�x1 + β̂1 ·�x2
1 + β̂2 ·�x1x2 + · · · + β̂k ·�x1xk

β̂0 ·�x2 + β̂1 ·�x2x1 + β̂2 ·�x2
2 + · · · + β̂k ·�x2xk

· · ·
β̂0 ·�xk + β̂1 ·�xkx1 + β̂2 ·�xkx2 + · · · + β̂k ·�x2

k

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

X′Y =

⎛
⎜⎜⎜⎜⎜⎜⎝

�y
�x1y
�x2y
· · ·
�xky

⎞
⎟⎟⎟⎟⎟⎟⎠

Identifying the elements of X′XB as the expressions on the right-hand
side of the normal equations given in an earlier page and those of X′Y as
the expressions on the left-hand side, we can write

X′XB = X′Y

Multiplying on the left by (X′X)−1, we get

(X′X)−1X′XB = (X′X)−1X′Y

and finally
B = (X′X)−1X′Y

since (X′X)−1X′X equals the (k + 1)* (k + 1) identity matrix I and by def-
inition IB = B. We have assumed here that X′X is nonsingular so that its
inverse exists.

EXAMPLE 11

With reference to Example 9, use Theorem 7 to determine the least squares esti-
mates of the multiple regression coefficients.

Solution
Substituting

∑
x1 = 25,

∑
x2 = 16,

∑
x2

1 = 87,
∑

x1x2 = 55,
∑

x2
2 = 36, and n = 8

from Example 9 into the preceding expression for X′X, we get

X′X =

⎛
⎜⎝ 8 25 16

25 87 55
16 55 36

⎞
⎟⎠
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Then, the inverse of the matrix can be obtained by any one of a number of different
techniques; using the one based on cofactors, we find that

(X′X)−1 = 1
84

·

⎛
⎜⎝ 107 −20 −17

−20 32 −40
−17 −40 71

⎞
⎟⎠

where 84 is the value of |X′X|, the determinant of X′X.
Substituting

∑
y = 2, 357, 600,

∑
x1y = 7, 558, 200, and

∑
x2y = 4, 835, 600

from Example 9 into the expression for X′Y (given above), we then get

X′Y =

⎛
⎜⎝ 2,357,600

7,558,200
4,835,600

⎞
⎟⎠

and finally

B̂ = (X′X)−1X′Y = 1
84

·

⎛
⎜⎝ 07 −20 −17

−20 32 −40
−17 −40 71

⎞
⎟⎠
⎛
⎜⎝ 2,357,600

7,558,200
4,835,600

⎞
⎟⎠

= 1
84

·

⎛
⎜⎝ 18,894,000

1,286,400
920,400

⎞
⎟⎠

=

⎛
⎜⎝ 224,929

15,314
10,957

⎞
⎟⎠

where the β̂’s are rounded to the nearest integer. Note that the results obtained here
are identical with those shown on the computer printout of Figure 6.

Next, to generalize the work of Section 4, we assume that for i = 1, 2, . . ., and
n, the Yi are independent random variables having normal distributions with the
means β0 +β1xi1 +β2xi2 + · · · +βkxik and the common standard deviation σ . Based
on n data points

(xi1, xi2, . . . , xik, yi)

we can then make all sorts of inferences about the parameters of our model, the
β’s and σ , and judge the merits of estimates and predictions based on the estimated
multiple regression equation.

Finding maximum likelihood estimates of the β’s and σ is straightforward, as in
Section 4, and it will be left to the reader in Exercise 33. The results are as follows:
The maximum likelihood estimates of the β’s equal the corresponding least squares
estimates, so they are given by the elements of the (k + 1)* 1 column matrix

B = (X′X)−1X′Y
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The maximum likelihood estimate of σ is given by

σ̂ =
√√√√1

n
·

n∑
i=1

[yi − (β̂0 + β̂1xi1 + β̂2xi2 + · · · + β̂kxik)]2

where the β̂’s are the maximum likelihood estimates of the β’s and, as the reader
will be asked to verify in Exercise 35, this estimator can also be written as

σ̂ =
√

Y′Y − B′X′Y
n

in matrix notation.

EXAMPLE 12

Use the results of Example 11 to determine the value of σ̂ for the data of Example 9.

Solution
First let us calculate Y′Y, which is simply

n∑
i=1

y2
i obtaining

Y′Y = (292,000)2 + (264,600)2 + . . .+ (307,500)2

= 699,123,160,0001

Then, copying B and X′Y, we get

B′X′Y = 1
84

· (18,894,000 286,400 920,400)

⎛
⎜⎝ 637,000

7,558,200
4,835,600

⎞
⎟⎠

= 699,024,394,285

It follows that

σ̂ =
√

699,123,160,000 − 699,024,394,285
8

= 3,514

It is of interest to note that the estimate that we obtained here, 3,514, does not
equal the one shown in the computer printout of Figure 6. The estimate shown there,
S = 4,444, is such that S2 is an unbiased estimate of σ 2, analogous to the stan-
dard error of estimate that we defined earlier. It differs from σ̂ in that we divide by
n − k − 1 instead of n. If we had done so in our example, we would have obtained

se =
√

699,123,160,000 − 699,024,394,285
8 − 2 − 1

= 4,444

rounded to the nearest integer.
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Proceeding as in Section 4, we investigate next the sampling distribution of the
B̂i for i = 0, 1, . . . , k, and �̂. Leaving the details to the reader, let us merely point out
that arguments similar to those in Section 4 lead to the results that the B̂i are linear
combinations of the n independent random variables Yi so that the B̂i themselves
have normal distributions. Furthermore, they are unbiased estimators, that is,

E(B̂i) = βi for i = 0, 1, . . . , k

and their variances are given by

var(B̂i) = ciiσ
2 for i = 0, 1, . . . , k

Here cij is the element in the ith row and the jth column of the matrix (X′X)−1, with
i and j taking on the values 0, 1, . . . , k.

Let us also state the result that, analogous to Theorem 3, the sampling distri-

bution of
n�̂2

σ 2 , the random variable corresponding to
nσ̂ 2

σ 2 , is the chi-square dis-

tribution with n − k − 1 degrees of freedom and that
n�̂2

σ 2 and B̂i are independent

for i = 0, 1, . . . , k. Combining all these results, we find that the definition of the t
distribution leads to the following theorem.

THEOREM 8. Under the assumptions of normal multiple regression
analysis,

t = β̂i −βi

σ̂ ·
√

n|cii|
n − k − 1

for i = 0, 1, . . . , k

are values of random variables having the t distribution with n − k − 1
degrees of freedom.

Based on this theorem, let us now test a hypothesis about one of the multiple
regression coefficients.

EXAMPLE 13

With reference to Example 9, test the null hypothesis β1 = $9, 500 against the alter-
native hypothesis β1> $9, 500 at the 0.05 level of significance.

Solution

1. H0: β1 = 9,500

H1: β1 > 9,500

α = 0.05

2. Reject the null hypothesis if t Ú 2.015, where t is determined in accordance
with Theorem 8, and 2.015 is the value of t0.05,5 obtained from the table of
Values of tα, ν of “Statistical Tables.”

3. Substituting n = 8, β̂1 = 15,314, and c11 = 32
84 from Example 11 and σ̂ = 3,546

from Example 12 into the formula for t, we get
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t = 15,314 − 9,500

3,514

√
8·
∣∣∣ 32

84

∣∣∣
5

= 5,814
2,743

= 2.12

4. Since t = 2.12 exceeds 2.015, the null hypothesis must be rejected; we con-
clude that on the average each bedroom adds more than $9,500 to the sales
price of such a house. (Note that the value of the denominator of the t statistic,
2,743, equals the second value in the column headed “SE Coef” in the com-
puter printout of Figure 6.)

Analogous to Theorem 5, we can also use the t statistic of Theorem 8 to con-
struct confidence intervals for regression coefficients (see Exercise 38).

Exercises
33. If b is the column vector of the β’s, verify in matrix
notation that q = (Y − Xb)′(Y − Xb) is a minimum when
b = B = (X′X)−1(X′Y).

34. Verify that under the assumptions of normal multiple
regression analysis
(a) the maximum likelihood estimates of the β’s equal the
corresponding least squares estimates;
(b) the maximum likelihood estimate of σ is

σ̂ =
√
(Y − XB)′(Y − XB)

n

35. Verify that the estimate of part (b) of Exercise 34 can
also be written as

σ̂ =
√

Y′Y − B′X′Y
n

36. Show that under the assumptions of normal multiple
regression analysis
(a) E(B̂i) = βi for i = 0, 1, . . . , k;
(b) var(B̂i) = ciiσ

2 for i = 0, 1, . . . , k;
(c) cov(B̂i, B̂j) = cijσ

2 for i Z j = 0, 1, . . . , k.

37. Show that for k = 1 the formulas of Exercise 36 are
equivalent to those given in Section 4 and in Exercises 20
and 21.

38. Use the t statistic of Theorem 8 to construct a (1 −
α)100% confidence interval formula for βi for i =
0, 1, . . . , k.

39. If x01, x02, . . . , x0k are given values of x1, x2, . . . , xk and
X0 is the column vector

X0 =

⎛
⎜⎜⎜⎜⎜⎝

1

x01

x02
. . .

x0k

⎞
⎟⎟⎟⎟⎟⎠

it can be shown that

t = B′X0 −μY|x01, x02,..., x0k

σ̂ ·
√

n[X′
0(X

′X)−1X0]
n − k − 1

is a value of a random variable having the t distribution
with n − k − 1 degrees of freedom.
(a) Show that for k = 1 this statistic is equivalent to the
one of Exercise 23.
(b) Derive a (1 −α)100% confidence interval formula for

μY|x01, x02,..., x0k

40. With x01, x02, . . . , x0k and X0 as defined in Exercise 39
and Y0 being a random variable that has a normal dis-
tribution with the mean β0 +β1x01 + · · · +βkx0k and the
variance σ 2, it can be shown that

t = y0 − B′X0

σ̂ ·
√

n[1 + X′
0(X

′X)−1X0]
n − k − 1

is a value of a random variable having the t distribution
with n − k − 1 degrees of freedom.
(a) Show that for k = 1 this statistic is equivalent to the
one of Exercise 25.
(b) Derive a formula for (1 −α)100% limits of prediction
for a future observation of Y0.
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8 The Theory in Practice
Multiple linear regression is used (and misused) widely in applications. In this section,
we shall discuss some of the pitfalls presented by indiscriminate use of multiple
regression analysis, and ways to deal with them. Specifically, we shall examine the
problem of multicollinearity. In addition, we shall introduce methods for examin-
ing the residuals in a multiple regression analysis to check on the assumption of
normality and other characteristics of the data.

To begin, let us consider the following example. In wave soldering of circuit
boards, an entire circuit board is run through the wave-soldering machine, and all
solder joints are made. Suppose 5 major variables involved in the machine setup
are measured for each run. A total of 25 separate runs of 5 boards each are made.
(Each board contains 460 solder joints.) The soldered boards are subjected to visual
and electrical inspection, and the number of defective solder joints per 100 joints
inspected is recorded, with the following results:

Solder Flux Preheat Faults per
Conveyor tempe- concen- Conveyor tempe- 100 solder

Run angle rature tration speed rature joints
No. x1 x2 x3 x4 x5 y

1 6.2 241 0.872 0.74 245 0.201
2 5.6 250 0.860 0.77 229 0.053
3 6.5 258 0.853 0.64 266 0.239
4 6.4 239 0.891 0.68 251 0.242
5 5.7 260 0.888 0.81 262 0.075
6 5.8 254 0.876 0.75 230 0.132
7 5.5 250 0.869 0.71 228 0.053
8 6.1 241 0.860 0.76 234 0.119
9 6.1 256 0.854 0.62 269 0.172

10 6.3 260 0.872 0.64 240 0.171
11 6.6 249 0.877 0.69 250 0.369
12 5.7 255 0.868 0.73 246 0.100
13 5.8 258 0.854 0.80 261 0.105
14 6.1 260 0.879 0.77 270 0.196
15 5.8 262 0.888 0.70 267 0.126
16 6.3 256 0.870 0.81 246 0.216
17 6.4 254 0.862 0.76 233 0.286
18 6.8 247 0.855 0.65 250 0.306
19 6.7 238 0.876 0.69 249 0.403
20 6.3 264 0.884 0.71 265 0.162
21 6.4 260 0.891 0.79 252 0.214
22 5.7 259 0.881 0.80 245 0.287
23 5.8 244 0.863 0.76 238 0.092
24 5.4 259 0.875 0.68 217 0.008
25 5.7 264 0.870 0.64 276 0.102

Using MINITAB software to perform a linear multiple regression analysis, we
set the values of x1 in column C1, x2 in C2, . . . , x5 in C5, and y in C6, in the same
order as the run numbers shown in the data table. Then, the “regress” command
produces the results shown in Figure 7.

It is tempting to conclude that the coefficients in this, or any other, multiple-
regression analysis represent the “effects” of the corresponding predictor variables
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Figure 7. Computer printout for the example above.

on the dependent variable. For example, it appears that the coefficient of x1, having
the value 0.214, is the estimated effect Y of increasing x1 by 1 unit. But it probably
is not true that Y, the number of faults per 100 solder joints, will increase by 0.214
when x1, the conveyor angle, is increased by 1 unit. There are several reasons for
making this statement.

Any estimate of a coefficient in a regression analysis is subject to random error.
Using Theorem 8, a confidence interval can be found for such a coefficient when
it can be assumed that the residuals are approximately normally distributed. Thus,
the random error is relatively easily quantified, but it often plays only a small role
relative to other sources of error.

A much more serious source of error in interpreting the coefficients of a multiple
regression equation arises from multicollinearity among the independent variables
in the multiple regression equation. When at least some of the independent variables
are highly correlated with each other, it is not possible to separate their effects on the
dependent variable. In such cases we say that the effects of the independent variables
are confounded with each other. To investigate the degree of correlation among
the independent variables, the following correlation matrix of pairwise correlation
coefficients has been computed for the wave-solder data by giving the MINITAB
command CORRELATE C1-C5:

C1 C2 C3 C4
C2 -.328
C3 -.039 .174
C4 -.281 .030 .215
C5 .251 .402 .117 -.207

(Only a portion of the full matrix is shown here, since the matrix is symmetrical; for
example, the correlation of C1 with C2 equals the correlation of C2 with C1, and the
correlation of any column with itself equals 1.) It can be seen that several of the data
columns involving independent variables show evidence of multicollinearity.

The effect of multicollinearity in this example can be observed directly by
performing a multiple linear-regression analysis of y on x2, x3, x4, and x5 only, that
is, by omitting x1 from the regression equation. The resulting multiple regression
equation is

ŷ = 0.23 − 0.00617x2 + 1.18x3 − 0.150x4 + 0.00238x5

By comparison, the multiple regression equation previously obtained when all five
independent variables were used was
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ŷ = −1.79 + 0.214x1 − 0.0096x2 + 0.90x3 + 0.122x4 + 0.000169x5

It is readily seen that the coefficients of x2, x3, x4, and x5 have changed by more
than trivial amounts when the independent variable x1 has been omitted from the
analysis. For example, the coefficient of x2, which was −0.0096 when x1 was included
in the regression equation, becomes−0.00617, an increase of 36%, when x1 is not
included, and the coefficient of x4 actually changes sign.

Often in practice, nonlinear terms, such as x2, x3, x1x2, and so forth, are intro-
duced into a multiple regression equation to fit curved surfaces to data. When non-
linear terms are added, however, there is a risk of introducing further multicollinear-
ity, such as between x and x2, for example. This difficulty may be avoided, or at least
minimized, by standardizing the variables used in the regression analysis. (Standard-
ization, in this case, consists of subtracting the mean of each variable from each value
of that variable, and dividing the result by its standard deviation.)

The use of large multiple regression equations, containing many variables in
both linear and nonlinear forms, can produce an equation with better predictive
power than one containing only a few linear terms. However, this method often cre-
ates highly correlated independent variables, even when standardization is employed,
thereby making the problems of multicollinearity even worse.

When normal multiple regression analysis is to be used, the residuals should be
examined carefully. The quantity ei = yi − ŷi is called the ith residual in the multiple
regression. An analysis of the residuals is useful in checking if the data are ade-
quately described by the form of the fitted equation, or by the variables included in
the equation.

A normal-scores plot is used to check the assumption that the residuals are
approximately normally distributed. While the t-tests associated with regression anal-
ysis are not highly sensitive to departures from normality, gross departures will inval-
idate the significance tests associated with the regression. (However, the regression
equation remains useful for estimating values of the coefficients and for obtaining ŷ,
a predicted value of y.)

In addition, a plot of the residuals against the predicted values of y can reveal
errors in the assumptions leading to the form of the fitted equation. If the chosen
equation adequately describes the data, such a plot will show a “random” pattern
without trend or obvious curvilinearity. On the other hand, if a linear equation is
fitted to data that are highly nonlinear, the residuals will show a curvilinear trend.
When the data depart seriously enough from the assumed relationship, excessive
errors in prediction will result, and estimates of the coefficients of the independent
variables will be relatively meaningless.

Finally, a plot of the residuals against integers reflecting the order of taking the
observations (or “run number”) or the time each observation was taken also should
show a random pattern, without trends. A trend in such a plot can be caused by the
presence of one or more variables, not included in the regression analysis, whose
values have a measurable influence on the value of Y over the time period of the
experiment. (Ambient variables, such as temperature and humidity, are examples
of such effects.) A time trend in the residuals may suggest that these (and possibly
other) variables should be controlled or their values measured and included in the
regression equation when performing further research.

To illustrate these methods for checking residuals, the residuals were computed
for the wave-solder regression analysis. Standardized residuals can be found directly
with MINITAB software by giving the command REGRESS C6 ON 5 PREDICTORS
C1-C5, PUT RESIDUALS IN C7.

The normal-scores plot of the raw residuals is shown in Figure 8. The graph
shows reasonable agreement with the assumption that the residuals are normally
distributed. (There appears to be one “outlying” observation, run 22. If significance
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Figure 8. Normal-scores plot of wave-solder regression residuals.

tests are to be performed for the coefficients of the regression, it is recommended
that the outlying observation be discarded and that the regression be rerun.)

A plot of the residuals against ŷ is shown in Figure 9. Ignoring the outlier, this
graph shows a random pattern with no obvious trends or curvilinearity. Thus, it
appears that the linear multiple regression equation was adequate to describe the
relationship between the dependent variable and the five independent variables over
the range of observations.

These residuals are plotted against the run numbers in Figure 10. This graph,
likewise, shows a random pattern, with no linear or curvilinear trends. It appears
that no time-dependent extraneous variable has materially affected the value of y
during the experiment.
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Figure 9. Plot of residuals against ŷ.
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Figure 10. Plot of residuals against run numbers.
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Applied Exercises SECS. 1–3

41. The following data give the diffusion time (hours) of
a silicon wafer used in manufacturing integrated circuits
and the resulting sheet resistance of transfer:

Diffusion time, x 0.56 1.10 1.58 2.00 2.45

Sheet resistance, y 83.7 90.0 90.2 92.4 91.6

(a) Find the equation of the least squares line fit to these
data.
(b) Predict the sheet resistance when the diffusion time is
1.3 hours.

42. Various doses of a poisonous substance were given
to groups of 25 mice and the following results were
observed:

Dose (mg) Number of deaths
x y

4 1
6 3
8 6

10 8
12 14
14 16
16 20

(a) Find the equation of the least squares line fit to
these data.
(b) Estimate the number of deaths in a group of 25 mice
that receive a 7-milligram dose of this poison.

43. The following are the scores that 12 students obtained
on the midterm and final examinations in a course in
statistics:

Midterm examination Final examination
x y

71 83
49 62
80 76
73 77
93 89
85 74
58 48
82 78
64 76
32 51
87 73
80 89

(a) Find the equation of the least squares line that will
enable us to predict a student’s final examination score in
this course on the basis of his or her score on the midterm
examination.

(b) Predict the final examination score of a student who
received an 84 on the midterm examination.

44. Raw material used in the production of a synthetic
fiber is stored in a place that has no humidity control.
Measurements of the relative humidity and the moisture
content of samples of the raw material (both in percent-
ages) on 12 days yielded the following results:

Humidity Moisture content

46 12
53 14
37 11
42 13
34 10
29 8
60 17
44 12
41 10
48 15
33 9
40 13

(a) Fit a least squares line that will enable us to predict
the moisture content in terms of the relative humidity.
(b) Use the result of part (a) to estimate (predict)
the moisture content when the relative humidity is 38
percent.

45. The following data pertain to the chlorine residual in
a swimming pool at various times after it has been treated
with chemicals:

Number of Chlorine residual
hours (parts per million)

2 1.8
4 1.5
6 1.4
8 1.1

10 1.1
12 0.9

(a) Fit a least squares line from which we can predict the
chlorine residual in terms of the number of hours since
the pool has been treated with chemicals.
(b) Use the equation of the least squares line to estimate
the chlorine residual in the pool five hours after it has
been treated with chemicals.

46. Use the coding of Exercise 15 to rework both parts of
Exercise 42.
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47. Use the coding of Exercise 15 to rework both parts of
Exercise 45.

48. During its first five years of operation, a company’s
gross income from sales was 1.4, 2.1, 2.6, 3.5, and 3.7
million dollars. Use the coding of Exercise 15 to fit a least
squares line and, assuming that the same linear trend
continues, predict the company’s gross income from sales
during its sixth year of operation.

49. If a set of paired data gives the indication that the
regression equation is of the form μY|x = α ·βx, it is cus-
tomary to estimate α and β by fitting the line

log ŷ = log α̂+ x · log β̂

to the points {(xi, log yi); i = 1, 2, . . . , n} by the method
of least squares. Use this technique to fit an exponential
curve of the form ŷ = α̂ · β̂x to the following data on the
growth of cactus grafts under controlled environmental
conditions:

Weeks after Height
grafting (inches)

x y

1 2.0
2 2.4
4 5.1
5 7.3
6 9.4
8 18.3

50. If a set of paired data gives the indication that the
regression equation is of the form μY|x = α · xβ , it is cus-
tomary to estimate α and β by fitting the line

log ŷ = log α̂+ β̂ · log x

to the points {(log xi, log yi); i = 1, 2, . . . , n} by the method
of least squares.
(a) Use this technique to fit a power function of the form
ŷ = α̂ · xβ̂ to the following data on the unit cost of pro-
ducing certain electronic components and the number of
units produced:

Lot size Unit cost
x y

50 $108
100 $53
250 $24
500 $9

1,000 $5

(b) Use the result of part (a) to estimate the unit cost for
a lot of 300 components.

SEC. 4
51. With reference to Exercise 42, test the null hypothe-
sis β = 1.25 against the alternative hypothesis β > 1.25 at
the 0.01 level of significance.

52. With reference to Exercise 44, test the null hypothesis
β = 0.350 against the alternative hypothesis β < 0.350 at
the 0.05 level of significance.

53. The following table shows the assessed values and the
selling prices of eight houses, constituting a random sam-
ple of all the houses sold recently in a metropolitan area:

Assessed value Selling price
(thousands) (thousands)
(of dollars) (of dollars)

170.3 214.4
202.0 269.3
162.5 206.2
174.8 225.0
157.9 199.8
181.6 232.1
210.4 274.2
188.0 243.5

(a) Fit a least squares line that will enable us to predict
the selling price of a house in that metropolitan area in
terms of its assessed value.
(b) Test the null hypothesis β = 1.30 against the alterna-
tive hypothesis β > 1.30 at the 0.05 level of significance.

54. With reference to Exercise 43, construct a 99% confi-
dence interval for the regression coefficient β.

55. With reference to Exercise 45, construct a 98% confi-
dence interval for the regression coefficient β.

56. With reference to Example 4, use the theory of Exer-
cise 22 to test the null hypothesis α = 21.50 against the
alternative hypothesis α Z 21.50 at the 0.01 level of signif-
icance.

57. The following data show the advertising expenses
(expressed as a percentage of total expenses) and the
net operating profits (expressed as a percentage of total
sales) in a random sample of six drugstores:

Advertising Net operating
expenses profits

1.5 3.6
1.0 2.8
2.8 5.4
0.4 1.9
1.3 2.9
2.0 4.3

(a) Fit a least squares line that will enable us to predict
net operating profits in terms of advertising expenses.
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(b) Test the null hypothesis α = 0.8 against the alterna-
tive hypothesis α > 0.8 at the 0.01 level of significance.

58. With reference to Exercise 42, use the theory of Exer-
cise 22 to construct a 95% confidence interval for α.

59. With reference to Exercise 43, use the theory of Exer-
cise 22 to construct a 99% confidence interval for α.

60. Use the theory of Exercises 24 and 26, as well as
the quantities already calculated in Examples 4 and 5,
to construct
(a) a 95% confidence interval for the mean test score of
persons who have studied 14 hours for the test;
(b) 95% limits of prediction for the test score of a person
who has studied 14 hours for the test.

61. Use the theory of Exercises 24 and 26, as well as the
quantities already calculated in Exercise 51 for the data
of Exercise 42, to find
(a) a 99% confidence interval for the expected number
of deaths in a group of 25 mice when the dosage is
9 milligrams;
(b) 99% limits of prediction of the number of deaths in a
group of 25 mice when the dosage is 9 milligrams.

62. Redo Exercise 61 when the dosage is 20 milligrams.
Note the greatly increased width of the confidence lim-
its for the expected number of deaths and of the limits
of prediction. This example illustrates that extrapolation,
estimating a value of Y for observations outside the range
of the data, usually results in a highly inaccurate estimate.

63. The following table shows the elongation (in thou-
sandths of an inch) of steel rods of nominally the same
composition and diameter when subjected to various ten-
sile forces (in thousands of pounds).

Force Elongation
x y

1.2 15.6
5.3 80.3
3.1 39.0
2.2 34.3
4.1 58.2
2.6 36.7
6.5 88.9
8.3 111.5
7.6 99.8
4.9 65.7

(a) Use appropriate computer software to fit a straight
line to these data.
(b) Construct 99% confidence limits for the slope of the
fitted line.

64. The following are loads (grams) put on the centers of
like plastic rods with the resulting deflections (cm).

Load Deflection
x y

25 1.58
30 1.39
35 1.41
40 1.60
55 1.81
45 1.78
50 1.65
60 1.94

(a) Use an appropriate computer program to fit a straight
line to these data.
(b) Using the 0.95 level of significance, test the null
hypothesis that β = 0.01 against the alternative that
β > 0.01.

SEC. 5
65. An achievement test is said to be reliable if a stu-
dent who takes the test several times will consistently
get high (or low) scores. One way of checking the relia-
bility of a test is to divide it into two parts, usually the
even-numbered problems and the odd-numbered prob-
lems, and observe the correlation between the scores that
students get in both halves of the test. Thus, the follow-
ing data represent the grades, x and y, that 20 students
obtained for the even-numbered problems and the odd-
numbered problems of a new objective test designed to
test eighth grade achievement in general science:

x y x y

27 29 33 42
36 44 39 31
44 49 38 38
32 27 24 22
27 35 33 34
41 33 32 37
38 29 37 38
44 40 33 35
30 27 34 32
27 38 39 43

Calculate r for these data and test its significance, that is,
the null hypothesis ρ = 0 against the alternative hypoth-
esis ρ Z 0 at the 0.05 level of significance.

66. With reference to Exercise 65, use the formula
obtained in Exercise 31 to construct a 95% confidence
interval for ρ.

67. The following data pertain to x, the amount of fertil-
izer (in pounds) that a farmer applies to his soil, and y, his
yield of wheat (in bushels per acre):
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x y x y x y

112 33 88 24 37 27
92 28 44 17 23 9
72 38 132 36 77 32
66 17 23 14 142 38

112 35 57 25 37 13
88 31 111 40 127 23
42 8 69 29 88 31

126 37 19 12 48 37
72 32 103 27 61 25
52 20 141 40 71 14
28 17 77 26 113 26

Assuming that the data can be looked upon as a random
sample from a bivariate normal population, calculate r
and test its significance at the 0.01 level of significance.
Also, draw a scattergram of these paired data and judge
whether the assumption seems reasonable.

68. With reference to Exercise 67, use the formula
obtained in Exercise 31 to construct a 99% confidence
interval for ρ.

69. Use the formula of Exercise 29 to calculate a 95%
confidence interval for β for the numbers of hours studied
and the test scores in the table in Section 3 and compare
this interval with the one obtained in Example 6.

70. The calculation of r can often be simplified by adding
the same constant to each x, adding the same constant to
each y, or multiplying each x and/or y by the same positive
constants. Recalculate r for the data of Example 7 by first
multiplying each x and each y by 10 and then subtracting
70 from each x and 60 from each y.

71. The table at the bottom of the page shows how the his-
tory and economics scores of 25 students are distributed.
Use the method of Exercise 32 to determine the value of
r, replacing the row headings by the corresponding class
marks (midpoints) 23, 28, 33, 38, 43, and 48 and the col-
umn headings by the corresponding class marks 23, 28,
33, 38, and 43. Use this value of r to test at the 0.05 level
of significance whether there is a relationship between
scores in the two subjects.

72. Rework Exercise 71, coding the class marks of the his-
tory scores −2, −1, 0, 1, and 2 and the class marks of
the economics scores −2, −1, 0, 1, 2, and 3. (It follows
from Exercise 70 that this kind of coding will not affect
the value of r.)

History scores

21–25 26–30 31–35 36–40 41–45

21–25 1

26–30 3 1

31–35 2 5 2

36–40 1 4 1

E
co

no
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41–45 1 3

46–50 1

73. This question has been intentionally omitted for this
edition.

74. This question has been intentionally omitted for this
edition.

75. (a) Use an appropriate computer program to obtain
the sample correlation coefficient for the data of Exer-
cise 63.
(b) Test whether r is significantly different from 0 using
the 0.05 level.

76. (a) Use an appropriate computer program to obtain
the sample correlation coefficient for the data of Exer-
cise 64.
(b) Test whether this coefficient is significant using the
0.10 level.

SECS. 6–7
77. The following are sample data provided by a moving
company on the weights of six shipments, the distances
they were moved, and the damage that was incurred:

Weight Distance Damage
(1,000 pounds) (1,000 miles) (dollars)

x1 x2 y

4.0 1.5 160
3.0 2.2 112
1.6 1.0 69
1.2 2.0 90
3.4 0.8 123
4.8 1.6 186

(a) Assuming that the regression is linear, estimate β0, β1,
and β2.
(b) Use the results of part (a) to estimate the dam-
age when a shipment weighing 2,400 pounds is moved
1,200 miles.

78. The following are data on the average weekly profits
(in $1,000) of five restaurants, their seating capacities, and
the average daily traffic (in thousands of cars) that passes
their locations:
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Seating Traffic Weekly net
capacity count profit

x1 x2 y

120 19 23.8
200 8 24.2
150 12 22.0
180 15 26.2
240 16 33.5

(a) Assuming that the regression is linear, estimate β0, β1,
and β2.
(b) Use the results of part (a) to predict the average
weekly net profit of a restaurant with a seating capacity
of 210 at a location where the daily traffic count averages
14,000 cars.

79. The following data consist of the scores that 10
students obtained in an examination, their I.Q.’s, and
the numbers of hours they spent studying for the
examination:

Number of
I.Q. hours studied Score
x1 x2 y

112 5 79
126 13 97
100 3 51
114 7 65
112 11 82
121 9 93
110 8 81
103 4 38
111 6 60
124 2 86

(a) Assuming that the regression is linear, estimate β0, β1,
and β2.
(b) Predict the score of a student with an I.Q. of 108 who
studied 6 hours for the examination.

80. The following data were collected to determine the
relationship between two processing variables and the
hardness of a certain kind of steel:

Annealing
Hardness Copper content temperature

(Rockwell 30-T) (percent) (degrees F)
y x1 x2

78.9 0.02 1,000
55.2 0.02 1,200
80.9 0.10 1,000
57.4 0.10 1,200
85.3 0.18 1,000
60.7 0.18 1,200

Fit a plane by the method of least squares, and use it to
estimate the average hardness of this kind of steel when
the copper content is 0.14 percent and the annealing tem-
perature is 1,100◦F.

81. When the x1’s, x2’s, . . . , and/or the xk’s are equally
spaced, the calculation of the β̂’s can be simplified by
using the coding suggested in Exercise 15. Rework Exer-
cise 80 coding the x1-values −1, 0, and 1 and the x2-values
−1 and 1. (Note that for the coded x1’s and x2’s, call them
z1’s and z2’s, we have not only �z1 = 0 and �z2 = 0, but
also �z1z2 = 0.)

82. The following are data on the percent effectiveness of
a pain reliever and the amounts of three different medi-
cations (in milligrams) present in each capsule:

Percent
Medication A Medication B Medication C effective

x1 x2 x3 y

15 20 10 47
15 20 20 54
15 30 10 58
15 30 20 66
30 20 10 59
30 20 20 67
30 30 10 71
30 30 20 83
45 20 10 72
45 20 20 82
45 30 10 85
45 30 20 94

Assuming that the regression is linear, estimate the
regression coefficients after suitably coding each of the
x’s, and express the estimated regression equation in
terms of the original variables.

83. The regression models that we introduced in
Sections 2 and 6 are linear in the x’s, but, more important,
they are also linear in the β’s. Indeed, they can be used
in some problems where the relationship between the x’s
and y is not linear. For instance, when the regression is
parabolic and of the form

μY|x = β0 +β1x +β2x2

we simply use the regression equationμY|x = β0 +β1x1 +
β2x2 with x1 = x and x2 = x2. Use this method to fit
a parabola to the following data on the drying time of
a varnish and the amount of a certain chemical that has
been added:

Amount of additive Drying time
(grams) (hours)

x y

1 8.5
2 8.0
3 6.0
4 5.0
5 6.0
6 5.5
7 6.5
8 7.0
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Also, predict the drying time when 6.5 grams of the chem-
ical is added.

84. The following data pertain to the demand for a prod-
uct (in thousands of units) and its price (in cents) charged
in five different market areas:

Price Demand
x y

20 22
16 41
10 120
11 89
14 56

Fit a parabola to these data by the method suggested in
Exercise 83.

85. To judge whether it was worthwhile to fit a parabola
in Exercise 84 and not just a straight line, test the null
hypothesis β2 = 0 against the alternative hypothesis
β2 Z 0 at the 0.05 level of significance.

86. Use the results obtained for the data of Example 9
to construct a 90% confidence interval for the regression
coefficient β2 (see Exercise 38).

87. With reference to Exercise 77, test the null hypothesis
β2 = 10.0 against the alternative hypothesis β2 Z 10.0 at
the 0.05 level of significance.

88. With reference to Exercise 77, construct a 95% confi-
dence interval for the regression coefficient β1.

89. With reference to Exercise 78, test the null hypothesis
β1 = 0.12 against the alternative hypothesis β1< 0.12 at
the 0.05 level of significance.

90. With reference to Exercise 78, construct a 98% confi-
dence interval for the regression coefficient β2.

91. Use the results obtained for the data of Example 9
and the result of part (b) of Exercise 39 to construct a
95% confidence interval for the mean sales price of a
three-bedroom house with two baths in the given housing
development.

92. Use the results obtained for the data of Example 9
and the result of part (b) of Exercise 40 to construct 99%
limits of prediction for the sales price of a three-bedroom
house with two baths in the given housing development.

93. With reference to Exercise 77, use the result of part
(b) of Exercise 39 to construct a 98% confidence interval
for the mean damage of 2,400-pound shipments that are
moved 1,200 miles.

94. With reference to Exercise 77, use the result of part
(b) of Exercise 40 to construct 95% limits of prediction
for the damage that will be incurred by a 2,400-pound
shipment that is moved 1,200 miles.

95. With reference to Exercise 78, use the result of part
(b) of Exercise 39 to construct a 99% confidence interval
for the mean weekly net profit of restaurants with a seat-
ing capacity of 210 at a location where the daily traffic
count averages 14,000 cars.

96. With reference to Exercise 78, use the result of part
(b) of Exercise 40 to construct 98% limits of prediction
for the average weekly net profit of a restaurant with a
seating capacity of 210 at a location where the daily traffic
count averages 14,000 cars.

97. Use an appropriate computer program to redo Exer-
cise 82 without coding the x-values.

98. (a) Use an appropriate computer program to fit a
plane to the following data relating the monthly water
usage of a production plant (gallons) to its monthly pro-
duction (tons), mean monthly ambient temperature (◦F),
and the monthly number of days of plant operation over
a period of 12 months.

Mean Days of
Water usage Production temperature operation

y x1 x2 x3

2,228 98.5 67.4 19
2,609 108.2 70.3 20
3,088 109.6 82.1 21
2,378 101.0 69.2 21
1,980 83.3 64.5 19
1,717 70.0 63.7 21
2,723 144.7 58.0 19
2,031 84.4 58.1 20
1,902 97.4 36.6 17
1,721 131.8 49.6 23
2,254 82.1 44.3 18
2,522 64.5 44.1 19

(b) Estimate the water usage of the plant during a month
when its production is 90.0 tons, the mean ambient tem-
perature is 65◦F, and it operates for 20 days.

SEC. 8
99. (a) Fit a linear surface to the following data:

y x1 x2

118 41 −6
38 76 3

156 19 6
45 67 −3
31 62 −1
17 99 −3

109 27 −5
349 43 12
195 25 −8

72 24 2
94 48 5

118 3 4
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(b) How good a fit is obtained?
(c) Plot the residuals against ŷ and determine whether the
pattern is “random.”
(d) Check for multicollinearity among the independent
variables.

100. The following data represent more extended mea-
surements of monthly water usage at the plant referred
to in Exercise 98 over a period of 20 months:

Mean Days of
Water usage Production temperature operation

y x1 x2 x3

2,609 108 70 20
2,228 97 68 19
2,559 113 66 19
2,723 144 58 19
3,088 109 82 21
2,522 64 44 19
2,012 91 61 20
2,254 82 44 18
2,436 126 59 21
2,460 111 62 21
2,147 85 54 18
2,378 101 69 21
2,031 84 58 20
1,717 70 64 21
2,117 107 51 22
1,902 97 36 17
2,251 98 56 22
2,357 96 85 19
1,721 132 49 23
1,980 84 64 19

(a) Use an appropriate computer program to fit a linear
surface to these data.
(b) Use a computer program to make a normal-scores
plot of the residuals. Does the assumption of normality
appear to be satisfied at least approximately?

(c) Plot the residuals against ŷ and determine whether the
pattern is random.
(d) Check for excessive multicollinearity among the inde-
pendent variables.

101. Using the data of Exercise 99,
(a) Create a new variable, x2

2.
(b) Fit a surface of the form

y = b0 + b1x1 + b2x2 + b3x2
2

(c) Find the correlation matrix of the three independent
variables. Is there evidence of multicollinearity?
(d) Standardize each of the independent variables, x1 and
x2, and create a new variable that is the square of the stan-
dardized value of x2.
(e) Fit a surface of the same form as in part (b) to the
standardized variables. Compare the goodness of fit of
this surface to that of the linear surface fitted in Exer-
cise 99.
(f) Plot the residuals of this regression analysis against the
values of ŷ and compare this plot to the one obtained in
Exercise 99.

102. Using the data of Exercise 100,
(a) Create a new variable, x1x2.
(b) Fit a surface of the form

y = b0 + b1x1 + b2x2 + b3x3 + b4x1x2

(c) Find the correlation matrix of the four independent
variables. Is there evidence of multicollinearity?
(d) Standardize each of the three independent variables
x1, x2, and x3, and create a new variable that is the prod-
uct of the standardized values of x1 and x2.
(e) Fit a curved surface of the same form to the standard-
ized variables. Compare the goodness of fit of this surface
to that of the linear surface fitted in Exercise 100.
(f) Find the correlation matrix of the four standardized
independent variables and compare with the results of
part (c).
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Answers to Odd-Numbered Exercises

3 μY|x = 1 + x
2

and μX|y = 2y
3

.

5 μX|1 = 4
7 and μY|0 = 9

8 .

13 β̂ =

n∑
i=1

xiyi

n∑
i=1

x2
i

.

19 (a) t = β̂ −β
se/

√
Sxx

;

(b) β̂ − tα/2,n−2 · Se√
Sxx

<β < β̂ + tα/2,n−2 · Se√
Sxx

.

31
1 + r − (1 − r)e−2zα/2/

√
n−3

1 + r + (1 − r)e−2zα/2/
√

n−3
<ρ <

1 + r − (1 − r)e2zα/2/
√

n−3

1 + r + (1 − r)e2zα/2/
√

n−3
.

39 (b) B′X0 ; tα/2,n−kσ̂ ·
√

n[X ′
0(X

′X)−1X0]

n − k − 1
.

41 (a) ŷ = 83.46 + 3.98x; (b) 88.63.
43 (a) ŷ = 31.609 + 0.5816x; (b) ŷ = 88.63.
45 (a) ŷ = 1.8999 + 0.0857x; (b) ŷ = 1.4714.
47 (a) ŷ = 1.3 − 0.0857x (coded); (b) ŷ = 1.4714.
49 ŷ = 1.371(1.383)x.
51 t = 3.72; the null hypothesis must be rejected.
53 (a) ŷ = −37.02 + 1.4927x; (b) t = 3.413; the null
hypothesis must be rejected.
55 −0.1217<β <−0.0497.
57 (a) ŷ = 1.2594 + 1.4826x; (b) t = 3.10; the null hypoth-
esis cannot be rejected.

59 −2.2846<α< 65.5026.
61 (a) 6.452<μY|9< 9.7634; (b) 3.4777 and 12.7009.
63 (a) ŷ = 2.20 + 13.3x; (b) 11.5<β < 15.1.
65 r = 0.55; z = 2.565 and the value of r is significant.
67 r = 0.727; z = 5.05 and the value of r is significant.
69 2.84<β < 4.10.
71 r = 0.772; z = 4.81 and the value of r is significant.
73 r = 0.285; z = 5.55 and the value of r is significant.
75 (a) 0.994; (b) z = 7.68; it is significantly different from
0 at the 0.05 level of significance.
77 (a) β̂0 = 14.56; β̂1 = 30.109 and β̂2 = 12.16;
(b) ŷ = $101.41.
79 (a) β̂0 = −124.57, β̂1 = 1.659 and β̂2 = 1.439;
(b) ŷ = 63.24.
81 ŷ = 69.73 + 2.975z1 − 11.97z2 (coded); ŷ = 71.2.

83 ŷ = 10.5 − 2.0x + 0.2x2; ŷ = 5.95.
85 t = 2.94; the null hypothesis cannot be rejected and there
is no real evidence that it is worthwhile to fit a parabola
rather than a straight line.
87 t = 0.16; the null hypothesis cannot be rejected.
89 t = −4.18; the null hypothesis must be rejected.
91 $288, 650<μY|3,2< $296, 920.
93 $74.5<μY|2,4,1.2< $128.3.
97 ŷ = −2.33 + 0.900x1 + 1.27x2 + 0.900x3.
99 (a) ŷ = 170 − 1.39x1 + 6.07x2.

101 (b) ŷ = 86.9 − 0.904x1 + 0.508x2 + 2.06x2
2;

(c) rx1x2 = −0.142, rx1,x2
2

= −0.218, rx2,x2
2

= 0.421;

(e) ŷ = 47.5 − 24.8x′
1 + 15.0x′

2 + 70.2(x′
2)

2.
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Appendix

Sums and Products

1 Rules for Sums and Products 2 Special Sums

1 Rules for Sums and Products
To simplify expressions involving sums and products, the

∑
and

∏
notations are

widely used in statistics. In the usual notation we write
b∑

i=a

xi = xa + xa+1 + xa+2 + · · · + xb

and b∏
i=a

xi = xa · xa+1 · xa+2 · . . . · xb

for any nonnegative integers a and b with a F b.
When working with sums or products, it is often helpful to apply the following

rules, which can all be verified by writing the respective expressions in full, that is,
without the

∑
or
∏

notation:

THEOREM 1.

1.
n∑

i=1

kxi = k ·
n∑

i=1

xi

2.
n∑

i=1

k = nk

3.
n∑

i=1

(xi + yi) =
n∑

i=1

xi +
n∑

i=1

yi

4.
n∏

i=1

kxi = kn ·
n∏

i=1

xi

5.
n∏

i=1

k = kn

6.
n∏

i=1

xiyi =
(

n∏
i=1

xi

)(
n∏

i=1

yi

)

7. ln
n∏

i=1

xi =
n∑

i=1

ln xi

From Appendix A of John E. Freund’s Mathematical Statistics with Applications,
Eighth Edition. Irwin Miller, Marylees Miller. Copyright © 2014 by Pearson Education, Inc.
All rights reserved.
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Double sums, triple sums, . . . are also widely used in statistics, and if we repeat-
edly apply the definition of

∑
given above, we have, for example,

m∑
i=1

n∑
j=1

xij =
m∑

i=1

(xi1 + xi2 + · · · + xin)

= (x11 + x12 + · · · + x1n)

+ (x21 + x22 + · · · + x2n)

. . . . . . . . . . . . . . . . . . . . . . . .

+ (xm1 + xm2 + · · · + xmn)

Note that when the xij are thus arranged in a rectangular array, the first subscript
denotes the row to which a particular element belongs, and the second subscript
denotes the column.

When we work with double sums, the following theorem is of special interest; it
is an immediate consequence of the multinomial expansion of

(x1 + x2 + · · · + xn)
2

THEOREM 2. ∑∑
i< j

xixj = 1
2

⎡
⎣( n∑

i=1

xi

)2

−
n∑

i=1

x2
i

⎤
⎦

where ∑∑
i< j

xixj =
n−1∑
i=1

n∑
j=i+1

xixj

2 Special Sums
In the theory of nonparametric statistics, particularly when we deal with rank sums,
we often need expressions for the sums of powers of the first n positive integers, that
is, expressions for

S(n, r) = 1r + 2r + 3r + · · · + nr

for r = 0, 1, 2, 3, . . . . The following theorem, which the reader will be asked to prove
in Exercise 1, provides a convenient way of obtaining these sums.

THEOREM 3.
k−1∑
r=0

(
k
r

)
S(n, r) = (n + 1)k − 1

for any positive integers n and k.

A disadvantage of this theorem is that we have to find the sums S(n, r) one at a
time, first for r = 0, then for r = 1, then for r = 2, and so forth. For instance, for
k = 1 we get (

1
0

)
S(n, 0) = (n + 1)− 1 = n
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and hence S(n, 0) = 10 + 20 + · · · + n0 = n. Similarly, for k = 2 we get

(
2
0

)
S(n, 0)+

(
2
1

)
S(n, 1) = (n + 1)2 − 1

n + 2S(n, 1) = n2 + 2n

and hence S(n, 1) = 11 + 21 + · · · + n1 = 1
2 n(n + 1). Using the same technique, the

reader will be asked to show in Exercise 2 that

S(n, 2) = 12 + 22 + · · · + n2

= 1
6

n(n + 1)(2n + 1)

and

S(n, 3) = 13 + 23 + · · · + n3

= 1
4

n2(n + 1)2

Exercises
1. Prove Theorem 3 by making use of the fact that

(m + 1)k − mk =
k−1∑
r=0

(
k
r

)
mr

which follows from the binomial expansion of (m + 1)k.

2. Verify the formulas for S(n, 2) and S(n, 3) given previ-
ously, and find an expression for S(n, 4).

3. Given x1 = 1, x2 = 3, x3 = −2, x4 = 4, x5 = −1, x6 = 2,
x7 = 1, and x8 = 2, find

(a)
8∑

i=1

xi; (b)
8∑

i=1

x2
i .

4. Given x1 = 3, x2 = 4, x3 = 5, x4 = 6, x5 = 7, f1 = 3,
f2 = 7, f3 = 10, f4 = 5, and f5 = 2, find

(a)
5∑

i=1

xi; (b)
5∑

i=1

fi;

(c)
5∑

i=1

xifi; (d)
5∑

i=1

x2
i fi.

5. Given x1 = 2, x2 = −3, x3 = 4, x4 = −2, y1 = 5,
y2 = −3, y3 = 2, and y4 = −1, find

(a)
4∑

i=1

xi; (b)
4∑

i=1

yi;

(c)
4∑

i=1

x2
i ; (d)

4∑
i=1

y2
i ; (e)

4∑
i=1

xiyi.

6. Given x11 = 3, x12 = 1, x13 = −2, x14 = 2, x21 = 1,
x22 = 4, x23 = −2, x24 = 5, x31 = 3, x32 = −1, x33 = 2,
and x34 = 3, find

(a)
3∑

i=1

xij separately for j = 1, 2, 3, and 4;

(b)
4∑

j=1

xij separately for i = 1, 2, and 3.

7. With reference to Exercise 6, evaluate the double sum-

mation
3∑

i=1

4∑
j=1

xij using

(a) the results of part (a) of that exercise;
(b) the results of part (b) of that exercise.

Answers to Odd-Numbered Exercises

3 (a) 10; (b) 40.
5 (a) 1; (b) 3; (c) 33; (d) 39; (e) 29.

7 (a) 19; (b) 19.
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Appendix

Special Probability
Distributions

1 Bernoulli Distribution
2 Binomial Distribution
3 Discrete Uniform Distribution

(Special Case)

4 Geometric Distribution
5 Hypergeometric Distribution
6 Negative Binomial Distribution
7 Poisson Distribution

1 Bernoulli Distribution
f (x; θ) = θx(1 − θ)1−x for x = 0, 1

Parameter: 0<θ < 1

Mean and variance: μ = θ and σ 2 = θ(1 − θ)

2 Binomial Distribution

b(x; n, θ) =
(

n
x

)
θx(1 − θ)n−x for x = 0, 1, 2, . . . , n

Parameters: n is a positive integer and 0<θ < 1

Mean and variance: μ = nθ and σ 2 = nθ(1 − θ)

3 Discrete Uniform Distribution (Special Case)

f (x; k) = 1
k

for x = 1, 2, . . . , k

Parameter: k is a positive integer

Mean and variance: μ = k + 1
2

and σ 2 = k2 − 1
12

4 Geometric Distribution
g(x; θ) = θ(1 − θ)x−1 for x = 1, 2, 3, . . .

Parameter: 0<θ < 1

Mean and variance: μ = 1
θ

and σ 2 = 1 − θ
θ2

From Appendix B of John E. Freund’s Mathematical Statistics with Applications,
Eighth Edition. Irwin Miller, Marylees Miller. Copyright © 2014 by Pearson Education, Inc.
All rights reserved.
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5 Hypergeometric Distribution

h(x; n, N, M) =

⎛
⎝M

x

⎞
⎠
⎛
⎝N − M

n − x

⎞
⎠

⎛
⎝N

n

⎞
⎠

for x = 0, 1, 2, . . . , n,
x F M, and n − x F N − M

Parameters: n and N are positive integers with n F N, and M is a nonnegative
integer with M F N

Mean and variance: μ = nM
N

and σ 2 = nM(N − M)(N − n)
N2(N − 1)

6 Negative Binomial Distribution

b∗(x; k, θ) =
(

x − 1
k − 1

)
θk(1 − θ)x−k for x = k, k + 1, k + 2, . . .

Parameters: k is a positive integer and 0<θ < 1

Mean and variance: μ = k
θ

and σ 2 = k(1 − θ)
θ2

7 Poisson Distribution

p(x; λ) = λxe−λ

x!
for x = 0, 1, 2, . . .

Parameter: λ> 0

Mean and variance: μ = λ and σ 2 = λ
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Special Probability
Densities

1 Beta Distribution
2 Cauchy Distribution
3 Chi-Square Distribution
4 Exponential Distribution
5 F Distribution

6 Gamma Distribution
7 Normal Distribution
8 t Distribution (Student’s t Distribution)
9 Uniform Distribution (Rectangular

Distribution)

1 Beta Distribution

f (x;α,β) =

⎧⎪⎪⎨
⎪⎪⎩
�(α+β)
�(α) ·�(β)xα−1(1 − x)β−1 for 0< x< 1

0 elsewhere

Parameters: α > 0 and β > 0

Mean and variance: μ = α

α+β and σ 2 = αβ

(α+β)2(α+β + 1)

2 Cauchy Distribution

p(x;α,β) =
β

π

(x −α)2 +β2

Parameters: −q<α<q and β > 0

Mean and variance: Do not exist

3 Chi-Square Distribution

f (x; ν) =

⎧⎪⎪⎨
⎪⎪⎩

1
2ν/2�(ν/2)

x
ν−2

2 e− x
2 for x> 0

0 elsewhere

Parameter: ν is a positive integer

Mean and variance: μ = ν and σ 2 = 2ν

From Appendix C of John E. Freund’s Mathematical Statistics with Applications,
Eighth Edition. Irwin Miller, Marylees Miller. Copyright © 2014 by Pearson Education, Inc.
All rights reserved.
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4 Exponential Distribution

g(x; θ) =

⎧⎪⎨
⎪⎩

1
θ

e−x/θ for x> 0

0 elsewhere

Parameter: θ > 0

Mean and variance: μ = θ and σ 2 = θ2

5 F Distribution

g(f ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�

(
ν1 + ν2

2

)

�

(
ν1

2

)
�

(
ν2

2

) (ν1

ν2

) ν1
2 · f

ν1
2 −1

(
1 + ν1

ν2
f
)− 1

2 (ν1+ν2)

for f > 0

0 elsewhere

Parameters: ν1> 0 and ν2> 0

Mean: μ = ν2

ν2 − 2

6 Gamma Distribution

f (x) =

⎧⎪⎨
⎪⎩

1
βα�(α)

xα−1e−x/β for x> 0

0 elsewhere

Parameters: α > 0 and β > 0

Mean and variance: μ = αβ and σ 2 = αβ2

7 Normal Distribution

n(x;μ, σ) = 1

σ
√

2π
e
− 1

2

(
x−μ
σ

)2

for −q< x<q

Parameters: μ and σ > 0

Mean and variance: μ = μ and σ 2 = σ 2

8 t Distribution (Student’s t Distribution)

f (t; ν) =
�

(
ν+ 1

2

)
√
πν�

(
ν

2

) ·
(

1 + t2

ν

)− ν+1
2

for −q< t<q

Parameter : ν is a positive integer

Mean and variance: μ = 0 and σ 2 = ν

ν− 2
for ν > 2
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9 Uniform Distribution (Rectangular Distribution)

u(x;α,β) =

⎧⎪⎨
⎪⎩

1
β −α for α < x<β

0 elsewhere

Parameters: −q<α<β <q

Mean and variance: μ = α+β
2

and σ 2 = 1
12
(β −α)2
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Statistical Tables

I. Binomial Probabilities
II. Poisson Probabilities

III. Standard Normal Distribution
IV. Values of tα, ν
V. Values of χ2

α, ν
VI. Values of f 0.05, ν1, ν2 and f 0.01, ν1, ν2

VII. Factorials and Binomial Coefficients
VIII. Values of ex and e−x

IX. Values of rp
X. Critical Values for the Signed-Rank Test

XI. Critical Values for the U Test
XII. Critical Values for the Runs Test

From Statistical Tables of John E. Freund’s Mathematical Statistics with Applications,
Eighth Edition. Irwin Miller, Marylees Miller. Copyright © 2014 by Pearson Education, Inc.
All rights reserved.
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Statistical Tables

Table I: Binomial Probabilities†

θ

n x .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

1 0 .9500 .9000 .8500 .8000 .7500 .7000 .6500 .6000 .5500 .5000
1 .0500 .1000 .1500 .2000 .2500 .3000 .3500 .4000 .4500 .5000

2 0 .9025 .8100 .7225 .6400 .5625 .4900 .4225 .3600 .3025 .2500
1 .0950 .1800 .2550 .3200 .3750 .4200 .4550 .4800 .4950 .5000
2 .0025 .0100 .0225 .0400 .0625 .0900 .1225 .1600 .2025 .2500

3 0 .8574 .7290 .6141 .5120 .4219 .3430 .2746 .2160 .1664 .1250
1 .1354 .2430 .3251 .3840 .4219 .4410 .4436 .4320 .4084 .3750
2 .0071 .0270 .0574 .0960 .1406 .1890 .2389 .2880 .3341 .3750
3 .0001 .0010 .0034 .0080 .0156 .0270 .0429 .0640 .0911 .1250

4 0 .8145 .6561 .5220 .4096 .3164 .2401 .1785 .1296 .0915 .0625
1 .1715 .2916 .3685 .4096 .4219 .4116 .3845 .3456 .2995 .2500
2 .0135 .0486 .0975 .1536 .2109 .2646 .3105 .3456 .3675 .3750
3 .0005 .0036 .0115 .0256 .0469 .0756 .1115 .1536 .2005 .2500
4 .0000 .0001 .0005 .0016 .0039 .0081 .0150 .0256 .0410 .0625

5 0 .7738 .5905 .4437 .3277 .2373 .1681 .1160 .0778 .0503 .0312
1 .2036 .3280 .3915 .4096 .3955 .3602 .3124 .2592 .2059 .1562
2 .0214 .0729 .1382 .2048 .2637 .3087 .3364 .3456 .3369 .3125
3 .0011 .0081 .0244 .0512 .0879 .1323 .1811 .2304 .2757 .3125
4 .0000 .0004 .0022 .0064 .0146 .0284 .0488 .0768 .1128 .1562

5 .0000 .0000 .0001 .0003 .0010 .0024 .0053 .0102 .0185 .0312

6 0 .7351 .5314 .3771 .2621 .1780 .1176 .0754 .0467 .0277 .0156
1 .2321 .3543 .3993 .3932 .3560 .3025 .2437 .1866 .1359 .0938
2 .0305 .0984 .1762 .2458 .2966 .3241 .3280 .3110 .2780 .2344
3 .0021 .0146 .0415 .0819 .1318 .1852 .2355 .2765 .3032 .3125
4 .0001 .0012 .0055 .0154 .0330 .0595 .0951 .1382 .1861 .2344

5 .0000 .0001 .0004 .0015 .0044 .0102 .0205 .0369 .0609 .0938
6 .0000 .0000 .0000 .0001 .0002 .0007 .0018 .0041 .0083 .0156

7 0 .6983 .4783 .3206 .2097 .1335 .0824 .0490 .0280 .0152 .0078
1 .2573 .3720 .3960 .3670 .3115 .2471 .1848 .1306 .0872 .0547
2 .0406 .1240 .2097 .2753 .3115 .3177 .2985 .2613 .2140 .1641
3 .0036 .0230 .0617 .1147 .1730 .2269 .2679 .2903 .2918 .2734
4 .0002 .0026 .0109 .0287 .0577 .0972 .1442 .1935 .2388 .2734

5 .0000 .0002 .0012 .0043 .0115 .0250 .0466 .0774 .1172 .1641
6 .0000 .0000 .0001 .0004 .0013 .0036 .0084 .0172 .0320 .0547
7 .0000 .0000 .0000 .0000 .0001 .0002 .0006 .0016 .0037 .0078

8 0 .6634 .4305 .2725 .1678 .1001 .0576 .0319 .0168 .0084 .0039
1 .2793 .3826 .3847 .3355 .2670 .1977 .1373 .0896 .0548 .0312
2 .0515 .1488 .2376 .2936 .3115 .2965 .2587 .2090 .1569 .1094
3 .0054 .0331 .0839 .1468 .2076 .2541 .2786 .2787 .2568 .2188
4 .0004 .0046 .0185 .0459 .0865 .1361 .1875 .2322 .2627 .2734

5 .0000 .0004 .0026 .0092 .0231 .0467 .0808 .1239 .1719 .2188
6 .0000 .0000 .0002 .0011 .0038 .0100 .0217 .0413 .0703 .1094
7 .0000 .0000 .0000 .0001 .0004 .0012 .0033 .0079 .0164 .0312
8 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0007 .0017 .0039

†Based on Tables of the Binomial Probability Distribution, National Bureau of Standards Applied
Mathematics Series No. 6. Washington, D.C.: U.S. Government Printing Office, 1950.
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Statistical Tables

Table I: (continued)

θ

n x .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

9 0 .6302 .3874 .2316 .1342 .0751 .0404 .0207 .0101 .0046 .0020
1 .2985 .3874 .3679 .3020 .2253 .1556 .1004 .0605 .0339 .0176
2 .0629 .1722 .2597 .3020 .3003 .2668 .2162 .1612 .1110 .0703
3 .0077 .0446 .1069 .1762 .2336 .2668 .2716 .2508 .2119 .1641
4 .0006 .0074 .0283 .0061 .1168 .1715 .2194 .2508 .2600 .2461

5 .0000 .0008 .0050 .0165 .0389 .0735 .1181 .1672 .2128 .2461
6 .0000 .0001 .0006 .0028 .0087 .0210 .0424 .0743 .1160 .1641
7 .0000 .0000 .0000 .0003 .0012 .0039 .0098 .0212 .0407 .0703
8 .0000 .0000 .0000 .0000 .0001 .0004 .0013 .0035 .0083 .0176
9 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0008 .0020

10 0 .5987 .3487 .1969 .1074 .0563 .0282 .0135 .0060 .0025 .0010
1 .3151 .3874 .3474 .2684 .1877 .1211 .0725 .0403 .0207 .0098
2 .0746 .1937 .2759 .3020 .2816 .2335 .1757 .1209 .0763 .0439
3 .0105 .0574 .1298 .2013 .2503 .2668 .2522 .2150 .1665 .1172
4 .0010 .0112 .0401 .0881 .1460 .2001 .2377 .2508 .2384 .2051

5 .0001 .0015 .0085 .0264 .0584 .1029 .1536 .2007 .2340 .2461
6 .0000 .0001 .0012 .0055 .0162 .0368 .0689 .1115 .1596 .2051
7 .0000 .0000 .0001 .0008 .0031 .0090 .0212 .0425 .0746 .1172
8 .0000 .0000 .0000 .0001 .0004 .0014 .0043 .0106 .0229 .0439
9 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0016 .0042 .0098

10 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0016

11 0 .5688 .3138 .1673 .0859 .0422 .0198 .0088 .0036 .0014 .0005
1 .3293 .3835 .3248 .2362 .1549 .0932 .0518 .0266 .0125 .0054
2 .0867 .2131 .2866 .2953 .2581 .1998 .1395 .0887 .0513 .0269
3 .0137 .0710 .1517 .2215 .2581 .2568 .2254 .1774 .1259 .0806
4 .0014 .0158 .0536 .1107 .1721 .2201 .2428 .2365 .2060 .1611

5 .0001 .0025 .0132 .0388 .0803 .1321 .1830 .2207 .2360 .2256
6 .0000 .0003 .0023 .0097 .0268 .0566 .0985 .1471 .1931 .2256
7 .0000 .0000 .0003 .0017 .0064 .0173 .0379 .0701 .1128 .1611
8 .0000 .0000 .0000 .0002 .0011 .0037 .0102 .0234 .0462 .0806
9 .0000 .0000 .0000 .0000 .0001 .0005 .0018 .0052 .0126 .0269

10 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0007 .0021 .0054
11 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0005

12 0 .5404 .2824 .1422 .0687 .0317 .0138 .0057 .0022 .0008 .0002
1 .3413 .3766 .3012 .2062 .1267 .0712 .0368 .0174 .0075 .0029
2 .0988 .2301 .2924 .2835 .2323 .1678 .1088 .0639 .0339 .0161
3 .0173 .0852 .1720 .2362 .2581 .2397 .1954 .1419 .0923 .0537
4 .0021 .0213 .0683 .1329 .1936 .2311 .2367 .2128 .1700 .1208

5 .0002 .0038 .0193 .0532 .1032 .1585 .2039 .2270 .2225 .1934
6 .0000 .0005 .0040 .0155 .0401 .0792 .1281 .1766 .2124 .2256
7 .0000 .0000 .0006 .0033 .0115 .0291 .0591 .1009 .1489 .1934
8 .0000 .0000 .0001 .0005 .0024 .0078 .0199 .0420 .0762 .1208
9 .0000 .0000 .0000 .0001 .0004 .0015 .0048 .0125 .0277 .0537

10 .0000 .0000 .0000 .0000 .0000 .0002 .0008 .0025 .0068 .0161
11 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010 .0029
12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002

13 0 .5133 .2542 .1209 .0550 .0238 .0097 .0037 .0013 .0004 .0001
1 .3512 .3672 .2774 .1787 .1029 .0540 .0259 .0113 .0045 .0016
2 .1109 .2448 .2937 .2680 .2059 .1388 .0836 .0453 .0220 .0095
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Statistical Tables

Table I: (continued)

θ

n x .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

13 3 .0214 .0997 .1900 .2457 .2517 .2181 .1651 .1107 .0660 .0349
4 .0028 .0277 .0838 .1535 .2097 .2337 .2222 .1845 .1350 .0873

5 .0003 .0055 .0266 .0691 .1258 .1803 .2154 .2214 .1989 .1571
6 .0000 .0008 .0063 .0230 .0559 .1030 .1546 .1968 .2169 .2095
7 .0000 .0001 .0011 .0058 .0186 .0442 .0833 .1312 .1775 .2095
8 .0000 .0000 .0001 .0011 .0047 .0142 .0336 .0656 .1089 .1571
9 .0000 .0000 .0000 .0001 .0009 .0034 .0101 .0243 .0495 .0873

10 .0000 .0000 .0000 .0000 .0001 .0006 .0022 .0065 .0162 .0349
11 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0012 .0036 .0095
12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0016
13 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

14 0 .4877 .2288 .1028 .0440 .0178 .0068 .0024 .0008 .0002 .0001
1 .3593 .3559 .2539 .1539 .0832 .0407 .0181 .0073 .0027 .0009
2 .1229 .2570 .2912 .2501 .1802 .1134 .0634 .0317 .0141 .0056
3 .0259 .1142 .2056 .2501 .2402 .1943 .1366 .0845 .0462 .0222
4 .0037 .0349 .0998 .1720 .2202 .2290 .2022 .1549 .1040 .0611

5 .0004 .0078 .0352 .0860 .1468 .1963 .2178 .2066 .1701 .1222
6 .0000 .0013 .0093 .0322 .0734 .1262 .1759 .2066 .2088 .1833
7 .0000 .0002 .0019 .0092 .0280 .0618 .1082 .1574 .1952 .2095
8 .0000 .0000 .0003 .0020 .0082 .0232 .0510 .0918 .1398 .1833
9 .0000 .0000 .0000 .0003 .0018 .0066 .0183 .0408 .0762 .1222

10 .0000 .0000 .0000 .0000 .0003 .0014 .0049 .0136 .0312 .0611
11 .0000 .0000 .0000 .0000 .0000 .0002 .0010 .0033 .0093 .0222
12 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0019 .0056
13 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0009
14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

15 0 .4633 .2059 .0874 .0352 .0134 .0047 .0016 .0005 .0001 .0000
1 .3658 .3432 .2312 .1319 .0668 .0305 .0126 .0047 .0016 .0005
2 .1348 .2669 .2856 .2309 .1559 .0916 .0476 .0219 .0090 .0032
3 .0307 .1285 .2184 .2501 .2252 .1700 .1110 .0634 .0318 .0139
4 .0049 .0428 .1156 .1876 .2252 .2186 .1792 .1268 .0780 .0417

5 .0006 .0105 .0449 .1032 .1651 .2061 .2123 .1859 .1404 .0916
6 .0000 .0019 .0132 .0430 .0917 .1472 .1906 .2066 .1914 .1527
7 .0000 .0003 .0030 .0138 .0393 .0811 .1319 .1771 .2013 .1964
8 .0000 .0000 .0005 .0035 .0131 .0348 .0710 .1181 .1647 .1964
9 .0000 .0000 .0001 .0007 .0034 .0116 .0298 .0612 .1048 .1527

10 .0000 .0000 .0000 .0001 .0007 .0030 .0096 .0245 .0515 .0916
11 .0000 .0000 .0000 .0000 .0001 .0006 .0024 .0074 .0191 .0417
12 .0000 .0000 .0000 .0000 .0000 .0001 .0004 .0016 .0052 .0139
13 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010 .0032
14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005

15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

16 0 .4401 .1853 .0743 .0281 .0100 .0033 .0010 .0003 .0001 .0000
1 .3706 .3294 .2097 .1126 .0535 .0228 .0087 .0030 .0009 .0002
2 .1463 .2745 .2775 .2111 .1336 .0732 .0353 .0150 .0056 .0018
3 .0359 .1423 .2285 .2463 .2079 .1465 .0888 .0468 .0215 .0085
4 .0061 .0514 .1311 .2001 .2252 .2040 .1553 .1014 .0572 .0278

5 .0008 .0137 .0555 .1201 .1802 .2099 .2008 .1623 .1123 .0667
6 .0001 .0028 .0180 .0550 .1101 .1649 .1982 .1983 .1684 .1222
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Statistical Tables

Table I: (continued)

θ

n x .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

16 7 .0000 .0004 .0045 .0197 .0524 .1010 .1524 .1889 .1969 .1746
8 .0000 .0001 .0009 .0055 .0197 .0487 .0923 .1417 .1812 .1964
9 .0000 .0000 .0001 .0012 .0058 .0185 .0442 .0840 .1318 .1746

10 .0000 .0000 .0000 .0002 .0014 .0056 .0167 .0392 .0755 .1222
11 .0000 .0000 .0000 .0000 .0002 .0013 .0049 .0142 .0337 .0667
12 .0000 .0000 .0000 .0000 .0000 .0002 .0011 .0040 .0115 .0278
13 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0008 .0029 .0085
14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0018

15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002
16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

17 0 .4181 .1668 .0631 .0225 .0075 .0023 .0007 .0002 .0000 .0000
1 .3741 .3150 .1893 .0957 .0426 .0169 .0060 .0019 .0005 .0001
2 .1575 .2800 .2673 .1914 .1136 .0581 .0260 .0102 .0035 .0010
3 .0415 .1556 .2359 .2393 .1893 .1245 .0701 .0341 .0144 .0052
4 .0076 .0605 .1457 .2093 .2209 .1868 .1320 .0796 .0411 .0182

5 .0010 .0175 .0668 .1361 .1914 .2081 .1849 .1379 .0875 .0472
6 .0001 .0039 .0236 .0680 .1276 .1784 .1991 .1839 .1432 .0944
7 .0000 .0007 .0065 .0267 .0668 .1201 .1685 .1927 .1841 .1484
8 .0000 .0001 .0014 .0084 .0279 .0644 .1134 .1606 .1883 .1855
9 .0000 .0000 .0003 .0021 .0093 .0276 .0611 .1070 .1540 .1855

10 .0000 .0000 .0000 .0004 .0025 .0095 .0263 .0571 .1008 .1484
11 .0000 .0000 .0000 .0001 .0005 .0026 .0090 .0242 .0525 .0944
12 .0000 .0000 .0000 .0000 .0001 .0006 .0024 .0081 .0215 .0472
13 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0021 .0068 .0182
14 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0004 .0016 .0052

15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010
16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001
17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

18 0 .3972 .1501 .0536 .0180 .0056 .0016 .0004 .0001 .0000 .0000
1 .3763 .3002 .1704 .0811 .0338 .0126 .0042 .0012 .0003 .0001
2 .1683 .2835 .2556 .1723 .0958 .0458 .0190 .0069 .0022 .0006
3 .0473 .1680 .2406 .2297 .1704 .1046 .0547 .0246 .0095 .0031
4 .0093 .9700 .1592 .2153 .2130 .1681 .1104 .0614 .0291 .0117

5 .0014 .0218 .0787 .1507 .1988 .2017 .1664 .1146 .0666 .0327
6 .0002 .0052 .0301 .0816 .1436 .1873 .1941 .1655 .1181 .0708
7 .0000 .0010 .0091 .0350 .0820 .1376 .1792 .1892 .1657 .1214
8 .0000 .0002 .0022 .0120 .0376 .0811 .1327 .1734 .1864 .1669
9 .0000 .0000 .0004 .0033 .0139 .0386 .0794 .1284 .1694 .1855

10 .0000 .0000 .0001 .0008 .0042 .0149 .0385 .0771 .1248 .1669
11 .0000 .0000 .0000 .0001 .0010 .0046 .0151 .0374 .0742 .1214
12 .0000 .0000 .0000 .0000 .0002 .0012 .0047 .0145 .0354 .0708
13 .0000 .0000 .0000 .0000 .0000 .0002 .0012 .0045 .0134 .0327
14 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0011 .0039 .0117

15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0009 .0031
16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0006
17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001
18 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

19 0 .3774 .1351 .0456 .0144 .0042 .0011 .0003 .0001 .0000 .0000
1 .3774 .2852 .1529 .0685 .0268 .0093 .0029 .0008 .0002 .0000
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Statistical Tables

Table I: (continued)

θ

n x .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

19 2 .1787 .2852 .2428 .1540 .0803 .0358 .0138 .0046 .0013 .0003
3 .0533 .1796 .2428 .2182 .1517 .0869 .0422 .0175 .0062 .0018
4 .0112 .0798 .1714 .2182 .2023 .1491 .0909 .0467 .0203 .0074

5 .0018 .0266 .0907 .1636 .2023 .1916 .1468 .0933 .0497 .0222
6 .0002 .0069 .0374 .0955 .1574 .1916 .1844 .1451 .0949 .0518
7 .0000 .0014 .0122 .0443 .0974 .1525 .1844 .1797 .1443 .0961
8 .0000 .0002 .0032 .0166 .0487 .0981 .1489 .1797 .1771 .1442
9 .0000 .0000 .0007 .0051 .0198 .0514 .0980 .1464 .1771 .1762

10 .0000 .0000 .0001 .0013 .0066 .0220 .0528 .0976 .1449 .1762
11 .0000 .0000 .0000 .0003 .0018 .0077 .0233 .0532 .0970 .1442
12 .0000 .0000 .0000 .0000 .0004 .0022 .0083 .0237 .0529 .0961
13 .0000 .0000 .0000 .0000 .0001 .0005 .0024 .0085 .0233 .0518
14 .0000 .0000 .0000 .0000 .0000 .0001 .0006 .0024 .0082 .0222

15 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0022 .0074
16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0018
17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003
18 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
19 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

20 0 .3585 .1216 .0388 .0115 .0032 .0008 .0002 .0000 .0000 .0000
1 .3774 .2702 .1368 .0576 .0211 .0068 .0020 .0005 .0001 .0000
2 .1887 .2852 .2293 .1369 .0669 .0278 .0100 .0031 .0008 .0002
3 .0596 .1901 .2428 .2054 .1339 .0716 .0323 .0123 .0040 .0011
4 .0133 .0898 .1821 .2182 .1897 .1304 .0738 .0350 .0139 .0046

5 .0022 .0319 .1028 .1746 .2023 .1789 .1272 .0746 .0365 .0148
6 .0003 .0089 .0454 .1091 .1686 .1916 .1712 .1244 .0746 .0370
7 .0000 .0020 .0160 .0545 .1124 .1643 .1844 .1659 .1221 .0739
8 .0000 .0004 .0046 .0222 .0609 .1144 .1614 .1797 .1623 .1201
9 .0000 .0001 .0011 .0074 .0271 .0654 .1158 .1597 .1771 .1602

10 .0000 .0000 .0002 .0020 .0099 .0308 .0686 .1171 .1593 .1762
11 .0000 .0000 .0000 .0005 .0030 .0120 .0336 .0710 .1185 .1602
12 .0000 .0000 .0000 .0001 .0008 .0039 .0136 .0355 .0727 .1201
13 .0000 .0000 .0000 .0000 .0002 .0010 .0045 .0146 .0366 .0739
14 .0000 .0000 .0000 .0000 .0000 .0002 .0012 .0049 .0150 .0370

15 .0000 .0000 .0000 .0000 .0000 .0000 .0003 .0013 .0049 .0148
16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0003 .0013 .0046
17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0011
18 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002
19 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
20 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

448



Statistical Tables

Table II: Poisson Probabilities†

λ
x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 .9048 .8187 .7408 .6703 .6065 .5488 .4966 .4493 .4066 .3679
1 .0905 .1637 .2222 .2681 .3033 .3293 .3476 .3595 .3659 .3679
2 .0045 .0164 .0333 .0536 .0758 .0988 .1217 .1438 .1647 .1839
3 .0002 .0011 .0033 .0072 .0126 .0198 .0284 .0383 .0494 .0613
4 .0000 .0001 .0002 .0007 .0016 .0030 .0050 .0077 .0111 .0153

5 .0000 .0000 .0000 .0001 .0002 .0004 .0007 .0012 .0020 .0031
6 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0003 .0005
7 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

λ

x 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0 .3329 .3012 .2725 .2466 .2231 .2019 .1827 .1653 .1496 .1353
1 .3662 .3614 .3543 .3452 .3347 .3230 .3106 .2975 .2842 .2707
2 .2014 .2169 .2303 .2417 .2510 .2584 .2640 .2678 .2700 .2707
3 .0738 .0867 .0998 .1128 .1255 .1378 .1496 .1607 .1710 .1804
4 .0203 .0260 .0324 .0395 .0471 .0551 .0636 .0723 .0812 .0902

5 .0045 .0062 .0084 .0111 .0141 .0176 .0216 .0260 .0309 .0361
6 .0008 .0012 .0018 .0026 .0035 .0047 .0061 .0078 .0098 .0120
7 .0001 .0002 .0003 .0005 .0008 .0011 .0015 .0020 .0027 .0034
8 .0000 .0000 .0001 .0001 .0001 .0002 .0003 .0005 .0006 .0009
9 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0002

λ
x 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

0 .1225 .1108 .1003 .0907 .0821 .0743 .0672 .0608 .0550 .0498
1 .2572 .2438 .2306 .2177 .2052 .1931 .1815 .1703 .1596 .1494
2 .2700 .2681 .2652 .2613 .2565 .2510 .2450 .2384 .2314 .2240
3 .1890 .1966 .2033 .2090 .2138 .2176 .2205 .2225 .2237 .2240
4 .0992 .1082 .1169 .1254 .1336 .1414 .1488 .1557 .1622 .1680

5 .0417 .0476 .0538 .0602 .0668 .0735 .0804 .0872 .0940 .1008
6 .0146 .0174 .0206 .0241 .0278 .0319 .0362 .0407 .0455 .0504
7 .0044 .0055 .0068 .0083 .0099 .0118 .0139 .0163 .0188 .0216
8 .0011 .0015 .0019 .0025 .0031 .0038 .0047 .0057 .0068 .0081
9 .0003 .0004 .0005 .0007 .0009 .0011 .0014 .0018 .0022 .0027

10 .0001 .0001 .0001 .0002 .0002 .0003 .0004 .0005 .0006 .0008
11 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0002 .0002
12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

λ
x 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0

0 .0450 .0408 .0369 .0334 .0302 .0273 .0247 .0224 .0202 .0183
1 .1397 .1304 .1217 .1135 .1057 .0984 .0915 .0850 .0789 .0733
2 .2165 .2087 .2008 .1929 .1850 .1771 .1692 .1615 .1539 .1465
3 .2237 .2226 .2209 .2186 .2158 .2125 .2087 .2046 .2001 .1954
4 .1734 .1781 .1823 .1858 .1888 .1912 .1931 .1944 .1951 .1954

5 .1075 .1140 .1203 .1264 .1322 .1377 .1429 .1477 .1522 .1563
6 .0555 .0608 .0662 .0716 .0771 .0826 .0881 .0936 .0989 .1042
7 .0246 .0278 .0312 .0348 .0385 .0425 .0466 .0508 .0551 .0595
8 .0095 .0111 .0129 .0148 .0169 .0191 .0215 .0241 .0269 .0298
9 .0033 .0040 .0047 .0056 .0066 .0076 .0089 .0102 .0116 .0132

†Based on E. C. Molina, Poisson’s Exponential Binomial Limit, 1973 Reprint, Robert E. Krieger
Publishing Company, Melbourne, Fla., by permission of the publisher.
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Statistical Tables

Table II: (continued)

λ
x 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0

10 .0010 .0013 .0016 .0019 .0023 .0028 .0033 .0039 .0045 .0053
11 .0003 .0004 .0005 .0006 .0007 .0009 .0011 .0013 .0016 .0019
12 .0001 .0001 .0001 .0002 .0002 .0003 .0003 .0004 .0005 .0006
13 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0002 .0002
14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

λ

x 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0

0 .0166 .0150 .0136 .0123 .0111 .0101 .0091 .0082 .0074 .0067
1 .0679 .0630 .0583 .0540 .0500 .0462 .0427 .0395 .0365 .0337
2 .1393 .1323 .1254 .1188 .1125 .1063 .1005 .0948 .0894 .0842
3 .1904 .1852 .1798 .1743 .1687 .1631 .1574 .1517 .1460 .1404
4 .1951 .1944 .1933 .1917 .1898 .1875 .1849 .1820 .1789 .1755

5 .1600 .1633 .1662 .1687 .1708 .1725 .1738 .1747 .1753 .1755
6 .1093 .1143 .1191 .1237 .1281 .1323 .1362 .1398 .1432 .1462
7 .0640 .0686 .0732 .0778 .0824 .0869 .0914 .0959 .1002 .1044
8 .0328 .0360 .0393 .0428 .0463 .0500 .0537 .0575 .0614 .0653
9 .0150 .0168 .0188 .0209 .0232 .0255 .0280 .0307 .0334 .0363

10 .0061 .0071 .0081 .0092 .0104 .0118 .0132 .0147 .0164 .0181
11 .0023 .0027 .0032 .0037 .0043 .0049 .0056 .0064 .0073 .0082
12 .0008 .0009 .0011 .0014 .0016 .0019 .0022 .0026 .0030 .0034
13 .0002 .0003 .0004 .0005 .0006 .0007 .0008 .0009 .0011 .0013
14 .0001 .0001 .0001 .0001 .0002 .0002 .0003 .0003 .0004 .0005

15 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0001 .0002

λ

x 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0

0 .0061 .0055 .0050 .0045 .0041 .0037 .0033 .0030 .0027 .0025
1 .0311 .0287 .0265 .0244 .0225 .0207 .0191 .0176 .0162 .0149
2 .0793 .0746 .0701 .0659 .0618 .0580 .0544 .0509 .0477 .0446
3 .1348 .1293 .1239 .1185 .1133 .1082 .1033 .0985 .0938 .0892
4 .1719 .1681 .1641 .1600 .1558 .1515 .1472 .1428 .1383 .1339

5 .1753 .1748 .1740 .1728 .1714 .1697 .1678 .1656 .1632 .1606
6 .1490 .1515 .1537 .1555 .1571 .1584 .1594 .1601 .1505 .1606
7 .1086 .1125 .1163 .1200 .1234 .1267 .1298 .1326 .1353 .1377
8 .0692 .0731 .0771 .0810 .0849 .0887 .0925 .0962 .0998 .1033
9 .0392 .0423 .0454 .0486 .0519 .0552 .0586 .0620 .0654 .0688

10 .0200 .0220 .0241 .0262 .0285 .0309 .0334 .0359 .0386 .0413
11 .0093 .0104 .0116 .0129 .0143 .0157 .0173 .0190 .0207 .0225
12 .0039 .0045 .0051 .0058 .0065 .0073 .0082 .0092 .0102 .0113
13 .0015 .0018 .0021 .0024 .0028 .0032 .0036 .0041 .0046 .0052
14 .0006 .0007 .0008 .0009 .0011 .0013 .0015 .0017 .0019 .0022

15 .0002 .0002 .0003 .0003 .0004 .0005 .0006 .0007 .0008 .0009
16 .0001 .0001 .0001 .0001 .0001 .0002 .0002 .0002 .0003 .0003
17 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0001

λ

x 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0

0 .0022 .0020 .0018 .0017 .0015 .0014 .0012 .0011 .0010 .0009
1 .0137 .0126 .0116 .0106 .0098 .0090 .0082 .0076 .0070 .0064
2 .0417 .0390 .0364 .0340 .0318 .0296 .0276 .0258 .0240 .0223
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Table II: (continued)

λ
x 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0

3 .0848 .0806 .0765 .0726 .0688 .0652 .0617 .0584 .0552 .0521
4 .1294 .1249 .1205 .1162 .1118 .1076 .1034 .0992 .0952 .0912

5 .1579 .1549 .1519 .1487 .1454 .1420 .1385 .1349 .1314 .1277
6 .1605 .1601 .1595 .1586 .1575 .1562 .1546 .1529 .1511 .1490
7 .1399 .1418 .1435 .1450 .1462 .1472 .1480 .1486 .1489 .1490
8 .1066 .1099 .1130 .1160 .1188 .1215 .1240 .1263 .1284 .1304
9 .0723 .0757 .0791 .0825 .0858 .0891 .0923 .0954 .0985 .1014

10 .0441 .0469 .0498 .0528 .0558 .0588 .0618 .0649 .0679 .0710
11 .0245 .0265 .0285 .0307 .0330 .0353 .0377 .0401 .0426 .0452
12 .0124 .0137 .0150 .0164 .0179 .0194 .0210 .0227 .0245 .0264
13 .0058 .0065 .0073 .0081 .0089 .0098 .0108 .0119 .0130 .0142
14 .0025 .0029 .0033 .0037 .0041 .0046 .0052 .0058 .0064 .0071

15 .0010 .0012 .0014 .0016 .0018 .0020 .0023 .0026 .0029 .0033
16 .0004 .0005 .0005 .0006 .0007 .0008 .0010 .0011 .0013 .0014
17 .0001 .0002 .0002 .0002 .0003 .0003 .0004 .0004 .0005 .0006
18 .0000 .0001 .0001 .0001 .0001 .0001 .0001 .0002 .0002 .0002
19 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001

λ

x 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0

0 .0008 .0007 .0007 .0006 .0006 .0005 .0005 .0004 .0004 .0003
1 .0059 .0054 .0049 .0045 .0041 .0038 .0035 .0032 .0029 .0027
2 .0208 .0194 .0180 .0167 .0156 .0145 .0134 .0125 .0116 .0107
3 .0492 .0464 .0438 .0413 .0389 .0366 .0345 .0324 .0305 .0286
4 .0874 .0836 .0799 .0764 .0729 .0696 .0663 .0632 .0602 .0573

5 .1241 .1204 .1167 .1130 .1094 .1057 .1021 .0986 .0951 .0916
6 .1468 .1445 .1420 .1394 .1367 .1339 .1311 .1282 .1252 .1221
7 .1489 .1486 .1481 .1474 .1465 .1454 .1442 .1428 .1413 .1396
8 .1321 .1337 .1351 .1363 .1373 .1382 .1388 .1392 .1395 .1396
9 .1042 .1070 .1096 .1121 .1144 .1167 .1187 .1207 .1224 .1241

10 .0740 .0770 .0800 .0829 .0858 .0887 .0914 .0941 .0967 .0993
11 .0478 .0504 .0531 .0558 .0585 .0613 .0640 .0667 .0695 .0722
12 .0283 .0303 .0323 .0344 .0366 .0388 .0411 .0434 .0457 .0481
13 .0154 .0168 .0181 .0196 .0211 .0227 .0243 .0260 .0278 .0296
14 .0078 .0086 .0095 .0104 .0113 .0123 .0134 .0145 .0157 .0169

15 .0037 .0041 .0046 .0051 .0057 .0062 .0069 .0075 .0083 .0090
16 .0016 .0019 .0021 .0024 .0026 .0030 .0033 .0037 .0041 .0045
17 .0007 .0008 .0009 .0010 .0012 .0013 .0015 .0017 .0019 .0021
18 .0003 .0003 .0004 .0004 .0005 .0006 .0006 .0007 .0008 .0009
19 .0001 .0001 .0001 .0002 .0002 .0002 .0003 .0003 .0003 .0004

20 .0000 .0000 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0002
21 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001

λ

x 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0

0 .0003 .0003 .0002 .0002 .0002 .0002 .0002 .0002 .0001 .0001
1 .0025 .0023 .0021 .0019 .0017 .0016 .0014 .0013 .0012 .0011
2 .0100 .0092 .0086 .0079 .0074 .0068 .0063 .0058 .0054 .0050
3 .0269 .0252 .0237 .0222 .0208 .0195 .0183 .0171 .0160 .0150
4 .0544 .0517 .0491 .0466 .0443 .0420 .0398 .0377 .0357 .0337

451



Statistical Tables

Table II: (continued)

λ
x 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0

5 .0882 .0849 .0816 .0784 .0752 .0722 .0692 .0663 .0635 .0607
6 .1191 .1160 .1128 .1097 .1066 .1034 .1003 .0972 .0941 .0911
7 .1378 .1358 .1338 .1317 .1294 .1271 .1247 .1222 .1197 .1171
8 .1395 .1392 .1388 .1382 .1375 .1366 .1356 .1344 .1332 .1318
9 .1256 .1269 .1280 .1290 .1299 .1306 .1311 .1315 .1317 .1318

10 .1017 .1040 .1063 .1084 .1104 .1123 .1140 .1157 .1172 .1186
11 .0749 .0776 .0802 .0828 .0853 .0878 .0902 .0925 .0948 .0970
12 .0505 .0530 .0555 .0579 .0604 .0629 .0654 .0679 .0703 .0728
13 .0315 .0334 .0354 .0374 .0395 .0416 .0438 .0459 .0481 .0504
14 .0182 .0196 .0210 .0225 .0240 .0256 .0272 .0289 .0306 .0324

15 .0098 .0107 .0116 .0126 .0136 .0147 .0158 .0169 .0182 .0194
16 .0050 .0055 .0060 .0066 .0072 .0079 .0086 .0093 .0101 .0109
17 .0024 .0026 .0029 .0033 .0036 .0040 .0044 .0048 .0053 .0058
18 .0011 .0012 .0014 .0015 .0017 .0019 .0021 .0024 .0026 .0029
19 .0005 .0005 .0006 .0007 .0008 .0009 .0010 .0011 .0012 .0014

20 .0002 .0002 .0002 .0003 .0003 .0004 .0004 .0005 .0005 .0006
21 .0001 .0001 .0001 .0001 .0001 .0002 .0002 .0002 .0002 .0003
22 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0001 .0001

λ

x 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10

0 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0000
1 .0010 .0009 .0009 .0008 .0007 .0007 .0006 .0005 .0005 .0005
2 .0046 .0043 .0040 .0037 .0034 .0031 .0029 .0027 .0025 .0023
3 .0140 .0131 .0123 .0115 .0107 .0100 .0093 .0087 .0081 .0076
4 .0319 .0302 .0285 .0269 .0254 .0240 .0226 .0213 .0201 .0189

5 .0581 .0555 .0530 .0506 .0483 .0460 .0439 .0418 .0398 .0378
6 .0881 .0851 .0822 .0793 .0764 .0736 .0709 .0682 .0656 .0631
7 .1145 .1118 .1091 .1064 .1037 .1010 .0982 .0955 .0928 .0901
8 .1302 .1286 .1269 .1251 .1232 .1212 .1191 .1170 .1148 .1126
9 .1317 .1315 .1311 .1306 .1300 .1293 .1284 .1274 .1263 .1251

10 .1198 .1210 .1219 .1228 .1235 .1241 .1245 .1249 .1250 .1251
11 .0991 .1012 .1031 .1049 .1067 .1083 .1098 .1112 .1125 .1137
12 .0752 .0776 .0799 .0822 .0844 .0866 .0888 .0908 .0928 .0948
13 .0526 .0549 .0572 .0594 .0617 .0640 .0662 .0685 .0707 .0729
14 .0342 .0361 .0380 .0399 .0419 .0439 .0459 .0479 .0500 .0521

15 .0208 .0221 .0235 .0250 .0265 .0281 .0297 .0313 .0330 .0347
16 .0118 .0127 .0137 .0147 .0157 .0168 .0180 .0192 .0204 .0217
17 .0063 .0069 .0075 .0081 .0088 .0095 .0103 .0111 .0119 .0128
18 .0032 .0035 .0039 .0042 .0046 .0051 .0055 .0060 .0065 .0071
19 .0015 .0017 .0019 .0021 .0023 .0026 .0028 .0031 .0034 .0037

20 .0007 .0008 .0009 .0010 .0011 .0012 .0014 .0015 .0017 .0019
21 .0003 .0003 .0004 .0004 .0005 .0006 .0006 .0007 .0008 .0009
22 .0001 .0001 .0002 .0002 .0002 .0002 .0003 .0003 .0004 .0004
23 .0000 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0002 .0002
24 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001

λ

x 11 12 13 14 15 16 17 18 19 20

0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
1 .0002 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
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Table II: (continued)

λ
x 11 12 13 14 15 16 17 18 19 20

2 .0010 .0004 .0002 .0001 .0000 .0000 .0000 .0000 .0000 .0000
3 .0037 .0018 .0008 .0004 .0002 .0001 .0000 .0000 .0000 .0000
4 .0102 .0053 .0027 .0013 .0006 .0003 .0001 .0001 .0000 .0000

5 .0224 .0127 .0070 .0037 .0019 .0010 .0005 .0002 .0001 .0001
6 .0411 .0255 .0152 .0087 .0048 .0026 .0014 .0007 .0004 .0002
7 .0646 .0437 .0281 .0174 .0104 .0060 .0034 .0018 .0010 .0005
8 .0888 .0655 .0457 .0304 .0194 .0120 .0072 .0042 .0024 .0013
9 .1085 .0874 .0661 .0473 .0324 .0213 .0135 .0083 .0050 .0029

10 .1194 .1048 .0859 .0663 .0486 .0341 .0230 .0150 .0095 .0058
11 .1194 .1144 .1015 .0844 .0663 .0496 .0355 .0245 .0164 .0106
12 .1094 .1144 .1099 .0984 .0829 .0661 .0504 .0368 .0259 .0176
13 .0926 .1056 .1099 .1060 .0956 .0814 .0658 .0509 .0378 .0271
14 .0728 .0905 .1021 .1060 .1024 .0930 .0800 .0655 .0514 .0387

15 .0534 .0724 .0885 .0989 .1024 .0992 .0906 .0786 .0650 .0516
16 .0367 .0543 .0719 .0866 .0960 .0992 .0963 .0884 .0772 .0646
17 .0237 .0383 .0550 .0713 .0847 .0934 .0963 .0936 .0863 .0760
18 .0145 .0256 .0397 .0554 .0706 .0830 .0909 .0936 .0911 .0844
19 .0084 .0161 .0272 .0409 .0557 .0699 .0814 .0887 .0911 .0888

20 .0046 .0097 .0177 .0286 .0418 .0559 .0692 .0798 .0866 .0888
21 .0024 .0055 .0109 .0191 .0299 .0426 .0560 .0684 .0783 .0846
22 .0012 .0030 .0065 .0121 .0204 .0310 .0433 .0560 .0676 .0769
23 .0006 .0016 .0037 .0074 .0133 .0216 .0320 .0438 .0559 .0669
24 .0003 .0008 .0020 .0043 .0083 .0144 .0226 .0328 .0442 .0557

25 .0001 .0004 .0010 .0024 .0050 .0092 .0154 .0237 .0336 .0446
26 .0000 .0002 .0005 .0013 .0029 .0057 .0101 .0164 .0246 .0343
27 .0000 .0001 .0002 .0007 .0016 .0034 .0063 .0109 .0173 .0254
28 .0000 .0000 .0001 .0003 .0009 .0019 .0038 .0070 .0117 .0181
29 .0000 .0000 .0001 .0002 .0004 .0011 .0023 .0044 .0077 .0125

30 .0000 .0000 .0000 .0001 .0002 .0006 .0013 .0026 .0049 .0083
31 .0000 .0000 .0000 .0000 .0001 .0003 .0007 .0015 .0030 .0054
32 .0000 .0000 .0000 .0000 .0001 .0001 .0004 .0009 .0018 .0034
33 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0005 .0010 .0020
34 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0006 .0012

35 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0007
36 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0004
37 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002
38 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001
39 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001
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Table III: Standard Normal Distribution

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359
0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753
0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141
0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517
0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879
0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224

0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2517 .2549
0.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852
0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133
0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389
1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621

1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830
1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015
1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177
1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319
1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441

1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545
1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633
1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706
1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767
2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817

2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857
2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890
2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916
2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936
2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952

2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964
2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974
2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981
2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4986 .4988
3.0 .4987 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990

Also, for z = 4.0, 5.0, and 6.0, the probabilities are 0.49997, 0.4999997, and 0.499999999.
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Table IV: Values of tα,ν
†

ν α = .10 α = .05 α = .025 α = .01 α = .005 ν

1 3.078 6.314 12.706 31.821 63.657 1
2 1.886 2.920 4.303 6.965 9.925 2
3 1.638 2.353 3.182 4.541 5.841 3
4 1.533 2.132 2.776 3.747 4.604 4
5 1.476 2.015 2.571 3.365 4.032 5

6 1.440 1.943 2.447 3.143 3.707 6
7 1.415 1.895 2.365 2.998 3.499 7
8 1.397 1.860 2.306 2.896 3.355 8
9 1.383 1.833 2.262 2.821 3.250 9

10 1.372 1.812 2.228 2.764 3.169 10

11 1.363 1.796 2.201 2.718 3.106 11
12 1.356 1.782 2.179 2.681 3.055 12
13 1.350 1.771 2.160 2.650 3.012 13
14 1.345 1.761 2.145 2.624 2.977 14
15 1.341 1.753 2.131 2.602 2.947 15

16 1.337 1.746 2.120 2.583 2.921 16
17 1.333 1.740 2.110 2.567 2.898 17
18 1.330 1.734 2.101 2.552 2.878 18
19 1.328 1.729 2.093 2.539 2.861 19
20 1.325 1.725 2.086 2.528 2.845 20

21 1.323 1.721 2.080 2.518 2.831 21
22 1.321 1.717 2.074 2.508 2.819 22
23 1.319 1.714 2.069 2.500 2.807 23
24 1.318 1.711 2.064 2.492 2.797 24
25 1.316 1.708 2.060 2.485 2.787 25

26 1.315 1.706 2.056 2.479 2.779 26
27 1.314 1.703 2.052 2.473 2.771 27
28 1.313 1.701 2.048 2.467 2.763 28
29 1.311 1.699 2.045 2.462 2.756 29
inf. 1.282 1.645 1.960 2.326 2.576 inf.

†Based on Richard A. Johnson and Dean W. Wichern, Applied Multivariate Statistical Analysis,
2nd ed., © 1988, Table 2, p. 592. By permission of Prentice Hall, Upper Saddle River, N.J.
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Table V: Values of χ2
α,ν

†

ν α = .995 α = .99 α = .975 α = .95 α = .05 α = .025 α = .01 α = .005 ν

1 .0000393 .000157 .000982 .00393 3.841 5.024 6.635 7.879 1
2 .0100 .0201 .0506 .103 5.991 7.378 9.210 10.597 2
3 .0717 .115 .216 .352 7.815 9.348 11.345 12.838 3
4 .207 .297 .484 .711 9.488 11.143 13.277 14.860 4
5 .412 .554 .831 1.145 11.070 12.832 15.086 16.750 5

6 .676 .872 1.237 1.635 12.592 14.449 16.812 18.548 6
7 .989 1.239 1.690 2.167 14.067 16.013 18.475 20.278 7
8 1.344 1.646 2.180 2.733 15.507 17.535 20.090 21.955 8
9 1.735 2.088 2.700 3.325 16.919 19.023 21.666 23.589 9

10 2.156 2.558 3.247 3.940 18.307 20.483 23.209 25.188 10

11 2.603 3.053 3.816 4.575 19.675 21.920 24.725 26.757 11
12 3.074 3.571 4.404 5.226 21.026 23.337 26.217 28.300 12
13 3.565 4.107 5.009 5.892 22.362 24.736 27.688 29.819 13
14 4.075 4.660 5.629 6.571 23.685 26.119 29.141 31.319 14
15 4.601 5.229 6.262 7.261 24.996 27.488 30.578 32.801 15

16 5.142 5.812 6.908 7.962 26.296 28.845 32.000 34.267 16
17 5.697 6.408 7.564 8.672 27.587 30.191 33.409 35.718 17
18 6.265 7.015 8.231 9.390 28.869 31.526 34.805 37.156 18
19 6.844 7.633 8.907 10.117 30.144 32.852 36.191 38.582 19
20 7.434 8.260 9.591 10.851 31.410 34.170 37.566 39.997 20

21 8.034 8.897 10.283 11.591 32.671 35.479 38.932 41.401 21
22 8.643 9.542 10.982 12.338 33.924 36.781 40.289 42.796 22
23 9.260 10.196 11.689 13.091 35.172 38.076 41.638 44.181 23
24 9.886 10.856 12.401 13.848 36.415 39.364 42.980 45.558 24
25 10.520 11.524 13.120 14.611 37.652 40.646 44.314 46.928 25

26 11.160 12.198 13.844 15.379 38.885 41.923 45.642 48.290 26
27 11.808 12.879 14.573 16.151 40.113 43.194 46.963 49.645 27
28 12.461 13.565 15.308 16.928 41.337 44.461 48.278 50.993 28
29 13.121 14.256 16.047 17.708 42.557 45.722 49.588 52.336 29
30 13.787 14.953 16.791 18.493 43.773 46.979 50.892 53.672 30

†Based on Table 8 of Biometrika Tables for Statisticians, Vol. 1, Cambridge University Press, 1954,
by permission of the Biometrika trustees.

456



StatisticalTables

Table VI: Values of f0.05,ν1,ν2
†

ν1 = Degrees of freedom for numerator

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 q
1 161 200 216 225 230 234 237 239 241 242 244 246 248 249 250 251 252 253 254
2 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.5 19.5 19.5 19.5 19.5 19.5
3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.37

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93

ν
2

=
D

eg
re

es
of

fr
ee

do
m

fo
r

de
no

m
in

at
or

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07

†Reproduced from M. Merrington and C. M. Thompson, “Tables of percentage points of the inverted beta (F) distribution,” Biometrika, Vol. 33 (1943), by permission of
the Biometrika trustees.
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Table VI: (continued) Values of f0.05,ν1,ν2

ν1 = Degrees of freedom for numerator

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 q

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73
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25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39

120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.25
q 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00
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Table VI: (continued) Values of f0.01,ν1,ν2

ν1 = Degrees of freedom for numerator

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 q

1 4,052 5,000 5,403 5,625 5,764 5,859 5,928 5,982 6,023 6,056 6,106 6,157 6,209 6,235 6,261 6,287 6,313 6,339 6,366
2 98.5 99.0 99.2 99.2 99.3 99.3 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.5 99.5 99.5 99.5 99.5 99.5
3 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.3 27.2 27.1 26.9 26.7 26.6 26.5 26.4 26.3 26.2 26.1
4 21.2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 14.7 14.5 14.4 14.2 14.0 13.9 13.8 13.7 13.7 13.6 13.5
5 16.3 13.3 12.1 11.4 11.0 10.7 10.5 10.3 10.2 10.1 9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.11 9.02

6 13.7 10.9 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.31 7.23 7.14 7.06 6.97 6.88
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7 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 6.07 5.99 6.91 5.82 5.74 5.65
8 11.3 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 5.28 5.20 5.12 5.03 4.95 4.86
9 10.6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.40 4.31

10 10.0 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.56 4.41 4.33 4.25 4.17 4.08 4.00 3.91

11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.40 4.25 4.10 4.02 3.94 3.86 3.78 3.69 3.60
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45 3.36
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25 3.17
14 8.86 6.51 5.56 5.04 4.70 4.46 4.28 4.14 4.03 3.94 3.80 3.66 3.51 3.43 3.35 3.27 3.18 3.09 3.00
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96 2.87
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Table VI: (continued) Values of f0.01,ν1,ν2

ν1 = Degrees of freedom for numerator

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 q

16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.55 3.41 3.26 3.18 3.10 3.02 2.93 2.84 2.75
17 8.40 6.11 5.19 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.46 3.31 3.16 3.08 3.00 2.92 2.83 2.75 2.65
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.37 3.23 3.08 3.00 2.92 2.84 2.75 2.66 2.57
19 8.19 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.30 3.15 3.00 2.92 2.84 2.76 2.67 2.58 2.49
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.52 2.42

21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.17 3.03 2.88 2.80 2.72 2.64 2.55 2.46 2.36
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.40 2.31
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35 2.26
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.31 2.21
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25 7.77 5.57 4.68 4.18 3.86 3.63 3.46 3.32 3.22 3.13 2.99 2.85 2.70 2.62 2.53 2.45 2.36 2.27 2.17

30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.70 2.55 2.47 2.39 2.30 2.21 2.11 2.01
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.66 2.52 2.37 2.29 2.20 2.11 2.02 1.92 1.80
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.73 1.60

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.34 2.19 2.03 1.95 1.86 1.76 1.66 1.53 1.38
q 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.18 2.04 1.88 1.79 1.70 1.59 1.47 1.32 1.00
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Table VII: Factorials and Binomial Coefficients
Factorials

n n! log n!

0 1 0.0000
1 1 0.0000
2 2 0.3010
3 6 0.7782
4 24 1.3802
5 120 2.0792
6 720 2.8573
7 5,040 3.7024
8 40,320 4.6055
9 362,880 5.5598

10 3,628,800 6.5598
11 39,916,800 7.6012
12 479,001,600 8.6803
13 6,227,020,800 9.7943
14 87,178,291,200 10.9404
15 1,307,674,368,000 12.1165

Binomial Coefficients

n
(

n
0

) (
n
1

) (
n
2

) (
n
3

) (
n
4

) (
n
5

) (
n
6

) (
n
7

) (
n
8

) (
n
9

) (
n
10

)

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1

5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
9 1 9 36 84 126 126 84 36 9 1

10 1 10 45 120 210 252 210 120 45 10 1
11 1 11 55 165 330 462 462 330 165 55 11
12 1 12 66 220 495 792 924 792 495 220 66
13 1 13 78 286 715 1287 1716 1716 1287 715 286
14 1 14 91 364 1001 2002 3003 3432 3003 2002 1001

15 1 15 105 455 1365 3003 5005 6435 6435 5005 3003
16 1 16 120 560 1820 4368 8008 11440 12870 11440 8008
17 1 17 136 680 2380 6188 12376 19448 24310 24310 19448
18 1 18 153 816 3060 8568 18564 31824 43758 48620 43758
19 1 19 171 969 3876 11628 27132 50388 75582 92378 92378

20 1 20 190 1140 4845 15504 38760 77520 125970 167960 184756
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Table VIII: Values of ex and e−x

x ex e−x x ex e−x

0.0 1.000 1.000 5.0 148.4 0.0067
0.1 1.105 0.905 5.1 164.0 0.0061
0.2 1.221 0.819 5.2 181.3 0.0055
0.3 1.350 0.741 5.3 200.3 0.0050
0.4 1.492 0.670 5.4 221.4 0.0045

0.5 1.649 0.607 5.5 244.7 0.0041
0.6 1.822 0.549 5.6 270.4 0.0037
0.7 2.014 0.497 5.7 298.9 0.0033
0.8 2.226 0.449 5.8 330.3 0.0030
0.9 2.460 0.407 5.9 365.0 0.0027

1.0 2.718 0.368 6.0 403.4 0.0025
1.1 3.004 0.333 6.1 445.9 0.0022
1.2 3.320 0.301 6.2 492.8 0.0020
1.3 3.669 0.273 6.3 544.6 0.0018
1.4 4.055 0.247 6.4 601.8 0.0017

1.5 4.482 0.223 6.5 665.1 0.0015
1.6 4.953 0.202 6.6 735.1 0.0014
1.7 5.474 0.183 6.7 812.4 0.0012
1.8 6.050 0.165 6.8 897.8 0.0011
1.9 6.686 0.150 6.9 992.3 0.0010

2.0 7.389 0.135 7.0 1,096.6 0.0009
2.1 8.166 0.122 7.1 1,212.0 0.0008
2.2 9.025 0.111 7.2 1,339.4 0.0007
2.3 9.974 0.100 7.3 1,480.3 0.0007
2.4 11.023 0.091 7.4 1,636.0 0.0006

2.5 12.18 0.082 7.5 1,808.0 0.00055
2.6 13.46 0.074 7.6 1,998.2 0.00050
2.7 14.88 0.067 7.7 2,208.3 0.00045
2.8 16.44 0.061 7.8 2,440.6 0.00041
2.9 18.17 0.055 7.9 2,697.3 0.00037

3.0 20.09 0.050 8.0 2,981.0 0.00034
3.1 22.20 0.045 8.1 3,294.5 0.00030
3.2 24.53 0.041 8.2 3,641.0 0.00027
3.3 27.11 0.037 8.3 4,023.9 0.00025
3.4 29.96 0.033 8.4 4,447.1 0.00022

3.5 33.12 0.030 8.5 4,914.8 0.00020
3.6 36.60 0.027 8.6 5,431.7 0.00018
3.7 40.45 0.025 8.7 6,002.9 0.00017
3.8 44.70 0.022 8.8 6,634.2 0.00015
3.9 49.40 0.020 8.9 7,332.0 0.00014

4.0 54.60 0.018 9.0 8,103.1 0.00012
4.1 60.34 0.017 9.1 8,955.3 0.00011
4.2 66.69 0.015 9.2 9,897.1 0.00010
4.3 73.70 0.014 9.3 10,938 0.00009
4.4 81.45 0.012 9.4 12,088 0.00008

4.5 90.02 0.011 9.5 13,360 0.00007
4.6 99.48 0.010 9.6 14,765 0.00007
4.7 109.95 0.009 9.7 16,318 0.00006
4.8 121.51 0.008 9.8 18,034 0.00006
4.9 134.29 0.007 9.9 19,930 0.00005
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Table IX: Values of rp for α = 0.01†

d.f. p 2 3 4 5 6 7 8 9 10

1 90.02
2 14.04 14.04
3 8.26 8.32 8.32
4 6.51 6.68 6.74 6.76
5 5.70 5.90 5.99 6.04 6.07

6 5.24 5.44 5.55 5.62 5.66 5.68
7 4.95 5.15 5.26 5.33 5.38 5.42 5.44
8 4.74 4.94 5.06 5.13 5.19 5.23 5.26 5.28
9 4.60 4.79 4.91 4.99 5.04 5.09 5.12 5.14 5.16

10 4.48 4.67 4.79 4.88 4.93 4.98 5.01 5.04 5.06

11 4.39 4.58 4.70 4.78 4.84 4.89 4.92 4.95 4.97
12 4.32 4.50 4.62 4.71 4.77 4.81 4.85 4.88 4.91
13 4.26 4.44 4.56 4.64 4.71 4.75 4.79 4.82 4.85
14 4.21 4.39 4.51 4.59 4.66 4.70 4.74 4.77 4.80
15 4.17 4.34 4.46 4.55 4.61 4.66 4.70 4.73 4.76

16 4.13 4.31 4.43 4.51 4.57 4.62 4.66 4.70 4.72
17 4.10 4.27 4.39 4.47 4.54 4.59 4.63 4.66 4.69
18 4.07 4.25 4.36 4.45 4.51 4.56 4.60 4.64 4.66
19 4.05 4.22 4.33 4.42 4.48 4.53 4.57 4.61 4.64
20 4.02 4.20 4.31 4.40 4.46 4.51 4.55 4.59 4.62

24 3.96 4.13 4.24 4.32 4.39 4.44 4.48 4.52 4.55
30 3.89 4.06 4.17 4.25 4.31 4.36 4.41 4.45 4.48
40 3.82 3.99 4.10 4.18 4.24 4.29 4.33 4.38 4.41
60 3.76 3.92 4.03 4.11 4.18 4.23 4.37 4.31 4.34

120 3.70 3.86 3.97 4.04 4.11 4.16 4.20 4.24 4.27

q 3.64 3.80 3.90 3.98 4.04 4.09 4.13 4.17 4.21

†This table is reproduced from H. L. Harter, “Critical Values for Duncan’s New Multiple Range
Test.” It contains some corrected values to replace those given by D. B. Duncan in “Multiple
Range and Multiple F Tests,” Biometrics, Vol. 11 (1955). The above table is reproduced with the
permission of the author and the Biometric Society.
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Table IX: (continued) Values of rp for α = 0.05

d.f.
p 2 3 4 5 6 7 8 9 10

1 17.97
2 6.09 6.09
3 4.50 4.52 4.52
4 3.93 4.01 4.03 4.03
5 3.64 3.75 3.80 3.81 3.81

6 3.46 3.59 3.65 3.68 3.69 3.70
7 3.34 3.48 3.55 3.59 3.61 3.62 3.63
8 3.26 3.40 3.48 3.52 3.55 3.57 3.57 3.58
9 3.20 3.34 3.42 3.47 3.50 3.52 3.54 3.54 3.55

10 3.15 3.29 3.38 3.43 3.47 3.49 3.51 3.52 3.52

11 3.11 3.26 3.34 3.40 3.44 3.46 3.48 3.49 3.50
12 3.08 3.23 3.31 3.37 3.41 3.44 3.46 3.47 3.48
13 3.06 3.20 3.29 3.35 3.39 3.42 3.46 3.46 3.47
14 3.03 3.18 3.27 3.33 3.37 3.40 3.43 3.44 3.46
15 3.01 3.16 3.25 3.31 3.36 3.39 3.41 3.43 3.45
16 3.00 3.14 3.23 3.30 3.34 3.38 3.40 3.42 3.44
17 2.98 3.13 3.22 3.28 3.33 3.37 3.39 3.41 3.43
18 2.97 3.12 3.21 3.27 3.32 3.36 3.38 3.40 3.42
19 2.96 3.11 3.20 3.26 3.31 3.35 3.38 3.40 3.41
20 2.95 3.10 3.19 3.25 3.30 3.34 3.37 3.39 3.41

24 2.92 3.07 3.16 3.23 3.28 3.31 3.35 3.37 3.39
30 2.89 3.03 3.13 3.20 3.25 3.29 3.32 3.35 3.37
40 2.86 3.01 3.10 3.17 3.22 3.27 3.30 3.33 3.35
60 2.83 2.98 3.07 3.14 3.20 3.24 3.28 3.31 3.33

120 2.80 2.95 3.04 3.12 3.17 3.22 3.25 3.29 3.31

q 2.77 2.92 3.02 3.09 3.15 3.19 3.23 3.27 3.29
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Table X: Critical Values for the Signed-Rank Test†

n T0.10 T0.05 T0.02 T0.01

4
5 1
6 2 1
7 4 2 0
8 6 4 2 0
9 8 6 3 2

10 11 8 5 3
11 14 11 7 5
12 17 14 10 7
13 21 17 13 10
14 26 21 16 13
15 30 25 20 16
16 36 30 24 19
17 41 35 28 23
18 47 40 33 28
19 54 46 38 32
20 60 52 43 37
21 68 59 49 43
22 75 66 56 49
23 83 73 62 55
24 92 81 69 61
25 101 90 77 68

†From F. Wilcoxon and R. A. Wilcox, Some Rapid Approximate Statistical Procedures, Amer-
ican Cyanamid Company, Pearl River, N. Y., 1964. Reproduced with permission of American
Cyanamid Company.
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Table XI: Critical Values for the U Test†

Values of U0.10

n1
n2

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 0 0 0 1 1 1 1 2 2 3 3
3 0 0 1 2 2 3 4 4 5 5 6 7 7
4 0 1 2 3 4 5 6 7 8 9 10 11 12
5 0 1 2 4 5 6 8 9 11 12 13 15 16 18
6 0 2 3 5 7 8 10 12 14 16 17 19 21 23
7 0 2 4 6 8 11 13 15 17 19 21 24 26 28
8 1 3 5 8 10 13 15 18 20 23 26 28 31 33
9 1 4 6 9 12 15 18 21 24 27 30 33 36 39

10 1 4 7 11 14 17 20 24 27 31 34 37 41 44
11 1 5 8 12 16 19 23 27 31 34 38 42 46 50
12 2 5 9 13 17 21 26 30 34 38 42 47 51 55
13 2 6 10 15 19 24 28 33 37 42 47 51 56 61
14 3 7 11 16 21 26 31 36 41 46 51 56 61 66
15 3 7 12 18 23 28 33 39 44 50 55 61 66 72

Values of U0.05

n1
n2

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 0 0 0 0 1 1 1 1
3 0 1 1 2 2 3 3 4 4 5 5
4 0 1 2 3 4 4 5 6 7 8 9 10
5 0 1 2 3 5 6 7 8 9 11 12 13 14
6 1 2 3 5 6 8 10 11 13 14 16 17 19
7 1 3 5 6 8 10 12 14 16 18 20 22 24
8 0 2 4 6 8 10 13 15 17 19 22 24 26 29
9 0 2 4 7 10 12 15 17 20 23 26 28 31 34

10 0 3 5 8 11 14 17 20 23 26 29 30 36 39
11 0 3 6 9 13 16 19 23 26 30 33 37 40 44
12 1 4 7 11 14 18 22 26 29 33 37 41 45 49
13 1 4 8 12 16 20 24 28 30 37 41 45 50 54
14 1 5 9 13 17 22 26 31 36 40 45 50 55 59
15 1 5 10 14 19 24 29 34 39 44 49 54 59 64

Values of U0.02

n1
n2

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 0 0 0
3 0 0 1 1 1 2 2 2 3
4 0 1 1 2 3 3 4 5 5 6 7
5 0 1 2 3 4 5 6 7 8 9 10 11
6 1 2 3 4 6 7 8 9 11 12 13 15
7 0 1 3 4 6 7 9 11 12 14 16 17 19
8 0 2 4 6 7 9 11 13 15 17 20 22 24
9 1 3 5 7 9 11 14 16 18 21 23 26 28

10 1 3 6 8 11 13 16 19 22 24 27 30 33
11 1 4 7 9 12 15 18 22 25 28 31 34 37
12 2 5 8 11 14 17 21 24 28 31 35 38 42
13 0 2 5 9 12 16 20 23 27 31 35 39 43 47
14 0 2 6 10 13 17 22 26 30 34 38 43 47 51
15 0 3 7 11 15 19 24 28 33 37 42 47 51 56

†This table is based on D. Auble, “Extended Tables for the Mann–Whitney Statistics,” Bulletin
of the Institute of Educational Research at Indiana University, Vol. 1, 1953. By permission of
the author.
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Statistical Tables

Table XI: (continued)

Values of U0.01

n1
n2

3 4 5 6 7 8 9 10 11 12 13 14 15

3 0 0 0 1 1 1 2
4 0 0 1 1 2 2 3 3 4 5
5 0 1 1 2 3 4 5 6 7 7 8
6 0 1 2 3 4 5 6 7 9 10 11 12
7 0 1 3 4 6 7 9 10 12 13 15 16
8 1 2 4 6 7 9 11 13 15 17 18 20
9 0 1 3 5 7 9 11 13 16 18 20 22 24

10 0 2 4 6 9 11 13 16 18 21 24 26 29
11 0 2 5 7 10 13 16 18 21 24 27 30 33
12 1 3 6 9 12 15 18 21 24 27 31 34 37
13 1 3 7 10 13 17 20 24 27 31 34 38 42
14 1 4 7 11 15 18 22 26 30 34 38 42 46
15 2 5 8 12 16 20 24 29 33 37 42 46 51

Table XII: Critical Values for the Runs Test†

Values of u′
0.025

n1
n2

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 2 2 2 2
3 2 2 2 2 2 2 2 2 2 3
4 2 2 2 3 3 3 3 3 3 3 3
5 2 2 3 3 3 3 3 4 4 4 4 4
6 2 2 3 3 3 3 4 4 4 4 5 5 5
7 2 2 3 3 3 4 4 5 5 5 5 5 6
8 2 3 3 3 4 4 5 5 5 6 6 6 6
9 2 3 3 4 4 5 5 5 6 6 6 7 7

10 2 3 3 4 5 5 5 6 6 7 7 7 7
11 2 3 4 4 5 5 6 6 7 7 7 8 8
12 2 2 3 4 4 5 6 6 7 7 7 8 8 8
13 2 2 3 4 5 5 6 6 7 7 8 8 9 9
14 2 2 3 4 5 5 6 7 7 8 8 9 9 9
15 2 3 3 4 5 6 6 7 7 8 8 9 9 10

Values of u0.025

n1
n2

4 5 6 7 8 9 10 11 12 13 14 15

4 9 9
5 9 10 10 11 11
6 9 10 11 12 12 13 13 13 13
7 11 12 13 13 14 14 14 14 15 15 15
8 11 12 13 14 14 15 15 16 16 16 16
9 13 14 14 15 16 16 16 17 17 18

10 13 14 15 16 16 17 17 18 18 18
11 13 14 15 16 17 17 18 19 19 19
12 13 14 16 16 17 18 19 19 20 20
13 15 16 17 18 19 19 20 20 21
14 15 16 17 18 19 20 20 21 22
15 15 16 18 18 19 20 21 22 22

†This table is adapted, by permission, from F. S. Swed and C. Eisenhart, “Tables for testing
randomness of grouping in a sequence of alternatives,” Annals of Mathematical Statistics, Vol. 14.
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Statistical Tables

Table XII: (continued)

Values of u′
0.005

n1
n2

3 4 5 6 7 8 9 10 11 12 13 14 15

3 2 2 2 2
4 2 2 2 2 2 2 2 3
5 2 2 2 2 3 3 3 3 3 3
6 2 2 2 3 3 3 3 3 3 4 4
7 2 2 3 3 3 3 4 4 4 4 4
8 2 2 3 3 3 3 4 4 4 5 5 5
9 2 2 3 3 3 4 4 5 5 5 5 6

10 2 3 3 3 4 4 5 5 5 5 6 6
11 2 3 3 4 4 5 5 5 6 6 6 7
12 2 2 3 3 4 4 5 5 6 6 6 7 7
13 2 2 3 3 4 5 5 5 6 6 7 7 7
14 2 2 3 4 4 5 5 6 6 7 7 7 8
15 2 3 3 4 4 5 6 6 7 7 7 8 8

Values of u0.005

n1
n2

5 6 7 8 9 10 11 12 13 14 15

5 11
6 11 12 13 13
7 13 13 14 15 15 15
8 13 14 15 15 16 16 17 17 17
9 15 15 16 17 17 18 18 18 19

10 15 16 17 17 18 19 19 19 20
11 15 16 17 18 19 19 20 20 21
12 17 18 19 19 20 21 21 22
13 17 18 19 20 21 21 22 22
14 17 18 19 20 21 22 23 23
15 19 20 21 22 22 23 24
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Multiplication, 2, 40, 45
Multiplication rule, 40, 45
Multivariate distributions, 61, 82
Mutually exclusive events, 27-28, 33, 48, 74

N
n factorial, 5
Natural logarithms, 16
Negative exponents, 154
Negative numbers, 261
nonlinear, 423
Normal curves, 186
Normal distribution, 177, 186-201, 203-205, 208-209,

217, 225, 228, 231, 236-238, 241-243,
245-248, 251-252, 257, 290, 308-311, 314,
318, 321-323, 325, 328, 331, 340, 345, 352,
361, 363, 372-373, 388, 395, 403-404,
406-409, 411, 420, 439-440, 443, 454

Normal distributions, 189, 194-195, 228, 243, 245,
247, 328, 374, 417, 419

mean, 189, 194, 228, 243, 245
standard deviation, 189, 194, 245, 417

Normal equations, 399, 402-403, 413-416
Normal random variables, 403
Notation, 5, 22, 37, 52-53, 115, 146, 148, 186,

195-196, 205, 241, 379, 391, 399, 412-413,
415, 418, 420, 433

exponential, 186
interval, 412, 420
limit, 241
set, 22, 37, 52
summation, 379

Null hypothesis, 338-342, 344-357, 359-389, 403-405,
411, 419-420, 426-427, 430, 432

composite, 338, 345-346, 348-351, 353-354, 357,
359, 364, 372

simple, 338, 342, 345-346, 348-351, 353-354, 357,
359, 361, 364, 368

Numbers, 10, 23, 39, 53-54, 61, 64, 68-69, 73, 76-77,
82, 84, 101-102, 106, 133, 150-151, 163,
166, 168, 173-174, 202, 204, 231, 233, 236,
238-239, 242, 247, 251, 256-257, 261, 267,
279, 302, 313, 327, 349, 351, 421, 424,
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composite, 349, 351
positive, 73, 150, 251, 349, 428
rational, 261
real, 64, 68-69, 73, 76-77, 82, 84, 251, 349, 351
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Numerators, 66

O
Odds, 36, 56, 261-262, 272, 278-279, 345-346
Open interval, 78
Operating characteristic curve, 169, 347
Order statistics, 233, 252-254
Ordered pair, 2, 239
Origin, 108, 122-123, 128, 130-131, 182, 185, 236

symmetry, 123, 130
Ounces, 204-205, 364
Outlier, 201, 424
Outliers, 201, 298

P
Parabola, 429-430, 432
Parameters, 145, 147, 149-150, 152-153, 156-157,

166, 168-169, 172, 177, 183-187, 192, 195,
210-211, 218-219, 224-225, 227-228,
230-232, 235, 259, 277, 283-284, 291, 293,
295, 298-302, 304-308, 311, 313, 321,
326-328, 337, 369, 374, 379, 381, 388,
392-394, 402-403, 407-408, 417, 437-438,
439-441

Partial derivatives, 86, 89, 304, 399, 413
finding, 399

Paths, 2
Patterns, 110, 186, 266
Percent chance, 22
Percentages, 109, 230, 325, 333, 338, 374, 425
Perfect square, 39
Periods, 204, 256
Permutations, 4-8, 19
Personal probability, 310
Plane, 2-3, 24, 85, 198, 221, 355, 429-430
Plots, 201-202
Plotting, 70, 397
Point, 22, 26, 28-29, 52-53, 55, 61, 73-74, 79, 101,
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Point estimator, 283, 312
Points, 18, 23-25, 29, 31, 39, 52-54, 61-62, 70-71,

73-74, 78, 86, 90, 106-107, 110, 116, 124,
146, 194, 199, 202, 212, 266, 268, 279, 342,
397, 405, 409, 412, 417, 426

Poisson distributions, 218-219, 227, 231
Polls, 312
Pooling, 323
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Power functions, 347-348
Power series, 129, 236-237
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Prediction, 400, 407, 420, 423, 427, 430
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Prior probability, 314
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293, 325, 339, 341-342, 345-348, 354, 356,
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Probability, 1, 20, 21-60, 61-112, 113-116, 118-123,
125-133, 135, 138-140, 142-144, 145-176,
177-205, 207-220, 222-227, 229-232, 233,
235, 238-239, 241-242, 245-246, 248-249,
251-254, 258-260, 267, 274, 292-295, 297,
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complementary events, 32
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odds, 36, 56, 345-346

Probability density function, 75-76, 78, 80, 85-86, 107
Probability density functions, 61, 74, 76, 101
Probability distributions, 61-112, 123, 138, 145-176,
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Probability of an event, 21, 28, 49-50, 74
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average, 203, 429-430
total, 143, 279

Proportions, 28, 108, 151, 173, 259, 278, 317, 325,
327-328, 334-335, 359-389

p-values, 361-363, 373

Q
Quadratic, 274, 308, 402

R
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Random numbers, 256-257, 267
Random samples, 234-235, 240, 245-246, 250-256,

258-260, 286, 288, 292, 306, 313, 318,
320-322, 324, 327, 330-331, 333-334, 354,
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231, 238, 241-242, 244-245, 247, 249-253,
256-257, 269-274, 276, 291-293, 295, 307,
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98-101, 108, 112, 113, 115, 119, 121, 123,
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131-132, 138, 140, 143, 190, 207,
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138, 183, 233-234
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98, 101, 115, 119, 121, 131-132, 134,
138, 140, 146, 152, 211-212, 215, 218,
226-227, 239, 302, 342, 392

expectations of, 138
generating, 113, 131, 140, 146, 152, 194-195, 207,

226-228, 230, 236, 238, 243, 251, 260
Range, 64-66, 71-72, 83, 89, 93-95, 98, 102, 115, 132,

142, 172, 212-213, 220, 226, 232, 251, 255,
259, 424, 427, 463
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defined, 64, 94
determining, 132, 226

Rates, 325
Ratio, 21, 36, 47, 55, 97, 109, 174, 232, 248, 250,

288, 317, 330-331, 335, 337, 344, 349-354,
356, 359-360, 365-367, 369-370, 372, 406

common, 36, 317, 372
Ratio test, 350-352, 354, 369
Ray, 54
Rays, 387
Real axis, 73, 253, 283
Real numbers, 68-69, 76-77, 84, 251, 349, 351

defined, 68-69, 76, 84, 349
properties of, 76-77, 84
real, 68-69, 76-77, 84, 251, 349, 351

Rectangle, 26, 66-68
Rectangles, 67-68, 74-75

similar, 74
Rectangular distribution, 439, 441
Reduced sample space, 38-39
Regression, 391-432

exponential, 392, 426
linear, 391, 395-396, 398, 401, 403, 408-413, 415,

419, 421-424, 426, 428-431
Regression analysis, 391, 402, 404-406, 411, 414,

419-423, 431
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Regression line, 396, 398, 403
Rejection region, 338-339, 345
Remainder, 71, 201
Residuals, 421-424, 431
Rise, 20, 50, 101
Roots, 202, 330-331
Rounding, 172, 326
Run, 21, 56, 203, 256-257, 384-385, 421, 423-424

S
Saddle point, 266-268, 279
Sample, 21-26, 28-35, 37-41, 46-47, 49, 52-54, 56, 59,

61-64, 73, 82, 107, 141-142, 156, 168-169,
171-175, 197, 222, 233-236, 238-242,
244-246, 248, 251-260, 269, 276-278,
283-287, 289-295, 297, 299-300, 302-306,
308, 311-314, 317-327, 329-335, 337-340,
342, 344-345, 349-351, 354-356, 361-370,
372, 374-376, 378-381, 383-388, 392, 398,
400, 402, 407-409, 412-413, 426, 428

Sample correlation coefficient, 408-409, 428
Sample mean, 141-142, 233-235, 239, 257, 269, 283,

286, 311, 314, 333, 355, 384
Sample space, 22-26, 29-30, 32-33, 35, 37-41, 46-47,

49, 52-54, 56, 61-64, 73, 82, 107, 197, 222,
338, 344

Sample standard deviation, 141-142, 246, 320
Sample variance, 234-235, 239, 242, 286, 293, 369
Sampling, 17, 40, 136, 155-157, 167-172, 175, 181,

233-260, 276-277, 283, 286-287, 289, 291,
294, 298, 306, 312, 314, 317-318, 325, 327,
331-332, 359-363, 378, 382, 403, 406, 410,
419

proportion, 168-171, 175, 241, 256, 258-259, 283,
291, 314, 325, 327, 331

random, 136, 155-156, 167-169, 172, 175, 181,
233-236, 238-260, 276-277, 283,
286-287, 289, 291, 306, 314, 317-318,
325, 327, 331-332, 363, 382, 403, 406,
410, 419

Sampling variability, 170
Scores, 143, 199-202, 204-205, 355, 397, 400, 404,

423-425, 427-429, 431
data sets, 201

Seconds, 109, 204-205, 230, 333, 335, 384
Sequences, 16, 146-147
Series, 17-18, 30, 50-52, 59, 121, 128-129, 131, 152,

163, 175, 185, 192, 194, 236-237, 354, 444
defined, 50, 121
geometric, 30
mean, 131, 152, 163, 185, 194, 236-237, 354

Series system, 50-51, 59
Set notation, 22
Sets, 18-19, 26, 34, 40, 52, 114, 143, 194, 201, 324,

332, 343, 346, 349, 381
empty, 52
intersection, 26, 52
solution, 18, 26, 34, 40, 114, 201, 324, 332, 346,

381
union, 26, 52, 343

Sides, 13-14, 17, 40, 49, 164-165, 291, 395-396
Signal, 313

Simple null hypothesis, 342, 348-349, 353-354, 359
Simplification, 344
Simplify, 5, 115, 195-196, 269, 273, 395, 399, 433
Simulation, 151, 217, 232
Slope, 396, 403, 409, 427
Solutions, 298

checking, 298
Speed, 24, 50, 181, 260, 314, 334, 384, 421
Square, 39, 123, 125, 141-142, 164, 177-178,

181-182, 185-187, 191, 195, 200, 217, 225,
229, 233, 242-245, 248-252, 257, 259-260,
268, 290, 292-293, 309, 312, 323, 329-331,
352-353, 356, 361, 367, 369, 371-372,
374-375, 377, 379-380, 385-386, 388, 404,
419, 431, 439

matrix, 195, 268, 419, 431
Square roots, 330-331
Squared deviations, 323
Squares, 142, 197, 391, 396-403, 406, 412-417, 420,

425-426, 429
Squaring, 141
Standard deviation, 123-125, 130, 141-144, 172, 187,

189-191, 194, 196, 203-204, 231, 235, 238,
241, 244-246, 248, 258-259, 309-310,
313-314, 320-321, 323-324, 330, 332-335,
364, 366-367, 383-385, 388, 408, 417, 423

Standard deviations, 125-127, 130, 195, 201, 203,
228, 258-259, 322, 324, 385, 406, 408

sample, 258-259, 322, 324, 385, 408
Standard error, 235, 258, 332, 406, 418

estimated, 332
Standard form, 130
Standard normal distribution, 188-190, 192-195,

203-205, 208-209, 217, 225, 231, 236,
241-243, 246-248, 251, 257, 311, 321-323,
325, 328, 340, 361, 373, 406, 411, 443, 454

Statements, 54-55, 233, 307, 319, 369
defined, 233

Statistical computer software, 383
Statistical hypothesis, 337-338, 346
Statistical inference, 136, 205, 233, 235, 260, 263,

269, 283, 314
inferences, 233, 235
sampling distributions, 233, 235, 260, 283

Statistical model, 337
Statistical Quality Control, 252
Statistical tables, 11-12, 16, 147-148, 154, 160, 163,

165, 169, 171-174, 194, 204, 238, 244-245,
247-248, 250, 259, 321-322, 324, 330-331,
339-340, 346, 361, 363, 367, 373, 377, 381,
404, 419, 443-468

Statistical testing of hypotheses, 276
Statistics, 1-2, 19-20, 21-22, 25, 49, 60, 61, 68, 107,

111, 113, 121-123, 132, 145-146, 154, 157,
177, 179, 185-187, 198, 205, 207, 232,
233-236, 252-254, 257, 260, 261, 280, 283,
314, 317, 332, 335, 337, 342, 344, 356, 359,
363, 379-380, 383, 388, 391, 425, 431,
433-434, 437, 439, 443, 466-467

population, 233-236, 252-254, 260, 283, 314, 335,
337, 342, 344, 356, 359, 363, 380, 388

Subjective probability, 56
Subset, 8-10, 12, 14, 24-26, 28-29, 33, 62, 74, 239,

349-350
Substitution, 34-35, 38, 41, 65, 119, 160, 165, 178,

185, 187, 195, 211-212, 246, 248-250, 252,
310, 376

Subtraction, 141, 380
Sum, 13-14, 29-31, 39, 47, 56, 60, 75, 91, 106,

110-111, 113-114, 126, 142, 147, 149, 152,
156, 218-219, 222-223, 225-228, 230, 257,
263-265, 268, 271, 279-280, 323, 351,
356-357, 379-380, 382, 415

Sums, 127, 145, 227, 379, 392, 433-435
Survey, 34, 156, 257, 334, 366, 386
Symbols, 7
Symmetry, 123, 130, 188, 196-197, 290, 354
Systematic sampling, 256

T
Tables, 1, 11-12, 16, 147-148, 154, 160, 163, 165,

169, 171-176, 194, 204, 238, 244-245,
247-248, 250, 259-260, 321-322, 324,
330-331, 335, 339-340, 346, 361, 363, 367,
373, 377, 381, 388, 404, 419, 443-468

Temperature, 24, 231, 312, 423, 429-431
Test of a statistical hypothesis, 346
Test scores, 355, 397, 400, 428
Tests of hypotheses, 283, 337, 361, 402

Tolerance limits, 256
Tons, 430
Transformations, 200, 202, 229, 287
Tree diagram, 2-3, 15, 18, 47
Trees, 334
Type I error, 170, 338-339, 341-342, 346-350,

355-356, 364
Type II error, 171, 338-339, 341-343, 345-349, 353,

355, 366

U
Unbiased estimator, 284-294, 311, 323, 325, 406
Uniform distribution, 145-146, 152, 177-178, 229, 239,

289, 437, 439, 441
Upper bound, 143

V
Variability, 112, 142, 170, 330, 338, 369, 371

measurement, 371
Variables, 61-62, 64, 71, 73-76, 79-80, 82-96, 98-101,

108, 112, 113, 115, 119, 121, 123, 131-140,
143, 146, 152, 166-168, 178, 183, 189-190,
194-197, 207-232, 233-236, 238-243, 246,
248-251, 253, 255-256, 258-260, 283, 299,
302, 305-306, 317, 319, 323, 332, 335, 337,
342, 350, 369, 374, 382, 384, 391-392, 396,
400-403, 408, 412, 417, 419, 421-424, 429,
431

functions, 61, 64, 74, 76, 79-80, 84, 86, 95, 101,
113, 119, 207-232, 233-234, 260, 332

Variance, 123-125, 130-131, 136-137, 139-140, 143,
146, 149-150, 152, 154, 156, 162, 165, 173,
177, 181-183, 185, 196-197, 225, 228,
233-245, 248, 250-252, 255-260, 283-294,
297-299, 301, 304-306, 308-309, 311-313,
318-320, 323, 325, 329, 331, 335, 351-352,
354, 363-364, 367, 369-370, 392, 404, 407,
411, 420, 437-438, 439-441

Variances, 123, 125, 137-138, 140, 242, 247-248, 250,
258-259, 288-289, 292, 313, 317, 322, 324,
329-331, 334-335, 354, 359-389, 419

confidence intervals for, 317
Variation, 150, 164, 229, 245, 309-310, 313-314,

369-370, 409-410
Variations, 356
Velocity, 231
Venn diagram, 27, 33-34, 36, 44, 53-54, 57
Vertex, 55
Vertical, 16, 68, 102, 398
Vertical line, 102
Viewing, 257, 333
Volume, 88
Voting, 18

W
Weibull distribution, 185, 203, 337
Weight, 143, 172, 356, 364, 385, 391, 402, 428
Weighted mean, 311
Whole numbers, 23

X
x-axis, 80, 110, 122, 215
x-coordinate, 122
xy-plane, 85, 198

Y
Yards, 174
y-axis, 110-111
Years, 1, 18, 26, 33, 37-38, 52, 56, 59, 61, 107, 174,

183, 203, 263, 298, 313-314, 332, 334, 355,
384, 388, 391, 412, 426

y-intercept, 403

Z
z-axis, 198
Zero, 17, 28, 36, 42, 50, 74, 78, 86, 134-135, 142-143,

195, 214, 229, 241, 253, 257, 263-265, 268,
271, 279-280, 290, 303-304, 328, 331, 350,
399, 402-403, 407-408, 413

matrix, 195, 263-265, 268, 279
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